 JAVASCRIPT
. &JQUERY

. interactive front-end
. web development

JON DUCKETT

JAVASCRIPT & JQUERY

Interactive Front-End Web Development

JON DUCKETT

Additional material by:
GILLES RUPPERT & JACK MOORE

WILEY

- e AN
The text stock is SFi certified

Published by
" John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

©2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

ISBEN: 978-1-118-53164-8
Manufactured in the United States of America
10987654321

Mo part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act,
without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for
permission should be addressed to the Permissions Department, lohn Wiley & Sons, Inc., 111 River Street, Hoboken, NI 07030, (201) 748-
6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.)

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy
or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for

a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained

herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent professional person should

be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or website may provide or recommendations it may make. Further, readers should be aware that Internet
websites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United States at (877)
762-2974, outside the United States at (317) 572-3993 or fax (3171 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of
this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the
version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit
www.wiley.com. :

Library of Congress Control Number: 2013933932

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United
States and other countries, and may not be used without written permission. JavaScript is a registered trademark of Oracle America, Inc. All
other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vender mentioned
in this book.

TABLE OF CONTENTS

Introduction _ 1
Chapter1: The ABC of Programming 1
Chapter 2: Basic JavaScript Instructions 53
Chapter 3: Functions, Methods & Objects 85
Chapter 4: Decisions & Loops 145
Chapter 5: Document Object Model 183
Chapter 6: Events 243
Chapter 7: jQuery PAK]
Chapter 8: Ajax & JSON _ 367
Chapter 9: APIs 409
Chapter 10: Error Handling & Debugging 449
Chapter 11: Content Panels iy
Chapter 12: Filtering, Searching & Sorting 527
Chapter 13: Form Enhancement & Validation 567
Index 623

Try out & download the code in this book
www.javascriptbook.com

CREDITS

For John Wiley & Sons, Inc.

For Wagon Ltd.

Executive Editor
Carol Long

Project Editor
Kevin Kent

Production Editor
Daniel Scribner

Editorial Manager
Mary Beth Wakefield

Associate Director of Marketing
David Mayhew

Marketing Manager
Lorna Mein

Business Manager
Amy Knies

Vice President and Executive
Group Publisher
Richard Swadley

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Todd Klemme

Author
Jon Duckett

Co-Authors
Jack Moore
(Chapters 11 &12)

Gilles Ruppert
(Chapter 13)

Technical Review
Mathias Bynens

Review Team
Chris Ullman
David Lean
Harrison Thrift
Jay Bursky
Richard Eskins
Scott Robin
Stachu Korick

Thank you
Annette Loudon
Michael Tomko
Michael Vella Zarb
Pam Coca

Rishabh Pugalia

Cover Design
Emme Stone

Design
Emme Stone
Jon Duckett

Photography
John Stewardson
johnstewardson.com

llustration
Matthew Cencich
(Hotel in Chapter 3)

Emme Stone
(Teacher in Chapter 4)

Additional Photography

Electronics in Chapters 8 & 9:
Aaron Nielsen

Arkadiusz Jan Sikorski

Matt Mets

Mirsad Dedovic

Steve Lodefink

Jjavascriptbook.com/credits

This book explains how JavaScript can be used

in browsers to make websites more interactive,

interesting, and user-friendly. You will also learn about
jQuery because it makes writing JavaScript a lot easier.

To get the most out of this boaok, you will need to know how to build web pages using HTML

and CSS. Beyond that, no prior experience with programming is necessary. Learning to
program with JavaScript involves:

] 2 E

Understanding some basic Learning the language itself, = Becoming familiar with how
programming conceptsand and, like all languages, you it is applied by locking at
the terms that JavaScript need to know its vocabulary examples of how JavaScript
programmers use to and how to structure your is commonly used in
describe them. sentences. websites today.

The only equipment you need to use this book are a computer with a modern web browser
installed, and your favorite code editor, (e.g., Notepad, TextEdit, Sublime Text, or Coda).

Introduction pages come at the beginning of each Reference pages introduce key pieces of JavaScript.
chapter. They introduce the key topics you will learn HTML code is shown in blue, CSS code in pink, and
about. JavaScript in green.

LOOPING

Background pages appear on white. They explain Diagram and infographics pages are shownon a
the context of the topics covered that are discussed dark background. They provide a simple, visual
in each chapter. reference to topics discussed.

Example pages bring together the topics you have : Summary pages come at the end of each chapter.
learned in that chapter and demonstrate how they They remind you of the key topics that were covered
can be applied. in each chapter.

—

INTRODUCTION \ 3)

JavaScript allows you
to make web pages more
1 = interactive by accessing and
' modifying the content and
markup used in a web page
You can use {avaScnpt to select any while it is being viewed in
element, attribute, or text from an -
HTML page. For example: the browser.

ACCESS CONTENT

@ Select the text inside all of the <h1>
elements on a page

@ Select any elements that have a
class attribute with a value of note

@ Find out what was entered into a
text input whose id attribute has a
value of email

MODIFY CONTENT

You can use JavaScript to add
elements, attributes, and text to the
page, or remove them. For example:

® Add a paragraph of text after the
first <h1> element

® Change the value of class
attributes to trigger new CSS rules
for those elements

® Change the size or position of an ==

 element

3

PROGRAM RULES

You can specify a set of steps for

the browser to follow (like a recipe),
which allows it to access or change the
content of a page. For example:

@ A gallery script could check which
image a user clicked on and display
a larger version of that image.
® A mortgage calculator could collect
values from a form, perform a
calculation, and display repayments.
® Ananimation could check the
dimensions of the browser window
and move an image to the bottom
of the viewable area (also known as
the viewport).

JavaScript
encompasses many
of the traditional rules of
programming.

It can make the web page feel REACT TO EVENTS
interactive by responding You can specify that a script should run

to what the user does when a specific event has occurred. For
: example, it could be run when:

A button is pressed
A link is clicked (or tapped) on
A cursor hovers over an element
Information is added to a form
An interval of time has passed
A web page has finished loading

EXAMPLES OF JAVASCRIPT
IN THE BROWSER

Being able to change the content of an HTML page while it is loaded in
the browser is very powerful. The examples below rely on the ability to:

Access the content of the page
Maodify the content of the page

Program rules or instructions the browser can follow
React to events triggered by the user or browser

THEY SAY NO TWO
MARSHMALLOWS
ARE THE SAME...

At least cur cheds at Manalris

SLIDESHOWS

Shown in Chapter 11

Slideshows can display a number of different images
(or other HTML content) within the same space

on a given page. They can play automatically as

a sequence, or users can click through the slides
manually. They allow more content to be displayed
within a limited amount of space.

React: Script triggered when the page loads
Access: Get each slide from the slideshow
Modify: Only show the first slide (hide others)
Program: Set a timer: when to show next slide
Modify: Change which slide is shown

React: When user clicks button for different slide
Program: Determine which slide to show
Modify: Show the requested slide

@ INTRODUCTION

FORMS

Shown in Chapter 13

Validating forms (checking whether they have been
filled in correctly) is important when information is
supplied by users. JavaScript lets you alert the user
if mistakes have been made. It can also perform
sophisticated calculations based on any data entered
and reveal the results to the user.

React: User presses the submit button when they
have entered their name

Access: Get value from form field

Program: Check that the name is long enough
Modify: Show a warning message if the name is not
long enough

The examples on these two pages give you a taste of
what JavaScript can do within a web page, and of the

techniques you will be learning throughout this book.

THE MAKER BUS

Roll up! Roll up! It's the maker bus...

smmu s Ml Tha fuburn Iatra b2 30 Medeling
20 Dol Macking

w0 oty 30 Mdelng.

RELOAD PART OF PAGE

Shown in Chapter 8

You might not want to force visitors to reload the
content of an entire web page, particularly if you
only need to refresh a small portion of a page.
Just reloading a section of the page can make a
site feel like it is faster to load and more like an
application.

React: Script triggered when user clicks on link
Access: The link that they clicked on

Program: Load the new content that was requested
from that link

Access: Find the element to replace in the page
Modify: Replace that content with the new content

In the coming chapters, you will learn how and when
to access or modify content, add programming rules,
and react to events.

FILTERING DATA

Shown in Chapter 12

If you have a lot of information to display on a page,
you can help users find information they need by
providing filters. Here, buttons are generated using
data in the attributes of the HTML elements.
When the user clicks on one of the buttons, they are
only shown the images with that keyword.

React: Script triggered when page loads

Program: Collect keywords from images

Program: Turn the keywords into buttons the user
can click on

React: User clicks on one of the buttons

Program: Find the relevant subset of images that
should be shown

Modify: Show the subset of images that use that tag

INTRODUCTION @

THE STRUCTURE OF

THIS BOOK

In order to teach you JavaScript, this book is divided into two sections:

CORE CONCEPTS

The first nine chapters introduce you to the basics
of programming and the JavaScript language. Along
the way you will learn how it is used to create more
engaging, interactive, and usable websites.

Chapter 1looks at some key concepts in computer

programming, showing you how computers create

models of the world using data, and how JavaScript
is used to change the contents of an HTML page.

Chapters 2-4 cover the basics of the JavaScript
language.

Chapter 5 explains how the Document Object Model
(DOM) lets you access and change a document's
contents while it is loaded into the browser.

Chapter 6 discusses how events can be used to
trigger code.

Chapter 7 shows you how jQuery can make the
process of writing scripts faster and easier.

Chapter 8 introduces you to Ajax, a set of
techniques that allow you to just change part of a
web page without reloading the entire page.

Chapter 9 covers Application Programming
Interfaces (APIs), including new APIs that are part of
HTML5 and those of sites like Google Maps.

INTRODUCTION

PRACTICAL APPLICATIONS

By this point you will already have seen many
examples of how JavaScript is used on popular
websites. This section brings together all of the
technigues you have learned so far, to give you
practical demonstrations of how JavaScript is used
by professional developers. Not only will you see a
selection of in-depth examples, you will also learn
more about the process of designing and writing
scripts from scratch.

Chapter 10 deals with error-handling and debugging,
and explains more about how JavaScript is processed.

Chapter 11 shows you techniques for creating
content panelssuch as sliders, modal windows,
tabbed panels, and accordions.

Chapter 12 demonstrates several techniques for
filtering and sorting data. This includes filtering a
gallery of images, and re-ordering the rows of a table
by clicking on the column headings.

Chapter 13 deals with form enhancements and how
to validate form entries.

Unless you are already a confident programmer, you
will probably find it helpful to read the book from
start to finish the first time. However, once you have
grasped the basics, we hope it will continue to be a
helpful reference as you create your own scripts.

HTML & CSS:
A QUICK REFRESHER

Before looking at JavaScript, let's clarify some HTML & CSS terms.
Note how HTML attributes and CSS properties use name/value pairs.

HTML ELEMENTS

HTML elements are added to Tags usually come in pairs with Opening tags can carry

the content of a page to describe an opening tag and a closing tag. attributes, which tell us more

its structure. An element There are a few empty elements about that element. Attributes

consists of the opening and with no content, (e.g.,). have a name and a value. The

closing tags, plus its content. They have one self-closing tag. value is usually given in quotes.
OPENING TAG CLOSING TAG

1 . : LA
<p class="fruit">peach</p>
l | 1]
| |

ATTRIBUTE NAME ATTRIBUTE VALUE

CSS RULES

CSS uses rules to indicate how The CSS selector indicates Each declaration in the

the contents of one or more which element(s) the rule declaration block has a property
elements should be displayed applies to. The declaration block (the aspect you want to control),
in the browser. Each rule has a contains rules that indicate how and a value, which is the setting
selector and a declaration block. those elements should appear. for that property.

SELECTOR DECLARATION BLOCK

.fruit {color: pink;}
LIJII|

PROPERTY NAME PROPERTY VALUE

BROWSER SUPPORT

Some early examples in this book do not work with Internet Explorer 8
and earlier (but alternative code samples that work in |IE8 are available to
download from http://javascriptbook.com). We explain techniques
for dealing with older browsers in later chapters.

Each version of a web browser adds new features.
Often these new features make tasks easier, or are
considered better, than using older techniques.

But, website visitors do not always keep up with
the latest browser releases, so website developers

cannot always rely upon the latest technologies.

As you will see, there are many inconsistencies

between browsers that affect JavaScript developers.

jQuery will help you deal with cross-browser
inconsistencies (it is one of the major reasons why
jQuery rapidly gained popularity amongst web
developers). But, before you learn jQuery, it helps to
know what it is helping you to achieve.

INTRODUCTION

To make JavaScript easier to learn, the first few
chapters use some features of JavaScript that are
not supported in IE8, But:

@ You will learn how to deal with IE8 and older
browsers in later chapters (because we know that
many clients expect sites to work in IE8).

It just requires knowledge of some extra code
or requires you to be aware of some additional
issues,

® Online, you will find alternatives available for
each example that does not work in |ES.

But please check the comments in those code
samples to make sure you know about the about
issues involved in using them.

Before you learn how to read and write the JavaScript
language itself, you need to become familiar with some key
concepts in computer programming. They will be covered in
three sections:

What is a script and howdo | How do computers fit in with ~ How do | write a script for a
create one? the world around them? web page?

Once you have learned the basics, the following chapters will show how the JavaScript
language can be used to tell browsers what you want them to do.

@ THE ABC OF PROGRAMMING

WHAT IS A SCRIPT

AND HOW DO |
CREATE ONE?

THE ABC OF PROGRAMMING @

A SCRIPT IS A SERIES OF
INSTRUCTIONS

A script is a series of instructions that a
computer can follow to achieve a goal.

You could compare scripts to any of the following:

RECIPES

By following the instructions in a
recipe, one-by-one in the order
set out, cooks can create a dish
they have never made before.

Some scripts are simple and only
deal with one individual scenario,
like a simple recipe for a basic
dish. Other scripts can perform
many tasks, like a recipe for a
complicated three-course meal.

Another similarity is that, if
you are new to cooking or
programming, there is a lot of
new terminology to learn.

140 o 1068 " e :
s Gervice and Re pair

THE ABC OF PROGRAMMING

HANDBOOKS

Large companies often provide
handbooks for new employees
that contain procedures to follow
in certain situations.

For example, hotel handbooks
may contain steps to follow in
different scenarios such as when
a guest checks in, when a room
needs to be tidied, when a fire
alarm goes off, and so forth.

In any of these scenarios, the
employees need to follow

only the steps for that one

type of event. (You would not
want someone going through
every single step in the entire
handbook while you were
waiting to check in.) Similarly,
in a complex script, the browser
might use only a subset of the
code available at any given time.

MANUALS

Mechanics often refer to car
repair manuals when servicing
models they are not familiar
with. These manuals contain a
series of tests to check the key
functions of the car are working,
along with details of how to fix
any issues that arise.

For example, there might be
details about how to test the
brakes. If they pass this test, the
mechanic can then go on to the
next test without needing to fix
the brakes. But, if they fail, the
mechanic will need to follow the
instructions to repair them.

The mechanic can then go back
and test the brakes again to see
if the problem is fixed. If the
brakes now pass the test, the
mechanic knows they are fixed
and can move onto the next test.

Similarly, scripts can allow the
browser to check the current
situation and only perform a
set of steps if that action is
appropriate.

Scripts are made up of instructions
a computer can follow step-by-step.

A browser may use different parts
of the script depending on how the
user interacts with the web page.

Scripts can run different sections
of the code in response to the -
situation around them.

od to first | -]
1 list the

| . A .
mpleted in -
{ N) i ¥ |
{1 Ll > (¥ |
| _ —
T Y ekl aclive ‘
. . . . | p— ,«—~—__—I
Humans can achieve complex goals without thinking | f | | :
. |
about them too much, for example you might be | | o —_— |
; | | | | SEVENT:click o8 this rodio ¢l H.“‘\ ‘ |
able to dr car, breakfast, or send an email | N , i
et of detailed instructions. But the first S |
. by B TTY » - ran® |
n seem daunting. R)
skill, we often break
1
d learn one of these at |
< 3% L& i ablde — &
idual tasks gro , N |
U whenre 4
— i = | i
ding or writing F =
ill be quite FUNCTION: advance
|
complicated and might look intimidating at ' “ nagd A '
: ript is just a series of short i . ‘
ich is performed in order . L = oL T | |
blem in hand. This is why creating a A Timeant([
riting a recipe or manual that allows a 3 T —_— 1
computer to solve a pu one step at a time. -
1
. A ST ; 3
It is worth noting, however, that a computer doesn't : . T R
! : - i \ Y}
to perform tasks like you or | might; it i S
needs to follow instructions every time it performs) o A)

the task. So a program must give the computer
enough detail to perform the task as if every time
were its first time.

l

Start with the big picture of what
you want to achieve, and break
that down into smaller steps.

1. DEFINE THE GOAL
First, you need to define the task you want to

achieve, You can think of this as a puzzle for the
computer to solve.

2: DESIGN THE SCRIPT
To design a script you split the goal out into a series

of tasks that are going to be involved in solving this
puzzle. This can be represented using a flowchart.

You can then write down individual steps that the
computer needs to perform in order to complete
each individual task (and any information it needs to
perform the task), rather like writing a recipe that it
can follow,

5. CODE EACH STEP
Each of the steps needs to be writtenin a

programming language that the computer
understands. In our case, this is JavaScript.

As tempting as it can be to start coding s

f
away, it pays to spend time designing yvour script
before you start writing it

THE ABC OF PROGRAMMING

—

(17)

DESIGNING A SCRIPT:
TASKS

Once you know the goal of your script, you
can work out the individual tasks needed to
achieve it. This high-level view of the tasks
can be represented using a flowchart.

FLOWCHART: TASKS OF A HOTEL CLEANER

CHECK EACH ROOM

Does
room need
tidying?

Does
minibar need
restocking?

THE ABC OF PROGRAMMING

DESIGNING A SCRIPT:
STEPS

Each individual task may be broken down into
a sequence of steps. When you are ready

to code the script, these steps can then be
translated into individual lines of code.

LIST: STEPS REQUIRED TO TIDY A ROOM

STEP1 Remove used bedding

STEP 2 Wipe all surfaces

STEP 3 Vacuum floors

STEP 4 Fit new bedding

STEP 5 Remove used towels and soaps
STEP 6 Clean toilet, bath, sink, surfaces
STEP 7 Place new towels and soaps
STEP 8 Wipe bathroom floor

As you will see on the next page, the steps that a computer needs to follow in order
to perform a task are often very different from those that you or | might take.

THE ABC OF PROGRAMMING

FROM STEPS
TO CODE 9 :

Every step for every task shown

in a flowchart needs to be written h ' .
in a language the computer can
understand and follow.

In this book, we are focussing on the JavaScript
language and how it is used in web browsers.

m
Just like learning any new language, you need ‘5
to get to grips with the: 4
@ Vocabulary: The words that computers !

understand ¥

|/ Bl
@ Syntax: How you put those words together to “ f
create instructions computers can follow % & &

Along with learning the language itself, if you are
new to programming, you will also need to learn how

] M
a computer achieves different types of goals using a)
a programmatic approach to problem-solving, R

Computers are very logical and obedient, They need Q Q
to be told every detail of what they are expected to '
do, and they will do it without question. Because o g ' :
they need different types of instructions compared

to you or |, everyone who learns to program makes
lots of mistakes at the start. Don't be disheartened;
in Chapter 10 you will see several ways to discover
what might have gone wrong - programmers call
this debugging.

THE ABC OF PROGRAMMING

You need to learn to “think” like

a computer because they solve
tasks in different ways than you or
| might approach them.

Computers solve problems programmatically; they
follow series of instructions, one after another. The
type of instructions they need are often different to
the type of instructions you might give to another
human. Therefore, throughout the book you will not
only learn the vocabulary and syntax that JavaScript
uses, but you will also learn how to write instructions
that computers can follow.

For example, when you look at the picture on the
left how do you tell which person is the tallest?
A computer would need explicit, step-by-step
instructiens, such as:

1. Find the height of the first person

2. Assume he or she is the "tallest person”

3. Look at the height of the remaining people one-
by-one and compare their height to the "tallest
person” you have found so far

4, At each step, if you find someone whose height is
greater than the current "tallest person”, he or she
becomes the new "tallest person”

5. Once you have checked all the people, tell me
which one is the tallest

So the computer needs to look at each person in
turn, and for each one it performs a test ("Are they
taller than the current tallest person?"). Once it has
done this for each person it can give its answer.

THE ABC OF PROGRAMMING @

DEFINING A GOAL &
DESIGNING THE SCRIPT

Consider how you might approach a different type of script.
This example calculates the cost of a name plaque.
Customers are charged by the letter.

The first thing you should do is detail your goals for
the script (what you want it to achieve): CUSTOM SIGNAGE

Customers can have a name added to a plaque; each
letter costs $5. When a user enters a name, show
them how much it will cost.

Enter name:

SHOW COST

Next, break it into a series of tasks that have to be

performed in order to achieve the goals:

1. The script is triggered when the button is clicked. CUSTOM SIGNAGE

2, It collects the name entered into the form field.

3. It checks that the user has entered a value.

4.1f the user has not entered anything, a message
will appear telling them to enter a name. { THOMAS

5. If a name has been entered, calculate the cost of
the sign by multiplying the number of letters by
the cost per letter.

Enter name: piease enter a name below...

6. Show how much the plaque costs.

(These numbers correspond with the flowchart on CUSTOM SIGNAGE

the right-hand page.)
_ 530
THOMAS

@ THE ABC OF PROGRAMMING

SKETCHING OUT THE
TASKS IN A FLOWCHART

Often scripts will need to perform different tasks in different situations.
You can use flowcharts to work out how the tasks fit together.
The flowcharts show the paths between each step.

©

When the button has been clicked
|

Get the name entered into the form

Is there a
name to get?

Ask user the user to enter a name

Calculate the cost of the sign (letters x price)

+

1
Show the cost of the sign on the screen

Arrows show how the script moves from one task
to the next. The different shapes represent different
types of tasks. In some places there are decisions
which cause the code to follow different paths.

You will learn how to turn this example into code in
Chapter 2. You will also see many more examples of
different flowcharts throughout the book, and you
will meet code that helps you deal with each of these
types of situations.

Some experienced programmers use more complex
diagram styles that are specifically designed to
represent code - however, they have a steeper
learning curve. These informal flowcharts will help
you understand how scripts work while you are in
the process of learning the language.

FLOWCHART KEY

Generic step Event

Input or output Decision

THE ABC OF PROGRAMMING @

SUMMARY

THE ABC OF PROGRAMMING

A: What is a script and how do | create one?

>

'@l THE ABC OF PROGRAMMING

e

HOW DO COMPUTERS

FIT IN WITH THE
WORLD AROUND
THEM?

COMPUTERS CREATE
MODELS OF THE WORLD
USING DATA

Here is a model of a hotel, along with some model trees, model people,
and model cars. To a human, it is clear what kind of real-world object
each one represents.

THE ABC OF PROGRAMMING

A computer has no predefined So how do we use computers Programmers make these

concept of what a hotel or car is. to create hotel booking apps, models using data. That is not

It does not know what they are or video games where players as strange or as scary as it

used for. Your laptop or phone can race a car? The answer sounds because the data is all
will not have a favorite brand of is that programmers create a the computer needs in order to
car, nor will it know what star very different kind of model, follow the instructions you give it
rating your hotel is. especially for computers. to carry out its tasks.

OBJECT TYPE: HOTEL

LL il

ol 1}

OBJECT TYPE: CAR

T

OBJECTS & PROPERTIES

If you could not see the picture of the hotel and cars, the data in the
information boxes alone would still tell you a lot about this scene.

OBJECTS (THINGS)

In computer programming, each physical thing in
the world can be represented as an object. There are
two different types of objects here: a hotel and a car.

Programmers might say that there is one instance of
the hotel object, and two instances of the car object.

Each object can have its own:
@ Properties

® Events

® Methods

Together they create a working model of that object.

PROPERTIES (CHARACTERISTICS)

Both of the cars share common characteristics.

In fact, all cars have a make, a color, and engine
size. You could even determine their current
speed. Programmers call these characteristics the
properties of an object.

Each property has a name and a value, and each of
these name/value pairs tells you something about
each individual instance of the object.

The most obvious property of this hotel is its name.
The value for that property is Quay. You can tell the
number of rooms the hotel has by looking at the
value next to the rooms property.

The idea of name/value pairs is used in both HTML and CSS. In HTML, an attribute is like a property; different
attributes have different names, and each attribute can have a value. Similarly, in CSS you can change the color
of a heading by creating a rule that gives the color property a specific value, or you can change the typeface it is
written in by giving the font-family property a specific value. Name/value pairs are used a lot in programming.

THE ABC OF PROGRAMMING

HOTEL OBJECT

The hotel object uses property names and values

to tell you about this particular hotel, such as the
hotel's name, its rating, the number of rooms it has,
and how many of these are booked. You can also tell
whether or not this hotel has certain facilities.

OBJECT TYPE: HOTEL
PROPERTIES

name Quay

ratiﬁg 4

r06m5 . 42

bookings 21

gym false

pool true

1lH

TE

OBJECT TYPE: CAR

fuel

PROPERTIES

make
currentSpeed

color

CAR OBJECTS

The car objects both share the same properties, but
each one has different values for those properties.
They tell you the make of car, what speed each car is
currently traveling at, what color it is, and what type
of fuel it requires.

Il
- ll.
OBJECT TYPE: CAR

i

M

PROPERTIES
make Porsche
currentSpeed 20mph

color silver

fuel gasoline

l

_ A ey

THE ABC OF PROGRAMMING

EVENTS

In the real world, people interact with objects. These interactions can
change the values of the properties in these objects.

WHAT IS AN EVENT?

There are common ways in which people interact
with each type of object. For example, ina car a
driver will typically use at least two pedals. The car
has been designed to respond differently when the
driver interacts with each of the different pedals:

® The accelerator makes the car go faster

@ The brake slows it down

Similarly, programs are designed to do different
things when users interact with the computer in
different ways. For example, clicking on a contact
link on a web page could bring up a contact

form, and entering text into a search box may
automatically trigger the search functionality.

An event is the computer's way of sticking up its
hand to say, "Hey, this just happened!”

THE ABC OF PROGRAMMING

WHAT DOES AN EVENT DQO?

Programmers choose which events they respond to.
When a specific event happens, that event can be
used to trigger a specific section of the code.

Scripts often use different events to trigger different
types of functionality.

So a script will state which events the programmer
wants to respond to, and what part of the script
should be run when each of those events occur.

HOTEL OBJECT CAR OBJECTS

A hotel will regularly have bookings for rooms. Each A driver will accelerate and brake throughout any car
time a room is reserved, an event called book can journey. An accelerate event can trigger code to

be used to trigger code that will increase the value increase the value of the currentSpeed property and
of the bookings property. Likewise, a cancel event a brake event can trigger code to decrease it. You
can trigger code that decreases the value of the will learn about the code that responds to the events
bookings property. and changes these properties on the next page.

OBJECT TYPE: HOTEL

EVENT happens when:

book reservation is made

cancel reservation is cancelled

LT g T

OBJECT TYPE: CAR

_ ‘.J...l""l!!!!lli‘

OBJECT TYPE: CAR

EVENT happens when:
brake

EVENT happens when:

- driver slows down brake driver slows down

accelerate accelerate | driver speeds up

~ driver speeds up

METHODS

Methods represent things people need to do with objects. They can
retrieve or update the values of an object's properties.

WHAT IS A METHOD?

Methods typically represent how people (or other
things) interact with an object in the real world.

They are like questions and instructions that:

@ Tell you something about that object (using
information stored in its properties)

@ Change the value of one or more of that object’s
properties

@ THE ABC OF PROGRAMMING

WHAT DOES A METHOD DO?

The code for a method can contain lots of
instructions that together represent one task.

When you use a method, you do not always need to
know how it achieves its task; you just need to know
how to ask the question and how to interpret any
answers it gives you.

HOTEL OBJECT CAR OBJECTS

Hotels will commonly be asked if any rooms are free. The value of the currentSpeed property needs

To answer this question, a method can be written to go up and down as the driver accelerates and
that subtracts the number of bookings from the brakes. The code to increase or decrease the value
total number of rooms. Methods can also be used of the currentSpeed property could be written

to increase and decrease the value of the bookings in a method, and that method could be called
property when rooms are booked or cancelled. changeSpeed().

OBJECT TYPE: HOTEL

METHOD what it does:
makeaookmg() mcreases va!ue of bookmgs property
cancelBookIng() decreases value of bookings property

checkAvailability() ' subtracts value of bookings property
from value of rooms property and
returns number of rooms available

\JL <4 i‘ """
»mtmw. [I B

OBJECT TYPE: CAR

OBJECT TYPE: CAR

METHOD what it does: METHOD what it does:

changeSpeed() increases or decreases value
of currentSpeed property

changeSpeed() increases or decreases value
of currentSpeed property

PUTTING IT ALL TOGETHER

Computers use data to create models of things in the real world.

The events, methods, and properties of an object all relate to each other:
Events can trigger methods, and methods can retrieve or update an
object's properties.

OBJECT TYPE: HOTEL

EVENT happens when: method called: PROPERTIES
o (book | : reservation is made makeBooking() name Quay
cancel : reservation is cancelled cancelBooking() rating 4
rooms 42
METHOD what it does: 22
o makeBooking() increases value of bookings property gym ' falsé“
cancelBooking() - decreases value of bookings property pool true
checkAvailability() . subtracts value of bookings property
from value of rooms property and
returns number of rooms available

QUAY

HOTEHL

@ THE ABC OF PROGRAMMING

HOTEL OBJECT

1. When a reservation is made, the book event fires.

2.The book event triggers the makeBooking()
method, which increases the value of the
bookings property.

3. The value of the bookings property is changed to
reflect how many rooms the hotel has available.

OBJECT TYPE: CAR

CAR OBJECTS

1. As a driver speeds up, the accelerate event fires.

2.The accelerate event calls the changeSpeed()
method, which in turn increases the value of the
currentSpeed property.

3. The value of the currentSpeed property reflects
how fast the car is traveling.

EVENT happens when: method called: PROPERTIES |k
brake driver slows down : changeSpeed() make BMW "
driver speeds up : changeSpeed() (G S EERN 45mph Q\
color silver ‘“”"’”
. METHOD : what it does: fuel diesel i
LUELFERTLELION | increases or decreases value
| of currentSpeed property

WEB BROWSERS ARE
PROGRAMS BUILT
USING OBJECTS

You have seen how data can be used to create a model of a hotel or a car.
Web browsers create similar models of the web page they are showing
and of the browser window that the page is being shown in.

WINDOW OBJECT

On the right-hand page you can see a model of a
computer with a browser open on the screen.

The browser represents each window or tab using a
window object. The 1ocation property of the window
object will tell you the URL of the current page.

THE ABC OF PROGRAMMING

DOCUMENT OBJECT

The current web page loaded into each window is
modelled using a document object.

The title property of the document object tells you
what is between the opening <title> and closing
</title> tag for that web page, and the
lastModified property of the document object
tells you the date this page was last updated.

OBJECT TYPE: WINDOW

PROPERTIES

location http://www.javascriptbook.com/

OBJECT TYPE: DOCUMENT

PROPERTIES
URL http://www.javascriptbook.com/
lastModified 09/04/2014 15:33:37

title Learn JavaScript & jQuery -
A book that teaches you
in a nicer way

BC OF NG (37)
THE ABC OF PROGRAMMING (37

THE DOCUMENT OBJECT
REPRESENTS AN HTML

PAGE

Using the document object, you can access and change what content
users see on the page and respond to how they interact with it.

Like other objects that represent real-world things,
the document object has:

PROPERTIES

Properties describe characteristics of the current
web page (such as the title of the page).

METHODS

Methods perform tasks associated with the
document currently loaded in the browser (such
as getting information from a specified element or
adding new content).

EVENTS

You can respond to events, such as a user clicking or
tapping on an element.

THE ABC OF PROGRAMMING

Because all major web browsers implement the
document object in the same way, the people who
create the browsers have already:

@ |[mplemented properties that you can access to
find out about the current page in the browser

@ Written methods that achieve some common
tasks that you are likely to want to do with an
HTML page

So you will be learning how to work with this object.
In fact, the document object is just one of a set of
objects that all major browsers support. When the
browser creates a model of a web page, it not only
creates a document object, but it also creates a

new object for each element on the page. Together
these objects are described in the Document Object
Model, which you will meet in Chapter 5.

OBJECT TYPE: DOCUMENT

PROPERTIES
URL
lastModified
title

EVENT
load

click

keypress

METHOD
write()

getElementByld()

JAVASCRIPT =

« JQUERY

HOW A BROWSER
SEES A WEB PAGE

In order to understand how you can change the content of an HTML
page using JavaScript, you need to know how a browser interprets the
HTML code and applies styling to it.

1: RECEIVE A PAGE AS
HTML CODE

Each page on a website can be
seen as a separate document.
So, the web consists of many
sites, each made up of one or
more documents.

2: CREATE A MODEL OF
THE PAGE AND STORE
IT INMEMORY

The model shown on the right
hand page is a representation
of one very basic page. Its
structure is reminiscent of a
family tree. At the top of the
model is a document object,
which represents the whole
document.

Beneath the document object
each box is called a node. Each
of these nodes is another object.
This example features three
types of nodes representing
elements, text within the
elements, and attribute.

3: USE A RENDERING
ENGINE TO SHOW THE
PAGE ON SCREEN

If there is no CSS, the rendering
engine will apply default styles
to HTML elements. However,
the HTML code for this example
links to a CSS style sheet, so the
browser requests that file and
displays the page accordingly.

When the browser receives
CSS rules, the rendering engine
processes them and applies
each rule to its corresponding
elements. This is how the
browser positions the elements
in the correct place, with the
right colors, fonts, and so on.

All major browsers use a JavaScript interpreter to translate your
instructions (in JavaScript) into instructions the computer can follow.

When you use JavaScript in

the browser, there is a part of
the browser that is called an
interpreter (or scripting engine).

THE ABC OF PROGRAMMING

The interpreter takes your
instructions (in JavaScript) and
translates them into instructions
the browser can use to achieve
the tasks you want it to perform.

In an interpreted programming
language, like JavaScript, each
line of code is translated
one-by-one as the script is run.

<!DOCTYPE html>

<html> !
<head>
<title>Constructive & Co.</title> The browser
<link rel="stylesheet" href="css/c0l.css" /> receives an HTML
</head> page.
<body>

<hl>Constructive & Co.</hl>
<p>For all orders and inquiries please call
555-3344</p>
</body>
</htm1>

document 2

It creates a model
of the page and
stores it in memory.

For all ® OBJECT
orders and @® ELEMENT
inquiries ® TEXT
please call ;i ATTRIBUTES

Constructive rel stylesheet Constructive
& Co. EHITERETYL0) RT3 & Co.

=

Constructive & Co. : It shows the page

DBESPOKE ARCHITECTURAL MODELS on screen USing a
rendering engine.

For all orders and inquiries
please call 555-3344

THE ABC OF PROGRAMMING

SUMMARY

THE ABC OF PROGRAMMING

B: How do computers fit in with the world
around them?

@ THE ABC OF PROGRAMMING

HOW DO | WRITE A

SCRIPT FOR A
WEB PAGE?

HOW HTML, CSS,

& JAVASCRIPT FIT

TOGETHER

Before diving into the JavaScript language, you
need to know how it will fit together with the
HTML and CSS in your web pages.

Web developers usually talk
about three languages that
are used to create web pages:
HTML, CSS, and JavaScript.

<html>

CONTENT LAYER
.htm1 files

This is where the content of
the page lives. The HTML gives
the page structure and adds
semantics.

Where possible, aim to keep the
three languages in separate files,
with the HTML page linking to
CSS and JavaScript files.

{css}

PRESENTATION LAYER

.css files

The CSS enhances the HTML
page with rules that state how
the HTML content is presented
(backgrounds, borders, box
dimensions, colors, fonts, etc.).

Programmers often refer to this as a separation of concerns.

THE ABC OF PROGRAMMING

Each language forms a separate
layer with a different purpose.
Each layer, from left to right,
builds on the previous one.

javascript()

BEHAVIOR LAYER
.js files

This is where we can change
how the page behaves, adding
interactivity. We will aim to keep
as much of our JavaScript as
possible in separate files.

As more and more web-enabled
devices come onto the market,
this concept is becoming more
widely adopted.

Constructive & Co.

For all orders and inquiries please
call 555-3344

HTML ONLY

Starting with the HTML layer
allows you to focus on the most
important thing about your site:
its content.

Being plain HTML, this layer
should work on all kinds of
devices, be accessible to all
users, and load quite quickly on
slow connections.

PROGRESSIVE
ENHANCEMENT

These three layers form the basis of a popular
approach to building web pages called
progressive enhancement.

It's not just screen sizes that are
varied - connection speeds and
capabilities of each device can
also differ,

¢

Constructive & Co.

For all orders and inquiries
please call 555-3344

HTML+CSS

Adding the CSS rulesina
separate file keeps rules
regarding how the page looks
away from the content itself.

You can use the same style sheet
with all of your site, making your
sites faster to load and easier

to maintain. Or you can use
different style sheets with the
same content to create different
views of the same data.

Also, some people browse with
JavaScript turned off, so you
need to make sure that the page
still works for them.

@

Constructive & Co.

GOOD AFTERNOON!

For all orders and inguiries
pleane call 555-3344

HTML+CSS+JAVASCRIPT

The JavaScript is added last
and enhances the usability of
the page or the experience of
interacting with the site.

Keeping it separate means
that the page still works if the
user cannot load or run the
JavaScript. You can also reuse
the code on several pages
(making the site faster to load
and easier to maintain).

THE ABC OF PROGRAMMING

CREATING A BASIC
JAVASCRIPT

JavaScript is written in plain text, just like HTML and CSS, so you do not
need any new tools to write a script. This example adds a greeting into an
HTML page. The greeting changes depending on the time of day.

@ Create afolder to put the
example in called c01, then start
up your favorite code editor, and
enter the text to the right.

A JavaScript file is just a

text file (like HTML and CSS
files are) butithas a . js file
extension, so save this file with
the name add-content.js

Don't worry about what the code

means yet, for now we will focus
on how the script is created and

how it fits with an HTML page.

© Get the CSS and images for
this example from the website
that accompanies the book:
www. javascriptbook.com

To keep the files organized, in
the same way that CSS files
often live in a folder called
styles or css, your JavaScript
files can live in a folder called
scripts, javascript, or js.
In this case, save your file in a
folder called js

|46) THE ABC OF PROGRAMMING

var today = new Date();
var hourNow = today.getHours();
var greeting;

if (hourNow > 18) |
greeting = 'Good evening!';
} else if (hourNow > 12) {
greeting = 'Good afternoon!';
} else if (hourNow > 0) {
greeting = 'Good morning!';
} else {
greeting = 'Welcome!’;
}

document.write('<h3>' + greeting + '</h3>');

& c01 w

Name a Kind

add-content.html HTML
v @ os Folder
C55
Folder
= constructive-backdrop.jpg JPEG image
— constructive-logo.gif GiF image
¥ index.htmi HTML
vi@is Folder
& add-content.js JavaScript

Here you can see the file structure that you will end up with when you

finish the example. Always treat file names as being case-sensitive.

LINKING TO A JAVASCRIPT
FILE FROM AN HTML PAGE

When you want to use JavaScript with a web page, you use the HTML
<script> element to tell the browser it is coming across a script.
lts src attribute tells people where the JavaScript file is stored.

<IDOCTYPE html>
<html=>
<head>
<title>Constructive & Co.</title>
<link rel="stylesheet" href="css/c0l.css" />

© In your code editor, enter the
HTML shown on the left. Save
this file with the name
add-content.html

</head>
<body> The HTML <script> element is
<h1>Constructive & Co.</hl> used to load the JavaScript file
<script src="js/add-content.js"></script> into the page. It has an attribute
<p>For all orders and inquiries please call called src, whose value is the
555-3344</p> path to the script you created.
</body>
L This tells the browser to find and
load the script file (just like the
src attribute on an tag).
@ Open the HTML file in your
browser. You should see that the
. JavaScript has added a greeting
Constructive & Co. (in this case, Good Afternoon!) to
the page. (These greetings are
coming from the JavaScript file;
GOOD AFTERNOON! they are not in the HTML file.)

For all orders and iaquiries
please call 555-3344

Please note: Internet Explorer
sometimes prevents JavaScript
running when you open a page
stored on your hard drive. If this
affects you, please try Chrome,

Firefox, Opera, or Safari instead.

THE ABC OF PROGRAMMING

THE SOURCE CODE
IS NOT AMENDED

If you look at the source code for the example
you just created, you will see that the HTML is

still exactly the same.

© Once you have tried the
example in your browser, view
the source code for the page.
(This option is usually under the
View, Tools or Develop menu of
the browser.)

@ The source of the web page
does not actually show the new
element that has been added
into the page; it just shows the
link to the JavaScript file.

As you move through the book,
you will see most of the scripts
are added just before the closing
</body> tag (this is often
considered a better place to

put your scripts).

THE ABC OF PROGRAMMING

o Safarl File Edit View History Bookmarks JITNENY Window Help

Open Page With

Cunstructl st Agwn

J&“ L @ c01/add—contenhiml Show Web Inspector

Show Error Console

Constructive & Co.
BESPOKE ARCHITECTURAL MODELS

WELCOME!

For all orders and inquiries_
please call 555-3344

Show Page Source
Show Page Resources

Show Snippet Editor
Show Extension Bullder

Start Profiling JavaScript COXP
Start Timeline Recording X ORT

Empty Caches HE
Disable Caches

Disable Images

Disable Styles

Disable JavaScript

Disable Site-specific Hacks

Enable WebGL

File Edit View History Bookmarks Develop Window Help

Cunsm:m & Co.

Constructive & Co.

Xx BB =

¥ s add-contenthtml < | Source Code

1 =ntals

«head>
=titlesComstructive Samp; Co.<
<link rela"stylesheet™ type="t

«/hesds

<sody>
<hl>Constructive Gama; Co.</Mi=

seript types”text/JavaScript

tle=
fess” hrate"cssfetyles, cos” />

s/adg-cantent. |3

ipt : rip
r all orders and enguiries n\uu call eems§35- !J-l-l a’r- do»

PLACING THE SCRIPT
IN THE PAGE

You may see JavaScript in the HTML between
opening <script> and closing </script> tags
(but it is better to put scripts in their own files).

<IDOCTYPE html> @ Finally, try opening the
<html> HTML file, removing the src

<head> . ’
<title>Constructive & Co.</title> 2‘;;?;:::;:;1 ;:Z Z‘;fi?:;gthe

<link rel="stylesheet" href="css/c0l.css" />

</head> new code shown on the left

<body> between the opening <script>
<h1>Constructive & Co.</hl> tag and the closing </script>
<script>document.write('<h3>Welcome!l</h3>'); tag. The src attribute is no
</script> longer needed because the
<p>For all orders and inquiries please call JavaScript is in the HTML page.

555-3344</p>
</body>

As noted on p44, it is better
not to mix JavaScript in your
HTML pages like this, but it is
mentioned here as you may
come across this technique.

</html>

© Open the HTML file in your
web browser and the welcome
. greeting is written into the page.

Constructive & Co.

As you may have guessed,
document .write() writes
content into the document (the
web page). ltis a simple way
to add content to a page, but
not always the best. Chapter
5 discusses various ways to
update the content of a page.

WELCOME!

For all orders and inguiries
please call 555-3344

THE ABC OF PROGRAMMING

HOW TO USE
OBJECTS & METHODS

This one line of JavaScript shows how to use objects and methods.
Programmers refer to this as calling a method of an object.

The document object represents the
entire web page. All web browsers
implement this object, and you can
use it just by giving its name.

OBJECT
]

Thewrite() method of the
document object allows new
content to be written into the page
where the <script> element sits.

METHOD
1

document.write('Good afternoon!');

MEMBER OPERATOR

The document object has several
methods and properties. They are
known as members of that object.

You can access the members of an
object using a dot between the object
name and the member you want to
access. |t is called a member operator.

¥
PARAMETERS

Whenever a method requires some
information in order to work, the
data is given inside the parentheses.

Each piece of information is called
a parameter of the method. In this
case, the write() method needs to
know what to write into the page.

Behind the scenes, the browser You only need to know how to There are lots of objects like
uses a lot more code to make call the object and method, and the document object, and lots
the words appear on the screen, how to tell it the information it of methods like the write()
but you don't need to know how needs to do the job you want it method that will help you write
the browser does this. to. It will do the rest. your own scripts.

THE ABC OF PROGRAMMING

JAVASCRIPT RUNS WHERE
IT IS FOUND IN THE HTML

When the browser comes across a <script> element, it stops to
load the script and then checks to see if it needs to do anything.

<IDOCTYPE html>
<html>
<head>
<title>Constructive & Co.</title>
<link rel="stylesheet" href="css/c0l.css" />
</head>
<body>
<h1l>Constructive & Co.</hl>
<p>For all orders and inquiries please call 555-3344</p>
<script src="js/add-content.js"></script>

</body>
</html>
Note how the <script> element can be moved This has implications for where <script> elements
below the first paragraph, and this affects where should be placed, and can affect the loading time of
the new greeting is written into the page. pages (see p356).

GOOD AFTERNOON!

THE ABC OF PROGRAMMING @

SUMMARY

THE ABC OF PROGRAMMING

C: How do | write a script for a web page?

>

@ THE ABC OF PROGRAMMING

In this chapter, you will start learning to read and write
JavaScript. You will also learn how to give a web browser
instructions you want it to follow.

THE LANGUAGE: GIVING INSTRUCTIONS:
SYNTAX AND GRAMMAR FOR A BROWSER TO FOLLOW
Like any new language, there are new Web browsers (and computers in general)
words to learn (the vocabulary) and rules approach tasks in a very different way than
for how these can be put together (the a human might. Your instructions need to
grammar and syntax of the language). reflect how computers get things done,

We will start with a few of the key building blocks of the language and look at how they can
be used to write some very basic scripts (consisting of a few simple steps) before going on to
look at some more complex concepts in subsequent chapters.

BASIC JAVASCRIPT INSTRUCTIONS

STATEMENTS

A script is a series of instructions that a computer can follow one-by-one.
Each individual instruction or step is known as a statement.
Statements should end with a semicolon.

We will look at what the code on the right does
shortly, but for the moment note that:

® Each of the lines of code in green is a statement.

@ The pink curly braces indicate the start and end
of a code block. (Each code block could contain
many more statements.)

@ The code in purple determines which code
should run (as you will see on p149).

JAVASCRIPT IS CASE SENSITIVE

JavaScript is case sensitive so hourNow means
something different to HourNow or HOURNOW.

STATEMENTS ARE INSTRUCTIONS AND
EACH ONE STARTS ON A NEW LINE

A statement is an individual instruction that the
computer should follow. Each one should start on a
new line and end with a semicolon. This makes your
code easier to read and follow.

The semicolon also tells the JavaScript interpreter
when a step is over, indicating that it should move
to the next step.

BASIC JAVASCRIPT INSTRUCTIONS

var today = new Date();
var hourNow = today.getHours();
var greeting;

if (hourNow > 18) {
greeting = 'Good evening';
} else if (hourNow > 12) |
greeting = 'Good afternoon';
} else if (hourNow > 0) |{
greeting = 'Good morning';
} else {
greeting = 'Welcome';
} -

document.write(greeting);

STATEMENTS CAN BE ORGANIZED
INTO CODE BLOCKS

Some statements are surrounded by curly braces;
these are known as code blocks. The closing curly
brace is not followed by a semicolon.

Above, each code block contains one statement
related to what the current time is. Code blocks
will often be used to group together many more
statements. This helps programmers organize their
code and makes it more readable.

COMMENTS

You should write comments to explain what your code does.
They help make your code easier to read and understand.
This can help you and others who read your code.

/* This script displays a greeting to the user based upon the current time.
It is an example from JavaScript & jQuery book */

var today = new Date();

// Create a new date object

var hourNow = today.getHours(); // Find the current hour

var greeting;

// Display the appropriate greeting based on the current time

if (hourNow > 18) {
greeting = 'Good evening';
} else if (hourNow > 12) {
greeting = 'Good afternoon’;
} else if (hourNow > 0) {
greeting = 'Good morning';
} else {
greeting = 'Welcome';

}

document.write(greeting);

MULTI-LINE COMMENTS

To write a comment that stretches over more than
one line, you use a multi-line comment, starting with
the /* characters and ending with the */ characters.

Anything between these characters is not processed-

by the JavaScript interpreter.

Multi-line comments are often used for descriptions
of how the script works, or to prevent a section of
the script from running when testing it.

JavaScript code is green
Multi-line comments are pink
Single-line comments are gray

SINGLE-LINE COMMENTS

In a single-line comment, anything that follows the
two forward slash characters // on that line will not
be processed by the JavaScript interpreter. Single-
line comments are often used for short descriptions
of what the code is doing.

Good use of comments will help you if you come
back to your code after several days or months.
They also help those who are new to your code.

BASIC JAVASCRIPT INSTRUCTIONS @

®)
K&

WHAT IS A VARIABLE?

A script will have to temporarily
store the bits of information it
needs to do its job. It can store this
data in variables.

When you write JavaScript, you have to tell the
interpreter every individual step that you want it to
perform. This sometimes involves more detail than
you might expect,

Think about calculating the area of a wall; in math
the area of a rectangle is obtained by multiplying two
numbers:

width x height = area

You may be able to do calculations like this in

your head, but when writing a script to do this
calculation, you need to give the computer very
detailed instructions. You might tell it to perform the
following four steps in order:

1. Remember the value for width
2.Remember the value for height

3. Multiply width by height to get the area
4.Return the result to the user

In this case, you would use variables to "remember"
the values for width and height. (This also illustrates
how a script contains very explicit instructions about
exactly what you want the computer to do.)

You can compare variables to short-term memory,
because once you leave the page, the browser will
forget any information it holds.

BASIC JAVASCRIPT INSTRUCTIONS

A variable is a good name for this
concept because the data stored
in a variable can change (or vary)
each time a script runs.

No matter what the dimensions of any individual
wall are, you know that you can find its area by
multiplying the width of that wall by its height.
Similarly, scripts often need to achieve the same
goal even when they are run with different data, so
variables can be used to represent values in your
scripts that are likely to change. The result is said to
be calculated or computed using the data stored in
the variables.

The use of variables to represent numbers or other
kinds of data is very similar to the concept of algebra
(where letters are used to represent numbers).
There is one key difference, however. The equals
sign does something very different in programming
(as you will see on the next two pages).

BASIC JAVASCRIPT INSTRUCTIONS @

VARIABLES: HOW TO
DECLARE THEM

Before you can use a variable, you need to announce that you want
to use it. This involves creating the variable and giving it a name.
Programmers say that you declare thevariable.

var quantity;

VARIABLE KEYWORD VARIABLE NAME

var is an example of what

programmers call a keyword.

The JavaScript interpreter
knows that this keyword is
used to create a variable.

In'order to use the variable, you
must give it a name. (This is
sometimes called an identifier.)
In this case, the variable is called
quantity.

BASIC JAVASCRIPT INSTRUCTIONS

If a variable name is more than
one word, it is usually written in
camelCase. This means the first
word is all lowercase and any
subsequent words have their
first letter capitalized.

VARIABLES: HOW TO
ASSIGN THEM A VALUE

Once you have created a variable, you can tell it what information you
would like it to store for you. Programmers say that you assign a value to
the variable.

ASSIGNMENT OPERATOR

quantity - &

. =

VARIABLE NAME VARIABLE VALUE
You can now use the variable by The equals sign (=) is an Until you have assigned a value
its name. Here we set a value assignment operator. It says to a variable, programmers say
for the variable called quantity. that you are going to assign a the value is undefined.
Where possible, a variable's value to the variable. It is also
name should describe the kind used to update the value given
of data the variable holds. to a variable (see p68).

Where a variable is declared can have an effect upon whether the rest of the script can use it. Programmers
call this the scope of a variable and it is covered on p98.

BASIC JAVASCRIPT INSTRUCTIONS

DATA TYPES

JavaScript distinguishes between numbers,
strings, and true or false values known as

Booleans.

NUMERIC DATA TYPE

The numeric data type handles
numbers.

0.75

For tasks that involve counting
or calculating sums, you will
use numbers 0-9. For example,
five thousand, two hundred and
seventy-two would be written
5272 (note there is no comma
between the thousands and
the hundreds). You can also
have negative numbers (such
as -23678) and decimals (three
quarters is written as 0.75),

Numbers are not only used for
things like calculators; they

are also used for tasks such

as determining the size of the
screen, moving the position of
an element on a page, or setting
the amount of time an element
should take to fade in.

STRING DATA TYPE

The strings data type consists of
letters and other characters.

'Hi, Tvy!'

Note how the string data type is
enclosed within a pair of quotes.
These can be single or double
quotes, but the opening quote
must match the closing quote.

Strings can be used when
working with any kind of text.
They are frequently used to add
new content into a page and they
can contain HTML markup.

BOOLEAN DATA TYPE

Boolean data types can have one
of two values: true or false.

true

It might seem a little abstract at
first, but the Boolean data type is
actually very helpful.

You can think of it a little like a
light switch - it is either on or off.
As you will see in Chapter 4,
Booleans are helpful when
determining which part of a
script should run.

In addition to these three data types, JavaScript also has others (arrays,
objects, undefined, and nul1) that you will meet in later chapters.

Unlike some other programming languages, when declaring a variable in
JavaScript, you do not need to specify what type of data it will hold.

BASIC JAVASCRIPT INSTRUCTIONS

JAVASCRIPT

USING A VARIABLE TO
STORE A NUMBER

c02/js/numeric-variable.js

var price;
var quantity;
var total;

price =.5;
quantity = 14;
total = price * quantity;

var el = document.getElementByld('cost');
el.textContent = '§' + total;

c02/numeric-variable.html

<h1>Elderflower</hl>
<div id="content">
<h2>Custom Signage</h2>
<div id="cost">Cost: $5 per tile</div>

<fd1v>
<script src="js/numeric-variable.js"></script>

A ke

CUSTOM SIGNAGE

Preview: $70

MONTAGUE+HOUSE

Here, three variables are created
and values are assigned to them.

@ price holds the price of an
individual tile

@ quantity holds the number
of tiles a customer wants

@ total holds the total cost of
the tiles

Note that the numbers are not
written inside quotation marks.
Once a value has been assigned
to a variable, you can use the
variable name to represent that
value (much like you might have
done in algebra). Here, the total
cost is calculated by multiplying
the price of a single tile by the
number of tiles the customer
wants.

The result is then written into
the page on the final two lines.
You see this technique in more
detail on p194 and p216.

The first of these two lines finds
the element whose id attribute
has a value of cost, and the final
line replaces the content of that
element with new content.

Note: There are many ways to
write content into a page, and
several places you can place
your script. The advantages and
disadvantages of each technique
are discussed on p226. This
technique will not work in |IE8.

BASIC JAVASCRIPT INSTRUCTIONS

USING A VARIABLE TO
STORE A STRING

For the moment, concentrate on
the first four lines of JavaScript.
Two variables are declared
(username and message), and
they are used to hold strings (the
user's name and a message for
that user).

The code to update the page
(shown in the last four lines)

is discussed fully in Chapter 5.
This code selects two elements
using the values of their id
attributes. The text in those
elements is updated using the
values stored in these variables.

Note how the string is placed
inside quote marks. The quotes
can be single or double quotes,
but they must match. If you start
with a single quote, you must end
with a single quote, and if you
start with a double quote, you
must end with a double quote:

@ "hello" © "hello’
@ 'hello' © 'hello”

Quotes should be straight (not
curly) quotes:

. BT < T2
°| |°"

Strings must always be written
on one line:

@ 'See our upcoming range'
© 'See our
upcoming range'

BASIC JAVASCRIPT INSTRUCTIONS

c02/js/string-variable.js JAVASCRIPT
var username;

var message;

username = 'Molly';

message = 'See our upcoming range';

var elName = document.getElementById('name');
elName.textContent = username;
var elNote = document.getElementById('note');
elNote.textContent = message;

c02/string-variable.html

<h1>Elderflower</h1>
<div id="content">
<div id="title">Howdy
friend!</div>
<div id="note">Take a look around...</div>
</div>)
<script src="js/string-variable.js"></script>

JAVASCRIPT

USING QUOTES
INSIDE A STRING

c02/js/string-with-quotes.js

var title;

var message;

title = "Molly's Special Offers";

message = '25% offl';

var elTitle = document.getElementById('title');
elTitle.innerHTML = title;

var elNote = document.getElementById('note');
elNote.innerHTML = message;

c02/string-with-quotes.html

<h1>Elderflower</h1>
<div id="content">
<div id="title">Special Offers</div>
<div id="note">Sign-up to receive personalized
offers!i</div>
</div> i
<script src="js/string-with-quotes.js"></script>

Sometimes you will want to use
a double or single quote mark
within a string.

Because strings can live in single
or double quotes, if you just
want to use double quotes in the
string, you could surround the
entire string in single quotes.

If you just want to use single
quotes in the string, you could
surround the string in double
quotes (as shown in the third line
of this code example).

You can also use a technique
called escaping the quotation
characters. This is done by
using a backwards slash (or
"backslash”) before any type of
quote mark that appears within
a string (as shown on the fourth
line of this code sample).

The backwards slash tells the
interpreter that the following
character is part of the string,
rather than the end of it.

Techniques for adding content to
a page are covered in Chapter 5.
This example uses a property
called innerHTML to add HTML
to the page. In certain cases, this
property can pose a security risk
(discussed on p228 - p231).

BASIC JAVASCRIPT INSTRUCTIONS

USING A VARIABLE TO
STORE A BOOLEAN

A Boolean variable can only have
a value of true or false, but this
data type is very helpful.

In the example on the right, the
values true or false are used
in the class attributes of HTML
elements. These values trigger
different CSS class rules: true
shows a check, false shows a
cross. (You learn how the class
attribute is set in Chapter 5.)

It is rare that you would want to
write the words true or false
into the page for the user to read,
but this data type does have two
very popular uses:

First, Booleans are used when
the value can only be true/
false. You could also think of
these values as on/off or 0/1:
trueis equivalenttoonor1,
falseis equivalent to off or 0

Second, Booleans are used when
your code can take more than
one path. Remember, different
code may run in different
circumstances (as shown in the
flowcharts throughout the book).

? test is performed ?

I I

The path the code takes depends
on a test or condition.

BASIC JAVASCRIPT INSTRUCTIONS

c02/js/boolean-variable.js JAVASCRIPT
var inStock;

var shipping;

inStock = true;

shipping = false;

var elStock = document.getElementById('stock');
elStock.className = inStock;

var elShip = document.getElementById('shipping');

elShip.className = shipping;
¢02/boolean-variable.html
<h1>Elderflower</h1>

<div id="content">
<div class="message">Available:
</div>
<div class="message">Shipping:
</div>
</div>
<script src="js/boolean-variable.js"></script>

Available: €@
Shipping:

JAVASCRIPT

(@ var price = 5;

SHORTHAND FOR
CREATING VARIABLES

var quantity = 14;
var total = price * quantity;

var price, quantity, total;
price = 5;

quantity = 14;

total = price * quantity;

var price = 5, quantity = 14;
var total = price * quantity;

// Write total into the element with id of cost
var el = document.getElementById('cost');
el.textContent = '$' + total;

CUSTOM SIGNAGE

MONTAGUE+«HOUSE

c02/js/shorthand-variable.js

Programmers sometimes use
shorthand to create variables.
Here are three variations of how
to declare variables and assign
them values:

1. Variables are declared and
values assigned in the same
statement.

2. Three variables are declared
on the same line, then values
assigned to each.

3. Two variables are declared
and assigned values on the same
line. Then one is declared and
assigned a value on the next line.

(The third example shows two
numbers, but you can declare
variables that hold different
types of data on the same line,
e.g., astring and a number.)

4. Here, a variable is used to
hold a reference to an element in
the HTML page. This allows you
to work directly with the element
stored in that variable. (See
more about this on p190.)

While the shorthand might save
you a little bit of typing, it can
make your code a little harder

to follow. So, when you are
starting off, you will find it easier
to spread your code over a few
more lines to make it easier to
read and understand.

BASIC JAVASCRIPT INSTRUCTIONS

CHANGING THE VALUE
OF A VARIABLE

Once you have assigned a value . .
y_ & c02/js/update-variable. js JAVASCRIPT

to a variable, you can then

change what is stored in the

: ; 3 var inStock;
variable later in the same script.

var shipping;

Once the variable has been
created, you do not need to

use the var keyword to assign

it a new value. You just use the
variable name, the equals sign
(also known as the assignment
operator), and the new value for
that attribute.

inStock = true;
shipping = false;

/* Some other processing might go here and, as
a result, the script might need to change these
values */

inStock = false;

shipping = true;
For example, the value of a Ao

shipping variable might start
out as being false. Then
something in the code might
change the ability to ship the
item and you could therefore
change the value to true.

var elStock = document.getElementById('stock');
elStock.className = inStock;

var elShip = document.getElementById('shipping');
elShip.className = shipping;

In this code example, the values
of the two variables are both
swapped from being true to
false and vice versa.

Available: £)
Shipping: @

BASIC JAVASCRIPT INSTRUCTIONS

RULES FOR NAMING
VARIABLES

Here are six rules you must always follow when giving a variable a name:

1

The name must begin with

a letter, dollar sign ($), or an
underscore (_). It must not start
with a number.

4

All variables are case sensitive,
so score and Score would be
different variable names, but

it is bad practice to create two
variables that have the same
name using different cases.

2

The name can contain letters,
numbers, dollar sign ($), or an
underscore (_). Note that you
must not use a dash () or a
period (.) in a variable name.

5

Use a name that describes the
kind of information that the
variable stores. For example,
firstName might be used to
store a person’s first name,
lastName for their last name,
and age for their age.

L

You cannot use keywords or
reserved words. Keywords

are special words that tell the
interpreter to do something. For
example, varis a keyword used
to declare a variable. Reserved
words are ones that may be used
in a future version of JavaScript.

ONLINE EXTRA

View a full list of keywords and
reserved words in JavaScript.

6

If your variable name is made

up of more than one word, use a
capital letter for the first letter of
every word after the first word.
For example, firstName rather
than firstname (this is referred
to as camel case). You can also
use an underscore between each
word (you cannot use a dash).

BASIC JAVASCRIPT INSTRUCTIONS

ARRAYS

An array is a special type of variable. It doesn't
just store one value; it stores a list of values.

You should consider using an
array whenever you are working
with a list or a set of values that
are related to each other.

Arrays are especially helpful
when you do not know how
many items a list will contain
because, when you create the

array, you do not need to specify

how many values it will hold.

If you don't know how many
items a list will contain, rather
than creating enough variables
for a long list (when you might
only use a small percentage
of them), using an array is
considered a better solution.

For example, an array can be
suited to storing the individual
items on a shopping list because
it is a list of related items.

Additionally, each time you write
a new shopping list, the number
of items on it may differ.

As you will see on the next page,
values in an array are separated
by commas.

In Chapter 12, you will see that
arrays can be very helpful when
representing complex data.

CREATING AN ARRAY

JAVASCRIPT

var colors;
colors = ['white', 'black', 'custom'];

c02/js/array-literal.js

var el = document.getElementById('colors');
el.textContent = colors[0];

Color: white

c02/js/array-constructor.js

JAVASCRIPT

var colors = new Array('white',
'black’,
‘custom');

var el = document.getElementById('colors');

el.innerHTML = colors.item(0);

The array literal (shown in the first code sample) is preferred over the
array constructor when creating arrays.

You create an array and give it

a name just like you would any
other variable (using the var
keyword followed by the name of
the array).

The values are assigned to the
array inside a pair of square
brackets, and each value is
separated by a comma. The
values in the array do not need
to be the same data type, so you
can store a string, a number and
a Boolean all in the same array.

This technique for creating

an array is known as an array
literal. It is usually the preferred
method for creating an array.
You can also write each value on
a separate line:

colors = ['white',
'black',
'custom'];

On the left, you can see an
array created using a different
technique called an array
constructor. This uses the new
keyword followed by Array() ;
The values are then specified

in parentheses (not square
brackets), and each value is
separated by a comma. You can
also use a method called item()
to retrieve data from the array.
(The index number of the item is
specified in the parentheses.)

BASIC JAVASCRIPT INSTRUCTIONS @

VALUES IN ARRAYS

Values in an array are accessed as if they are in
a numbered list. It is important to know that the
numbering of this list starts at zero (not one).

NUMBERING ITEMS IN
AN ARRAY

Eachitemin an array is
automatically given a number
called an index. This can be used
to access specific items in the
array. Consider the following
array which holds three colors:

var colors;

colors = ['white',
‘black’,
‘custom'];

Confusingly, index values start at
0 (not 1), so the following table
shows items from the array and
their corresponding index values:

INDEX VALUE

o 'white'
1 'black’
2 'custom'

ACCESSING ITEMS IN
AN ARRAY

To retrieve the third item on the
list, the array name is specified
along with the index number in
square brackets.

Here you can see a variable
called itemThree is declared.
Its value is set to be the third
color from the colors array.

var itemThree;
itemThree = colors[2];

BASIC JAVASCRIPT INSTRUCTIONS

NUMBER OF ITEMS IN
AN ARRAY

Each array has a property called
length, which holds the number
of items in the array.

Below you can see that a variable
called numColors is declared. Its
value is set to be the number of
the items in the array.

The name of the array is
followed by a period symbol (or
full stop) which is then followed
by the 1ength keyword.

var numColors;
numColors = colors.length;

Throughout the book (especially
in Chapter 12) you meet more
features of arrays, which are

a very flexible and powerful
feature of JavaScript.

JAVASCRIPT

ACCESSING & CHANGING
VALUES IN AN ARRAY

// Create the array

var colors = ['white',
'black',
'custom'];

// Update the third item in the array
colors[2] = 'beige';

// Get the element with an id of colors
var el = document.getElementById('colors');

// Replace with third item from the array
el.textContent = colors[2];

c02/js/update-array.js

The first lines of code on the left
create an array containing a list
of three colors. (The values can
be added on the same line or on
separate lines as shown here.)

Having created the array, the
third item on the list is changed
from 'custom' to 'beige’.

To access a value from an array,
after the array name you specify
the index number for that value

inside square brackets.

You can change the value of an
item an array by selecting it and
assigning it a new value just as
you would any other variable
(using the equals sign and the
new value for that item).

In the last two statements, the
newly updated third item in the
array is added to the page.

If you wanted to write out all of
the items in an array, you would
use a loop, which you will meet
on p170.

BASIC JAVASCRIPT INSTRUCTIONS @

EXPRESSIONS

An expression evaluates into (results in) a single value. Broadly speaking

there are two types of expressions.

]

EXPRESSIONS THAT JUST ASSIGN A
VALUE TO A VARIABLE

In order for a variable to be useful, it needs to be
given a value. As you have seen, this is done using
the assignment operator (the equals sign).

var color = 'beige';

The value of color is now beige.

When you first declare a variable using the var
keyword, it is given a special value of undefined.
This will change when you assign a value to it.
Technically, undefined is a data type like a number,
string, or Boolean.

BASIC JAVASCRIPT INSTRUCTIONS

2

EXPRESSIONS THAT USE TWO OR
MORE VALUES TO RETURN A
SINGLE VALUE

You can perform operations on any number of
individual values (see next page) to determine a
single value. For example:

var area = 3 * 2;

The value of area is now 6.

Here the expression 3 * 2 evaluates into 6. This
example also uses the assignment operator, so the
result of the expression 3 * 2 is stored in the variable
called area.

Another example where an expression uses two
values to yield a single value would be where two
strings are joined to create a single string.

OPERATORS

Expressions rely on things called operators; they allow programmers to
create a single value from one or more values.

Covered in this chapter: Covered in Chapter 4:
ASSIGNMENT OPERATORS COMPARISON OPERATORS

Assign a value to a variable Compare two values and return true or false
color = 'beige'; buy = 3 > 5;

The value of color is now beige. The value of buy is false.

(See p61) (See p150)

ARITHMETIC OPERATORS LOGICAL OPERATORS

Perform basic math Combine expressions and return true or false
area = 3 * 2; buy = (5 > 3) && (2 < 4);
The value of area is now 6. The value of buy is now true.

(See p76) (See p156)

STRING OPERATORS

Combine two strings
greeting = 'Hi ' + 'Molly';

The value of greeting is now Hi Mo11y.
(See p78)

BASIC JAVASCRIPT INSTRUCTIONS @

ARITHMETIC OPERATORS

JavaScript contains the following mathematical
operators, which you can use with numbers.
You may remember some from math class.

NAME OPERATOR PURPOSE & NOTES EXAMPLE RESULT
AD;I;].;; + . Addsonevalue . . 1 5
SUBTRACTION “ shmoseevielommobes | W5 §
DIW.SIO.N. R / D Mdestwovalues ... 10 /5 2
MULTIPL JCATION * mﬂ:ﬂ;?:ttt\;g \i;:i:;;stﬁii'?gf; iiterigj; 10*5 50
INCREMENT ++ Adds one to the current number };;m; 11
i+ i -- S UbtractsOnefmmthecurrentnumber : :'1{),9
MODULUS % _ E:ngnSdzv:ovaiuesandremmsthe g 1 0 L,)

ORDER OF EXECUTION

Several arithmetic operations
can be performed in one
expression, but it is important
to understand how the result
will be calculated. Multiplication
and division are performed
before addition or subtraction.
This can affect the number that
you expect to see. To illustrate
this effect, look at the following
examples.

BASIC JAVASCRIPT INSTRUCTIONS

Here the numbers are calculated
left to right, so the total is 16:
total = 2 + 4 + 10;

But in the following example the
total is 42 (not 60):
total = 2 + 4 * 10;

This is because multiplication
and division happen before
addition and subtraction.

To change the order in which
operations are performed, place
the calculation you want done
first inside parentheses. So for
the following, the total is 60:
total = (2 + 4) * 10;

The parentheses indicate that
the 2 is added to the 4, and then
the resulting figure is multiplied
by 10.

USING ARITHMETIC
OPERATORS

e T I T p——_ This exam!ale demonstrates how
mathematical operators are used

var subtotal = (13 + 1) * 5; // Subtotal is 70 with numbers to calculate the

var sh1pp1ng = 0.5 * (13 F 1)’ // Sh1pp1ng is 7 combined values of two costs.

var total = subtotal + shipping; // Total is 77 The first couple of lines create

two variables: one to store the
subtotal of the order, the other

I

var elSub = document.getElementById('subtotal');

elSub.textContent = subtotal; to hold the cost of shipping
the order; so the variables are

named accordingly: subtotal

var elShip = document.getElementById('shipping');
and shipping.

elShip.textContent = shipping;

var elTotal = document.getElementById('total'); On the third line; the tatal s
elTotal.textContent = total; calculated by adding together
these two values.

This demonstrates how the
mathematical operators can
use variables that represent
numbers. (That is, the numbers
do not need to be written
explicitly into the code.)

The remaining six lines of code
write the results to the screen.

Shipping: $7
Grandtotal: $77

BASIC JAVASCRIPT INSTRUCTIONS @

STRING OPERATOR

There is just one string operator: the + symbol.
It is used to join the strings on either side of it.

There are many occasions where
you may need to join two or
more strings to create a single
value. Programmers call the
process of joining together two
or more strings to create one
new string concatenation.

For example, you might have a first and last name in two separate
variables and want to join them to show a full name. In this example, the
variable called ful1Name would hold the string 'Ivy Stone'.

var firstName = 'Ivy ';
var lastName = 'Stone';

var fullName = firstName + lastName;

MIXING NUMBERS AND STRINGS TOGETHER

When you place quotes around
anumber, it is a string (not

a numeric data type), and

you cannot perform addition
operations on strings.

var costl = '7';
var costz = '9';
var total = costl + costZ;

You would end up with a string
saying '79'.

BASIC JAVASCRIPT INSTRUCTIONS

If you try to add a numeric data
type to a string, then the number
becomes part of the string, e.g.,
adding a house number to a
street name:

var number = 12;
var street = 'Ivy Road';
var add = number + street;

You would end up with a string
saying '12Ivy Road'.

If you try to use any of the other
arithmetic operators on a string,
then the value that results is
usually a value called NaN. This
means "not a number."

var score = 'seven';
var score2 = 'nine';
var total = score * scoreZ;

You would end up with the value
NaN.

USING STRING OPERATORS

; hi ill displa
JAVASCRIPT c02/js/string-operator. js I 15example will display a
personalized welcome message

var greeting = 'Howdy '; on the page.

var name = 'Molly';
- The first line creates a variable

called greeting, which stores
the message for the user. Here
var el = document.getElementById('greeting'); the greeting is the word Howdy.
el.textContent = welcomeMessage;

var welcomeMessage = greeting + name + '!';

The second line creates a
variable that stores the name of
the user. The variable is called

c02/string-operator.htm) name, and the user in this case is
Molly.
<h1>Elderflower</hl> ¥

<div id="content">
<div id="greeting" class="message">Hello
friend!
</div>
</div>
<script src="js/string-operator.js"></script>

The personal welcome message
is created by concatenating (or
joining) these two variables,
adding an exclamation mark, and
storing them in a new variable
called welcomeMessage.

Look back at the greeting
variable on the first line, and
note how there is a space
after the word Howdy. If the
space was omitted, the value
of welcomeMessage would be
"HowdyMol1y!"

Howdy Molly!

BASIC JAVASCRIPT INSTRUCTIONS

Safari File Edit View History Bookmarks Develop Window Help = 4) Thuli:

JavaScript & jQuery - Chapter 2: Basic JavaScript Instructions - Example

£ www. javascriptbook.com

Howdy Molly, please check your order:

Custom sign:
Total tiles:
Subtotal:
Shipping:
Grand total:

EXAMPLE

BASIC JAVASCRIPT INSTRUCTIONS

c02/example.html

<!DOCTYPE html>

<html>

<head>

<title>JavaScript & jQuery - Chapter 2: Basic JavaScript Instructions -
Example</title>

<link rel="stylesheet" href="css/c02.css" />

</head>

<body>
<hl>Elderflower</hl1>

<div id="content">
<div id="greeting" class="message">Hello!</div>
<table>
<tr>
<td>Custom sign: </td>
<td id="userSign"></td>
</tr>
<tr>
<td>Total tiles: </td>
<td id="tiles"></td>
t/tr>
<tr>
<td>Subtotal: </td>
<td id="subTotal">$</td>
</tr>
<tr>
<td>Shipping: </td>
<td id="shipping">$</td>
</tr>
<tr>
<td>Grand total: </td>
<td id="grandTotal">$</td>
</tr>
</table>
Pay Now
</div>
<script src="js/example.js"></script>
</body>
</htm1>

BASIC JAVASCRIPT INSTRUCTIONS

EXAMPLE

BASIC JAVASCRIPT
INSTRUCTIONS

This example combines several techniques that
you have seen throughout this chapter.

You can see the code for this example on the next two pages. Single line
comments are used to describe what each section of the code does.

To start, three variables are created that store information that is used
in the welcome message. These variables are then concatenated (joined
together) to create the full message the user sees.

The next part of the example demonstrates how basic math is
performed on numbers to calculate the cost of a sign.

® A variable called sign holds the text the sign will show.

@ A property called Tength is used to determine how many characters
are in the string (you will meet this property on p128).

@ The cost of the sign (the subtotal) is calculated by multiplying the
number of tiles by the cost of each one.

® The grand total is created by adding $7 for shipping.

Finally, the information is written into the page by selecting elements
and then replacing the content of that element (using a technique you
meet fully in Chapter 5). It selects elements from the HTML page using
the value of their id attributes and then updates the text inside those
elements.

Once you have worked your way through this example, you should have

a good basic understanding of how data is stored in variables and how to
perform basic operations with the data in those variables.

BASIC JAVASCRIPT INSTRUCTIONS

81)
o S

EXAMPLE

BASIC JAVASCRIPT INSTRUCTIONS

c02/example.html

<!DOCTYPE html>

<html>

<head>

<title>JavaScript & jQuery - Chapter 2: Basic JavaScript Instructions -
Example</title>

<link rel="stylesheet" href="css/c02.css" />

</head>

<body>
<h1>Elderflower</h1>

<div id="content">
<div id="greeting" class="message">Hello!</div>
<table>
<trs
<td>Custom sign: </td>
<td id="userSign"></td>
«/tr>
<tr>
<td>Total tiles: </td>
<td id="tiles"></td>
</tr>
<tr>
<td>Subtotal: </td>
<td id="subTotal">$</td>
</tr>
<trs
<td>Shipping: </td>
<td id="shipping">$</td>
</tr>
<tr>
<td>Grand total: </td>
<td id="grandTotal">$</td>

</tr>
</table>
Pay Now
</div>
<script src="js/example.js"></script>
</body>

</html>

BASIC JAVASCRIPT INSTRUCTIONS

A script is made up of a series of statements. Each
statement is like a step in a recipe.

Scripts contain very precise instructions. For example,
you might specify that a value must be remembered
before creating a calculation using that value.

Variables are used to temporarily store pieces of
information used in the script.

Arrays are special types of variables that store more
than one piece of related information.

JavaScript distinguishes between numbers (0-9),
strings (text), and Boolean values (true or false).

Expressions evaluate into a single value.

Expressions rely on operators to calculate a value.

EXAMPLE

BASIC JAVASCRIPT INSTRUCTIONS

JAVASCRIPT c02/js/example.js

// Create variables for the welcome message

var greeting = 'Howdy ';

var name = 'Molly';

var message = ', please check your order:';

// Concatenate the three variables above to create the welcome message
var welcome = greeting + name + message;

// Create variables to hold details about the sign
var sign = 'Montague House';

var tiles = sign.length;

var subTotal = tiles * 5;

var shipping = 7;

var grandTotal = subTotal + shipping;

// Get the element that has an id of greeting

var el = document.getElementById('greeting');

// Replace the content of that element with the personalized welcome message
el.textContent = welcome;

// Get the element that has an id of userSign then update its contents
var elSign = document.getElementById('userSign');
elSign.textContent = sign;

// Get the element that has an id of tiles then update its contents
var elTiles = document.getElementById('tiles');
elTiles.textContent = tiles;

// Get the element that has an id of subTotal then update its contents
var elSubTotal = document.getElementById('subTotal');
elSubTotal.textContent = '$§' + subTotal;

// Get the element that has an id of shipping then update its contents
var elSubTotal = document.getElementById('shipping');
elSubTotal.textContent = '$' + shipping;

// Get the element that has an id of grandTotal then update its contents

var elGrandTotal = document.getElementById('grandTotal');
elGrandTotal.textContent = '$' + grandTotal;

BASIC JAVASCRIPT INSTRUCTIONS

A script is made up of a series of statements. Each
statement is like a step in a recipe.

Scripts contain very precise instructions. For example,
you might specify that a value must be remembered
before creating a calculation using that value.

Variables are used to temporarily store pieces of
information used in the script.

Arrays are special types of variables that store more
than one piece of related information.

JavaScript distinguishes between numbers (0-9),
strings (text), and Boolean values (true or false).

Expressions evaluate into a single value.

Expressions rely on operators to calculate a value.

Browsers require very detailed instructions about what
we want them to do. Therefore, complex scripts can run
to hundreds (even thousands) of lines. Programmers use
functions, methods, and objects to organize their code.
This chapter is divided into three sections that introduce:

FUNCTIONS &
METHODS

Functions consist of a
series of statements

that have been grouped
together because they
perform a specific task.

A method is the same as a
function, except methods
are created inside (and are
part of) an object.

FUNCTIONS, METHODS & OBJECTS

OBJECTS

In Chapter 1you saw that
programmers use objects
to create models of the
world using data, and that
objects are made up of
properties and methods.
In this section, you learn
how to create your own
objects using JavaScript.

BUILT-IN
OBJECTS

The browser comes with
a set of objects that act
like a toolkit for creating
interactive web pages.
This section introduces

_you to a number of built-in

objects, which you will
then see used throughout
the rest of the book.

2
o
2
~
i
M.
7
z
o
=
9]
=
=)

WHAT IS A FUNCTION?

Functions let you group a series of statements together to perform a
specific task. If different parts of a script repeat the same task, you can
reuse the function (rather than repeating the same set of statements).

Grouping together the
statements that are required to
answer a question or perform a
task helps organize your code.

Furthermore, the statements ina
function are not always executed
when a page loads, so functions
also offer a way to store the steps
needed to achieve a task. The
script can then ask the function
to perform all of those steps as
and when they are required.

For example, you might have

a task that you only want to
perform if the user clicks on a
specific element in the page.

If you are going to ask the
function to perform its task
later, you need to give your
function a name. That name
should describe the task it is
performing. When you ask it to
perform its task, it is known as
calling the function.

FUNCTIONS, METHODS & OBJECTS

The steps that the function
needs to perform in order to
perform its task are packaged
up in a code block. You may
remember from the last chapter
that a code block consists of one
or more statements contained
within curly braces. (And you do
not write a semicolon after the
closing curly brace - like you do
after a statement.)

Some functions need to be
provided with information in
order to achieve a given task. For
example, a function to calculate
the area of a box would need

to know its width and height.
Pieces of information passed

to a function are known as
parameters.

When you write a function and
you expect it to provide you
with an answer, the response is
known as a return value.

On the right, there is an example
of a function in the JavaScript
file. It is called updateMessage().

Don't worry if you do not
understand the syntax of the
example on the right; you will
take a closer look at how to write
and use functions in the pages
that follow.

Remember that programming
languages often rely upon on
name/value pairs. The function
has a name, updateMessage,
and the value is the code block
(which consists of statements).
When you call the function by its
name, those statements will run.

You can also have anonymous
functions. They do not have a
name, so they cannot be called.
Instead, they are executed as
soon as the interpreter comes
across them.

A BASIC FUNCTION

In this example, the user is Before the closing </body> You do not need to worry about
shown a message at the top of tag, you can see the link to the how this function works yet - you
the page. The message is held JavaScript file. The JavaScript will learn about that over the

in an HTML element whose id file starts with a variable used next few pages. For the moment,
attribute has a value of message. to hold a new message, and is it is just worth noting that inside
The message is going to be followed by a function called the curly braces of the function
changed using JavaScript. updateMessage(). are two statements.

HTML c03/basic-function.html

<!DOCTYPE html>
<html>
<head>
<title>Basic Function</title>
<link rel="stylesheet" href="css/c03.css" />
</head>
<body>
<h1>TravelWorthy</h1>
<div id="message">Welcome to our sitel</div>
<script src="js/basic-function.js"></script>
</body>
</html>

JAVASCRIPT) c03/js/basic-function.js

var msg = 'Sign up to receive our newsletter for 10% off!l';
function updateMessage() {
var el = document.getElementById('message');
el .textContent = msg;
}
updateMessage();

_ These statements update the
RESULT
: message at the top of the page.

The function acts like a store; it
holds the statements that are
contained in the curly braces
until you are ready to use them.
Those statements are not run
until the function is called. The
function is only called on the last
line of this script.

Sign up to receive our
newsletter for 10% off!

LA D N s

FUNCTIONS, METHODS & OBJECTS

DECLARING A FUNCTION

To create a function, you give it a name and then write the statements
needed to achieve its task inside the curly braces.
This is known as a function declaration.

You give the function a name
(sometimes called an identifier)
followed by parentheses.

You declare a function using the
function keyword.

The statements that perform
the task sit in a code block.
(They are inside curly braces.)

FUNCTION KEYWORD
| I

%unction gayHe110(j {

FUNCTION NAME

document.write('Hello!"');

This function is very basic (it
only contains one statement),
but it illustrates how to write a
function. Most functions that
you will see or write are likely to
consist of more statements.

|
CODE BLOCK (IN CURLY BRACES)

The point to remember is that
functions store the code
required to perform a specific
task, and that the script can ask
the function to perform that task
whenever needed.

FUNCTIONS, METHODS & OBJECTS

If different parts of a script need
to perform the same task, you
do not need to repeat the same
statements multiple times - you
use a function to do it (and reuse
the same code).

CALLING A FUNCTION

Having declared the function, you can then execute all of the statements

between its curly braces with just one line of code.

This is known as calling the function.

To run the code in the function,
you use the function name
followed by parentheses.

1. The function can store the
instructions for a specific task.
2. When you need the script to
perform that task, you call the
function.

3. The function executes the
code in that code block.

4. When it has finished, the
code continues to run from
the point where it was initially
called.

In programmer-speak, you
would say that this code calls a
function.

FUNCTION NAME

sayHe110()£

(@ function sayHello() {
(® document.write('Hello!');
}

// Code before hello...

@) sayHello();
@) // Code after hello...

T

FUNCTIONS, METHODS & OBJECTS

You can call the same function
as many times as you want
within the same JavaScript file.

Sometimes you will see a
function called before it has
been declared. This still

works because the interpreter
runs through a script before
executing each statement,

so it will know that a function
declaration appears later in the
script. But for the moment, we
will declare the function before
calling it.

DECLARING FUNCTIONS
THAT NEED INFORMATION

Sometimes a function needs specific information to perform its task.
In such cases, when you declare the function you give it parameters.
Inside the function, the parameters act like variables.

If a function needs information to work, you indicate
what it needs to know in parentheses after the
function name.

The items that appear inside these parentheses are
known as the parameters of the function. Inside the
function those words act like variable names.

PARAMETERS
1

function getArea(width, height) {
return width * height;
|

L

} | I |

T

THE PARAMETERS ARE USED LIKE
VARIABLES WITHIN THE FUNCTION

This function will calculate and return the area of a
rectangle. To do this, it needs the rectangle's width
and height. Each time you call the function these
values could be different.

This demonstrates how the code can perform a task
without knowing the exact details in advance, as
long as it has rules it can follow to achieve the task.

FUNCTIONS, METHODS & OBJECTS

So, when you design a script, you need to note the
information the function will require in order to
perform its task.

If you look inside the function, the parameter names
are used just as you would use variables. Here, the
parameter names width and height represent the
width and height of the wall.

CALLING FUNCTIONS
THAT NEED INFORMATION

When you call a function that has parameters, you specify the values it
should use in the parentheses that follow its name. The values are called
arguments, and they can be provided as values or as variables.

ARGUMENTS AS VALUES ARGUMENTS AS VARIABLES

When the function below is called, the number 3 will You do not have to specify actual values when
be used for the width of the wall, and 5 will be used calling a function - you can use variables in their
for its height. place. So the following does the same thing.
getArea(3, 5); wallWidth = 3;

wallHeight = 5;
getArea(wal1Width, wallHeight);

PARAMETERS VS ARGUMENTS

People often use the terms parameter and argument On this page, you can see that the getArea()
interchangeably, but there is a subtle difference. function is being called and the code specifies real

' numbers that will be used to perform the calculation
On the left-hand page, when the function is (or variables that hold real numbers).
declared, you can see the words width and height
used (in parentheses on the first line). Inside the These values that you pass into the code (the
curly braces of the function, those words act like information it needs to calculate the size of this

variables. These names are the parameters. particular wall) are called arguments.

FUNCTIONS, METHODS & OBJECTS

GETTING A SINGLE VALUE
OUT OF A FUNCTION

Some functions return information to the code that called them.
For example, when they perform a calculation, they return the result.

This calculateArea() function Inside the function, a variable The return keyword is used to
returns the area of a rectangle to called area is created. It holds return a value to the code that
the code that called it. the calculated area of the box. called the function.

function calculateArea(width, height) {
var area = width * height;
return area;
}
var wallOne
var wallTwo

calculateArea(3, 5);
calculateArea(8, 5);

1l

Note that the intrepreter leaves the function when return is used. It goes back to the statement that called it.
If there had been any subsequent statements in this function, they would not be processed.

The wal10ne variable holds the The wal1Two variable holds the This also demonstrates how
value 15, which was calculated value 40, which was calculated the same function can be used
by the calculateArea() by the same calculateArea() to perform the same steps with
function. function. different values.

FUNCTIONS, METHODS & OBJECTS

GETTING MULTIPLE VALUES
OUT OF A FUNCTION

Functions can return more than one value using an array.
For example, this function calculates the area and volume of a box.

First, a new function is created The volume is calculated and This array is then returned to the
called getSize(). The area of stored in a variable called code that called the getSize()
the box is calculated and stored volume. Both are then placed function, allowing the values to
in a variable called area. into an array called sizes. be used.

function getSize(width, height, depth) {
var area = width * height;
var volume = width * height * depth;
var sizes = [area, volume];
return sizes;

}

var areaOne = getSize(3, 2, 3)[0];

var volumeOne = getSize(3, 2, 3)[1];

The areaOne variable holds The volumeOne variable holds
the area of a box thatis 3 x 2. the volume of a box that is 3 x
The area is the first value in the 2 x 3. The volume is the second
sizes array. value in the sizes array.

FUNCTIONS, METHODS & OBJECTS

ANONYMOUS FUNCTIONS
& FUNCTION EXPRESSIONS

Expressions produce a value. They can be used where values are expected.
If a function is placed where a browser expects to see an expression,
(e.g., as an argument to a function), then it gets treated as an expression.

FUNCTION DECLARATION

A function declaration creates a function that you
can call later in your code. It is the type of function
you have seen so far in this book.

In order to call the function later in your code, you
must give it a name, so these are known as named
functions. Below, a function called area() is

declared, which can then be called using its name.

FUNCTION EXPRESSION

If you put a function where the interpreter would
expect to see an expression, then it is treated as an
expression, and it is known as a function expression.
In function expressions, the name is usually omitted.
A function with no name is called an anonymous
function. Below, the function is stored in a variable
called area. It can be called like any function created
with a function declaration.

function area(width, height) {
return width * height;
}s

var size = area(3, 4);

var area = function(width, height) {
return width * height;
b

var size = area(3, 4);

As you will see on p456, the interpreter always
looks for variables and function declarations before
going through each section of a script, line-by-line.
This means that a function created with a function
declaration can be called before it has even been
declared.

For more information about how variables and
functions are processed first, see the discussion
about execution context and hoisting on

p452 - p457.

FUNCTIONS, METHODS & OBJECTS

In a function expression, the function is not
processed until the interpreter gets to that
statement. This means you cannot call this function
before the interpreter has discovered it. It also means
that any code that appears up to that point could
potentially alter what goes on inside this function.

IMMEDIATELY INVOKED
FUNCTION EXPRESSIONS

This way of writing a function is used in several different situations.
Often functions are used to ensure that the variable names do not conflict
with each other (especially if the page uses more than one script).

IMMEDIATELY INVOKED FUNCTION
EXPRESSIONS (IIFE)

Pronounced "iffy," these functions are not given
a name. Instead, they are executed once as the
interpreter comes across them.

Below, the variable called area will hold the value
returned from the function (rather than storing the
function itself so that it can be called later).

var area = ﬂmctw‘on{) {
var width = 3;
var height = 2;
return width * height;
())E

The final parentheses (shown on green) after
the closing curly brace of the code block tell the
interpreter to call the function immediately.

The grouping operators (shown on pink) are
parentheses there to ensure the intrepreter treats
this as an expression.

You may see the final parentheses in an lIFE
placed after the closing grouping operator but it
is commonly considered better practice to place
the final parentheses before the closing grouping
operator, as shown in the code above,

WHEN TO USE ANONYMOUS
FUNCTIONS AND IIFES

You will see many ways in which anonymous
function expressions and IIFEs are used throughout
the book.

They are used for code that only needs to run once
within a task, rather than repeatedly being called by
other parts of the script. For example:

® Asanargument when a function is called
(to calculate a value for that function).

@ To assign the value of a property to an object.

@ |nevent handlers and listeners (see Chapter 6)
to perform a task when an event occurs.

® To prevent conflicts between two scripts that
might use the same variable names (see p99).

IIFEs are commonly used as a wrapper around a
set of code. Any variables declared within that
anonymous function are effectively protected from
variables in other scripts that might have the same
name. This is due to a concept called scope, which
you meet on the next page. It is also a very popular
technique with jQuery.

FUNCTIONS, METHODS & OBJECTS

VARIABLE SCOPE

The location where you declare a variable will affect where it can be used
within your code. If you declare it within a function, it can only be used
within that function. This is known as the variable's scope.

LOCAL VARIABLES

When a variable is created inside a function using the
var keyword, it can only be used in that function.

It is called a local variable or function-level variable.
It is said to have local scope or function-level scope.
It cannot be accessed outside of the function in
which it was declared. Below, area is a local variable.

The interpreter creates local variables when the
function is run, and removes them as soon as the
function has finished its task. This means that:

® |f the function runs twice, the variable can have
different values each time.

@ Two different functions can use variables with the
same name without any kind of naming conflict.

GLOBAL VARIABLES

If you create a variable outside of a function, then it
can be used anywhere within the script. It is called a
global variable and has global scope. In the example
shown, wallSize is a global variable.

Global variables are stored in memory for as long
as the web page is loaded into the web browser.
This means they take up more memory than local
variables, and it also increases the risk of naming
conflicts (see next page). For these reasons, you
should use local variables wherever possible.

If you forget to declare a variable using the var
keyword, the variable will work, but it will be treated
as a global variable (this is considered bad practice).

return area;

}

function getArea(width, height) {
var area = width * height;

var wallSize = getArea(3, 2);

document.write(wallSize);

@ LOCAL (OR FUNCTION-LEVEL) SCOPE
@ GLOBAL SCOPE

FUNCTIONS, METHODS & OBJECTS

HOW MEMORY &
VARIABLES WORK

Global variables use more memory. The browser has to remember them
for as long as the web page using them is loaded. Local variables are only
remembered during the period of time that a function is being executed.

CREATING THE VARIABLES IN CODE

Each variable that you declare takes up memory.
The more variables a browser has to remember,
the more memory your script requires to run.
Scripts that require a lot of memory can perform
slower, which in turn makes your web page take
longer to respond to the user.

NAMING COLLISIONS

You might think you would avoid naming collisions;
after all you know which variables you are using.

But many sites use scripts written by several people.
If an HTML page uses two JavaScript files, and both
have a global variable with the same name, it can
cause errors. Imagine a page using these two scripts:

var width = 15;

var height = 30;

var isWall = true;
var canPaint = true;

A variable actually references a value that is stored
in memory. The same value can be used with more
than one variable:

var width = 15; >
var height = 30; >

var canPaint = true;—m8 ——

var isWall = true;—8 ——> @ .

// Show size of the building plot
function showPlotSize(){

var width = 3;

var height = 2;

return 'Area: " + (width * height);
}

var msg = showArea()

// Show size of the garden
function showGardenSize() {
var width = 12;
var height = 25;
return width * height;
}

var msg = showGardenSize();

Here the values for the width and height of the wall

are stored separately, but the same value of true
can be used for both isWall and canPaint.

@ Variables in global scope: have naming conflicts.
@ Variables in function scope: there is no conflict
between them.

FUNCTIONS, METHODS & OBJECTS

WHAT IS AN OBJECT?

Objects group together a set of variables and functions to create a model
of a something you would recognize from the real world. In an object,
variables and functions take on new names.

IN AN OBJECT: VARIABLES BECOME IN AN OBJECT: FUNCTIONS BECOME
KNOWN AS PROPERTIES KNOWN AS METHODS

If a variable is part of an object, it is called a If a function is part of an object, it is called a method.
property. Properties tell us about the object, such as Methods represent tasks that are associated with
the name of a hotel or the number of rooms it has. the object. For example, you can check how many
Each individual hotel might have a different name rooms are available by subtracting the number of
and a different number of rooms. booked rooms from the total number of rooms.

FUNCTIONS, METHODS & OBJECTS

This object represents a hotel. It has five properties and one method.
The object is in curly braces. It is stored in a variable called hotel.

Like variables and named functions, An object cannot have two keys The value of a property can be a

properties and methods have a with the same name. This is string, number, Boolean, array, or

name and a value. In an object, because keys are used to access even another object. The value of a

that name is called a key. their corresponding values. method is always a function.

var hotel = { @ ey
@ VALUE

name: 'Quay',
..... rooms: 40,
booked: 25, — PROPERTIES
............ T LI L Lt These are VBrI&b'ES
gym: true,

roomTypes: ['twin', ‘double’, 'su{:ce‘],

checkAvailability: function() {

return this.rooms - this.booked; : | MEeTHOD
} This is a function
b
Above you can see a hotel object. The object Programmers use a lot of name/value pairs:
contains the following key/value pairs: ® HTML uses attribute names and values.
® CSS uses property names and values.
PROPERTIES: KEY VALUE
name string In JavaScript:
rooms number @ Variables have a name and you can assign them a
booked number value of a string, number, or Boolean.
gym Boolean ® Arrays have a name and a group of values. (Each
roomTypes array . item in an array is a name/value pair because it
has an index number and a value.)
METHODS: checkAvailability function @ Named functions have a name and value thatis a
set of statements to run if the function is called.
As you will see over the next few pages, this is just ® Objects consist of a set of name/value pairs
one of the ways you can create an object. (but the names are referred to as keys).

FUNCTIONS, METHODS & OBJECTS

CREATING AN OBJECT:
LITERAL NOTATION

Literal notation is the easiest and most popular way to create objects.
(There are several ways to create objects.)

The object is the curly braces and their contents. Separate each key from its value using a colon.
The object is stored in a variable called hotel, . Separate each property and method with a comma
so you would refer to it as the hotel object. (but not after the last value).
var hotel = { @ ossect
@ KeEY
... . — . VALUE

! name: 'Quay',

... -

rooms: 40, : |- PROPERTIES

... -

i booked: 25,

i checkAvailability: function() { = i
: return this.rooms - this.booked; . METHOD

In the checkAvailability() method, the this When setting properties, treat the values like you
keyword is used to indicate that it is using the rooms would do for variables: strings live in quotes and
and booked properties of this object. arrays live in square brackets.

FUNCTIONS, METHODS & OBJECTS

ACCESSING AN OBJECT
AND DOT NOTATION

You access the properties or methods of an object using dot notation.
You can also access properties using square brackets.

To access a property or method of an object you use The period is known as the member operator. The

the name of the object, followed by a period, then property or method on its right is a member of the

the name of the property or method you want to object on its left. Here, two variables are created to

access. This is known as dot notation. hold the hotel name and number of vacant rooms.
OBJECT PROPERTY/METHOD NAME

1 I
| 1

hotel.name;

hotel.checkAvailability();
I

MEMBER_OPERATOR

var hotelName
var roomsFree

You can also access the properties of an object (but This time the object name is followed by square
not its methods) using square bracket syntax. brackets, and the property name is inside them.

var hotelName = hotel['name'];

This notation is used most commonly used when:
® The name of the property is a number (technically allowed, but should generally be avoided)
® Avariable is being used in place of the property name (you will see this technique used in Chapter 12)

FUNCTIONS, METHODS & OBJECTS

CREATING OBJECTS USING
LITERAL NOTATION

This example starts by creating

an object using literal notation. c3/js/object-1iteral.js JAVASCRIPT

var hotel = {
name: 'Quay’,
rooms: 40,
booked: 25,
checkAvailability: function() {
return this.rooms - this.booked;

This object is called hotel which
represents a hotel called Quay
with 40 rooms (25 of which have
been booked).

Next, the content of the page

is updated with data from this }
object. It shows the name of the b
hotel by accessing the object's
name property and the number
of vacant rooms using the
checkAvailability() method.

var elName = document.getElementById('hotelName');
elName. textContent = hotel.name;

var elRooms = document.getElementById('rooms')

To access a property of this elRooms.textContent = hotel.checkAvailability();

object, the object name is
followed by a dot (the period

symbol) and the name of the)

property that you want.

Similarly, to use the method, 3 -
you can use the object name LA A hotel availability
followed by the method name. "t _ w —
hotel.checkAvailability() 2 = N LS QUAY

If the method needs parameters, I = . -
you can supply them in the rll |/ L 1 5

parentheses (just like you can
pass arguments to a function).

rooms left

@ FUNCTIONS, METHODS & OBJECTS

JAVASCRIPT

CREATING MORE
OBJECT LITERALS

c03/js/object-Titeral2. js

var hotel = {
name: 'Park',
rooms: 120,
booked: 77,
checkAvailability: function() {
return this.rooms - this.booked;
}
¥s

var elName = document.getElementById('hotelName');
elName.textContent = hotel.name;

var elRooms = document.getElementById('rooms');
elRooms.textContent = hotel.checkAvailability();

hotel availability

PARK

43

rooms left

Here you can see another object.
Again it is called hotel, but this
time the model represents a
different hotel. For a moment,
imagine that this is a different
page of the same travel website.

The Park hotel is larger. It has
120 rooms and 77 of them are
booked.

The only things changing in the
code are the values of the hotel
object's properties:

@ The name of the hotel

@ How many rooms it has

® How many rooms are booked

The rest of the page works in
exactly the same way. The name
is shown using the same code.
The checkAvailability()
method has not changed and is
called in the same way.

If this site had 1,000 hotels,

the only thing that would

need to change would be the
three properties of this object.
Because we created a model for
the hotel using data, the same
code can access and display the
details for any hotel that follows
the same data model.

If you had two objects on the
same page, you would create
each one using the same
notation but store them in
variables with different names.

FUNCTIONS, METHODS & OBJECTS

CREATING AN OBJECT:
CONSTRUCTOR NOTATION

The new keyword and the object constructor create a blank object.
You can then add properties and methods to the object.

First, you create a new object using a combination Next, having created the blank object, you can add
of the new keyword and the Object () constructor properties and methods to it using dot notation.
function. (This function is part of the JavaScript Each statement that adds a property or method
language and is used to create objects.) should end with a semicolon.
var hotel = new Object(); @ oBu=ey
@ ey
: ; S e S I E — . VALUE
hote] name = 'Quay'; :
hote1 rooms = 40; : | PROPERTIES

.. -

hote] booked = 25;

--

i hotel.checkAvailability = function() {

: return this.rooms - this.booked; : L METHOD

503 ‘

You can use this syntax to add properties and To create an empty object using literal notation use:
methods to any object you have created (no matter var hotel = {}

which notation you used to create it). The curly brackets create an empty object.

FUNCTIONS, METHODS & OBJECTS

UPDATING AN OBJ .Y

To update the value of properties, use dot notation or square brackets.
They work on objects created using literal or constructor notation.
To delete a property, use the delete keyword.

To update a property, use the same technique that If the object does not have the property you are
was shown on the left-hand page to add properties trying to update, it will be added to the object.
to the object, but give it a new value.

OBJECT PROPERTY NAME PROPERTY VALUE
| | l
I =1=1]

hote]Iname T 'Park®s

MEMBER OPERATOR ASSIGNMENT OPERATOR
You can also update the properties of an object (but A new value for the property is added after the
not its methods) using square bracket syntax. The assignment operator. Again, if the property you are
object name is followed by square brackets, and the attempting to update does not exist, it will be added
property name is inside them. to the object.

hotel['name'] = 'Park';

To delete a property, use the delete keyword If you just want to clear the value of a property, you
followed by the object name and property name. could set it to a blank string.

delete hotel.name; hotel.name = '';

FUNCTIONS, METHODS & OBJECTS

CREATING MANY OBJECTS:
CONSTRUCTOR NOTATION

Sometimes you will want several objects to represent similar things.
Object constructors can use a function as a template for creating objects.
First, create the template with the object's properties and methods.

A function called Hotel will be used as a template The function has three parameters. Each one sets

for creating new objects that represent hotels. Like the value of a property in the object. The methods

all functions, it contains statements. In this case, will be the same for each object created using this

they add properties or methods to the object. function.

function Hotel(name, rooms, booked) { :KEY
VALUE

: this.name = name;

.. -

: this.rooms = rooms; : | propERTIES

.
.. -

E-this.booked = booked;

i this.checkAvailability = function() {
i return this.rooms - this.booked; i |- memoo

The this keyword is used instead of the object The name of a constructor function usually begins
name to indicate that the property or method with a capital letter (unlike other functions, which
belongs to the object that this function creates. tend to begin with a lowercase character).

Each statement that creates a new property or The uppercase letter is supposed to help remind
method for this object ends in a semicolon (not a developers to use the new keyword when they create
comma, which is used in the literal syntax). an object using that function (see next page).

FUNCTIONS, METHODS & OBJECTS

You create instances of the object using the constructor function.
The new keyword followed by a call to the function creates a new object.
The properties of each object are given as arguments to the function.

Here, two objects are used to represent two hotels, Each time it is called, the arguments are different
so each object needs a different name. When the because they are the values for the properties of
new keyword calls the constructor function (defined each hotel. Both objects automatically get the same
on the left-hand page), it creates a new object. method defined in the constructor function.
OBJECT CONSTRUCTOR FUNCTION
| |
r 1

new Hotel('Quay', 40, 25);
new Hotel('Park', 120, 77);
| ! l '

ASSIGNMENT OPERATOR NEW KEYWORD VALUES USED IN PROPERTIES
OF THIS OBJECT

]

var quayHotel
var parkHotel

The first object is called quayHotel. Its name is The second object is called parkHotel. Its name is
'Quay’ and it has 40 rooms, 25 of which are booked. ‘Park' and it has 120 rooms, 77 of which are booked.

Even when many objects are created using the You might use this technique if your script contains
same constructor function, the methods stay the a very complex object that needs to be available
same because they access, update, or perform a but might not be used. The object is defined in the

calculation on the data stored in the properties. function, but it is only created if it is needed.

FUNCTIONS, METHODS & OBJECTS

CREATING OBJECTS USING
CONSTRUCTOR SYNTAX

he right, an empt j
Onthe right, pty object c3/js/object-constructor. js JAVASCRIPT
called hotel is created using the

constructor function. var hotel = new Object();

Once it has been created, three hotel.name = 'Park':
properties and a method are hotel robms = 120: '
then assigned to the object. hotel .booked = ??f

hotel.checkAvailability = function() {

(If the object already had any return this.rooms - this.booked;

of these properties, this would }e
overwrite the values in those ;

properties.) var elName = document.getElementById('hotelName');

i elName.textContent = hotel.name;
To access a property of this

object, you can use dot notation,

; : : var elRooms = document.getElementById('rooms"')
just as you can with any object.

elRooms.textContent = hotel.checkAvailability();

For example, to get the hotel's
name you could use:

hotel .name RESULT

Similarly, to use the method,
you can use the object name
followed by the method name:

hotel availability
hotel.checkAvailability() :

PARK

43

rooms left

@ FUNCTIONS, METHODS & OBJECTS

CREATE & ACCESS OBJECTS
CONSTRUCTOR NOTATION

t a better idea of why you
JAVASCRIPT c03/js/multiple-objects. js Bl co g vy
might want to create multiple

objects on the same page, here
is an example that shows room
availability in two hotels.

function Hotel(name, rooms, booked) {
this.name = name;
this.rooms = rooms;
this.booked = booked;

this.checkAvailability = function() { FIrst g constivgtonibichion
return this.rooms - this.booked; dEf'"esatef“p'atef_‘:’rthe hotels.
}s Next, two different instances

of this type of hotel object are
created. The first represents

var quayHotel = new Hotel('Quay', 40, 25); a hotel called Quay and the
var parkHotel = new Hotel('Park', 120, 77); second a hotel called Park.

}

var detailsl = guayHotel.name + ' rooms: '; Having created instances of
these objects, you can then

detailsl += quayHotel.checkAvailability(); ; :
var elHotell = document.getElementBylId('hotell'); access their properties and

elHotell.textContent = detailsl; methods using the same dot
notation that you use with all

other objects.

var details2 = parkHotel.name + ' rooms: ';
details2 += parkHotel.checkAvailability(); -
var elHotel2 = document.getElementById('hotel2'): In this example, data from both

elHotel2.textContent = details2; gbjects isaccessed and written
into the page. (The HTML

for this example changes to
accommodate the extra hotel.)
For each hotel, a variable is
created to hold the hotel name,
followed by space, and the word
rooms.

hotel availability

o 2 feoma s The line after it adds to that
e variable with the number of
available rooms in that hotel.

(The += operator is used to add
content to an existing variable.)

FUNCTIONS, METHODS & OBJECTS @

@ FUNCTIONS, METHODS & OBJECTS

ADDING AND REMOVING
PRORPERTIES

Once you have created an object
(using literal or constructor
notation), you can add new
properties to it.

You do this using the dot
notation that you saw for adding
properties to objects on p103.

In this example, you can see that
an instance of the hotel object
is created using an object literal.

Immediately after this, the
hotel object is given two

extra properties that show the
facilities (whether or not it has
a gym and/or a pool). These
properties are given values that
are Booleans (true or false).

Having added these properties
to the object, you can access
them just like any of the objects
other properties. Here, they
update the value of the class
attribute on their respective
elements to show either a check
mark or a cross mark.

To delete a property, you use
the keyword delete, and then
use dot notation to identify the
property or method you want to
remove from the object.

In this case, the booked property
is removed from the object.

c3/js/adding-and-removing-properties. js JAVASCRIPT

var hotel = {

name : 'Park',
rooms : 120,
booked : 77,

}3

hotel.gym = true;
hotel.pool = false;
delete hotel.booked;

var elName = document.getElementByld('hotelName');
elName.textContent = hotel.name;

var elPool = document.getElementById('pool');
elPool.className = 'Pool: ' + hotel.pool;

var elGym = document.getElementById('gym'):
elGym.className = 'Gym: ' + hotel.gym;

hotel facilities

PARK

Pool
Gym

If an object is created using a constructor function, this syntax only adds
or removes the properties from the one instance of the object (not all
objects created with that function).

RECAP: WAYS TO
CREATE OBJECTS

CREATE THE OBJECT, THEN ADD PROPERTIES & METHODS

In both of these examples, the object is created on
the first line of the code sample. The properties and
methods are then added to it afterwards.

LITERAL NOTATION
var hotel = {}

hotel.name = 'Quay';

hotel.rooms = 40;

hotel.booked = 25;

hotel.checkAvailability = function() {
return this.rooms - this.booked;

¥

Once you have created an object, the syntax for
adding or removing any properties and methods
from that object is the same.

OBJECT CONSTRUCTOR NOTATION
var hotel = new Object();

hotel.name = 'Quay';

hotel.rooms = 40;

hotel.booked = 25;

hotel.checkAvailability = function() {
return this.rooms - this.booked;

-

CREATING AN OBJECT WITH PROPERTIES & METHODS

LITERAL NOTATION

A colon separates the key/value pairs.
There is a comma between each key/value pair.

var hotel = |
name: 'Quay',
rooms: 40,
booked: 25,
checkAvailability: function() {
return this.rooms - this.booked;
}
}s

OBJECT CONSTRUCTOR NOTATION

The function can be used to create multiple objects.
The this keyword is used instead of the object name.

function Hotel(name, rooms, booked) {
this.name = name;
this.rooms = rooms;
this.booked = booked;
this.checkAvailability = function() {
return this.rooms - this.booked;
i
}
var quayHotel
var parkHotel

new Hotel('Quay', 40, 25);
new Hotel('Park', 120, 77);

FUNCTIONS, METHODS & OBJECTS @

THIS (IT IS A KEYWORD)

The keyword this is commonly used inside functions and objects.
Where the function is declared alters what this means. It always refers
to one object, usually the object in which the function operates.

A FUNCTION IN GLOBAL SCOPE

When a function is created at the top level of a script
(that is, not inside another object or function), then it
is in the global scope or global context.

The default object in this context is the window
object, so when this is used inside a function in the
global context it refers to the window object.

Below, this is being used to return properties of the
window object (you meet these properties on p124).

function windowSize() |
var width = this.innerWidth;
var height = this.innerHeight;
return [height, width];

}

Under the hood, the this keyword is a reference to
the object that the function is created inside.

FUNCTIONS, METHODS & OBJECTS

GLOBAL VARIABLES

All global variables also become properties of the
window object, so when a function is in the global
context, you can access global variables using the
window object, as well as its other properties.

Here, the showWidth() function is in global scope,
and this.width refers to the width variable:

var width = 600; &
var shape = {width: 300};

var showWidth-= function() {
document.write(this.width);

Vi i |

showWidth();

Here, the function would write a value of 600 into the
page (using the document object's write() method).

As you can see, the value of this changes in
different situations. But don't worry if you do not
follow these two pages on your first read through.
As you write more functions and objects, these
concepts will become more familiar, and if this is
not returning the value you expected, these pages
will help you work out why.

A METHOD OF AN OBJECT

When a function is defined inside an object, it
becomes a method. In a method, this refers to the
containing object.

In the example below, the getArea() method
appears inside the shape object, so this refers to
the shape object it is contained in:

var shape = {
width: 600,¢

height: ﬂgq,ﬁ
getArea: function() {
return this.width * this.height;

} T
ks

Because the this keyword here refers to the shape
object, it would be the same as writing:

return shape.width * shape.height;

If you were creating several objects using an
object constructor (and each shape had different
dimensions), this would refer to the individual
instance of the new object you are creating.

When you called getArea(), it would calculate the

dimensions of that particular instance of the object.

Another scenario to mention is when one function
is nested inside another function. It is only done in
more complicated scripts, but the value of this can
vary (depending on which browser you are using).
You could work around this by storing the value of
this in a variable in the first function and using the
variable name in child functions instead of this.

FUNCTION EXPRESSION AS METHOD

If a named function has been defined in global
scope, and it is then used as a method of an object,
this refers to the object it is contained within.

The next example uses the same showhidth()
function expression as the one on the left-hand
page, but it is assigned as a method of an object.

var width
var shape

600; &
{width: 300};

var showWidth = function() {
document.write(this.width) ;

}s A

shape.getWidth = showWidth;
shape.getWidth();

The last but one line indicates that the showWidth()
function is used as a method of the shape object.
The method is given a different name: getWidth().

When the getWidth() method is called, even though
it uses the showWidth() function, this now refers to
the shape object, not the global context (and
this.width refers to the width property of the
shape object). So it writes a value of 300 to the page.

FUNCTIONS, METHODS & OBJECTS @

RECAP: STORING DATA

In JavaScript, data is represented using name/value pairs.
To organize your data, you can use an array or object to group a set of
related values. In arrays and objects the name is also known as a key.

VARIABLES

A variable has just one key (the variable name)
and one value,

Variable names are separated from their value by an
equals sign (the assignment operator):

var hotel = 'Quay';

To retrieve the value of a variable, use its name:

// This retrieves Quay:
hotel;

When a variable has been declared but has not yet
been assigned a value, it is undefined.

If the var keyword is not used, the variable is
declared in global scope (you should always use it).

FUNCTIONS, METHODS & OBJECTS

ARRAYS

Arrays can store multiple pieces of information.

Each piece of information is separated by a comma.
The order of the values is important because items
in an array are assigned a number (called an index).

Values in an array are put in square brackets,
separated by commas:

var hotels = [
'Quay’,
'Park',
‘Beach’,
'Bloomsbury’

]

You can think of each item in the array as another
key/value pair, the key is the index number, and the
values are shown in the comma-separated list.

To retrieve an item, use its index number:

// This retrieves Park:
hotels[1];

If a key is a number, to retrieve the value you must
place the number in square brackets.

Generally speaking, arrays are the only times when
the key would be a number.

Note: This recap specifically relate to storing data.
You cannot store rules to perform a task in an array.
They can only be stored in a function or method.

If you want to access items via a property name or key, use an object
(but note that each key in the object must be unique).
If the order of the items is important, use an array.

INDIVIDUAL OBJECTS

Objects store sets of name/value pairs. They can be
properties (variables) or methods (functions).

The order of them is not important (unlike the array).
You access each piece of data by its key.

In object literal notation, properties and methods of
an object are given in curly braces:

var hotel = {
name: 'Quay',
rooms: 40

}s

Objects created with literal notation are good:

® When you are storing / transmitting data
between applications

® For global or configuration objects that set up
information for the page

To access the properties or methods of the object, -
use dot notation:

// This retrieves Quay:
hotel.name;

MULTIPLE OBJECTS

When you need to create multiple objects within the
same page, you should use an object constructor to
provide a template for the objects.

function Hotel (name, rooms) {
this.name = name;
this.rooms = rooms:

}

You then create instances of the object using the new
keyword and then a call to the constructor function.

var hotell = new Hotel('Quay', 40);
var hotel2 = new Hotel('Park', 120);

Objects created with constructors are good when:

@® You have lots of objects used with similar
functionality (e.g., multiple slideshows / media
players / game characters) within a page

® A complex object might not be used in code

To access the properties or methods of the object,
use dot notation:

// This retrieves Park:
hotelZ2.name;

FUNCTIONS, METHODS & OBJECTS @

ARRAYS ARE OBJECTS

Arrays are actually a special type of object. They hold a related set of
key/value pairs (like all objects), but the key for each value is its index

number.

As you saw (on p72), arrays have a 1ength property telling you how many items are in the array.
In Chapter 12, you will see that arrays also have several other helpful methods.

PROPERTY: VALUE:

AN ARRAY

INDEX NUMBER: VALUE:
& ¢ 420
1 3 460
2 230

FUNCTIONS, METHODS & OBJECTS

Here, hotel room costs are stored in an object.
The example covers four rooms, and the cost for
each room is a property of the object:

costs = {
rooml: 420,
room2: 460,
room3: 230,
roomd: 620
)

Here is the the same data in an array. Instead of
property names, it has index numbers:

costs = [420, 460, 230, 620];

ARRAYS OF OBJECTS
& OBJECTS IN ARRAYS

You can combine arrays and objects to create complex data structures:
Arrays can store a series of objects (and remember their order).
Objects can also hold arrays (as values of their properties).

In an object, the order iniwhich the properties appear is not important. In an array, the index numbers dictate
the order of the properties. You will see more examples of these data structures in Chapter 12.

ARRAYS IN AN OBJECT

PROPERTY: VALUE:

The property of any object can hold an array. items[420, 40, 101
On the left, each item on a hotel bill is stored

separately in an array. To access the first charge for room2 items[460, 20, 20]

rooml you would use: .
room3 items[230, 0, 0]

costs.rooml. items[0]; room4 items[620, 150, 601

OBJECTS IN AN ARRAY

INDEX NUMBER:

The value of any element in an array can be an : faccom: 420, food: 40, phone: 10}
object (written using the object literal syntax).
Here, to access the phone charge for room three, : {accom: 460, food: 20, phone: 20}
you would use:

{accom: 230, food: O, phone: 0}

costs[2] .phone; i {accom: 620, food: 150, phone: 60}

FUNCTIONS, METHODS & OBJECTS

WHAT ARE BUILT-IN

UBJECTSY

Browsers come with a set of built-in objects that represent things like the
browser window and the current web page shown in that window. These
built-in objects act like a toolkit for creating interactive web pages.

The objects you create will usually be specifically
written to suit your needs. They model the data
used within, or contain functionality needed by,
your script. Whereas, the built-in objects contain
functionality commonly needed by many scripts.

As soon as a web page has loaded into the browser,
these objects are available to use in your scripts.

FUNCTIONS, METHODS & OBJECTS

These built-in objects help you get a wide range

of information such as the width of the browser
window, the content of the main heading in the page,
or the length of text a user entered into a form field.

You access their properties or methods using dot
notation, just like you would access the properties or
methods of an object you had written yourself.

The first thing you need to do is get to know what tools are available.
You can imagine that your new toolkit has three compartments:

1

BROWSER OBJECT
MODEL

The Browser Object Model contains
objects that represent the current
browser window or tab. It contains
objects that model things like
browser history and the
device's screen.

WHAT DOES THIS SECTION COVER?

You have already seen how to access the properties
and methods of an object, so the purpose of this
section is to let you know:

® What built-in objects are available to you
® What their main properties and methods do

There will be a few examples in the remaining part
of this chapter to ensure you know how to use them.
Then, throughout the rest of the entire book, you will
see many practical examples of how they are used in
a range of situations.

DOCUMENT OBJECT

The Document Object Model uses
objects to create a representation of
the current page. It creates a new
object for each element (and each
individual section of text)
within the page.

3

GLOBAL JAVASCRIPT
OBJECTS

The global JavaScript objects
represent things that the JavaScript
language needs to create a model
of. For example, there is an
object that deals only with
dates and times.

2

MODEL

WHAT IS AN OBJECT MODEL?

You have seen that an object can be used to create a
model of something from the real world using data.

An object model is a group of objects, each of
which represent related things from the real world.
Together they form a model of something larger.

Two pages back, it was noted that an array can hold
a set of objects, or that the property of an object
could be an array. It is also possible for the property
of an object to be another object. When an object
is nested inside another object, you may hear it
referred to as a child object.

FUNCTIONS, METHODS & OBJECTS @

THREE GROUPS OF
BUILT-IN OBJECTS

USING BUILT-IN OBJECTS:

The three sets of built-in objects each offera
different range of tools that help you write scripts
for web pages.

Chapter 5 is dedicated to the Document Object
Model because it is needed to access and update
the contents of a web page.

The other two sets of objects will be introduced
in this chapter, and then you will see them used
throughout the rest of the book.

This book will teach you how to use these built-in
objects and what type of information you can get
from each one. You will also see examples that use
many of their most popular features.

We do not have space to exhaustively document
every object in each of these models in this book,
so you can find a list of links to online resources at:
http://javascriptbook.com/resources

@ FUNCTIONS, METHODS & OBJECTS

BROWSER OBJECT MODEL

The Browser Object Model creates a model of the
browser tab or window.

The topmost object is the window object, which

represents current browser window or tab. Its child
objects represent other browser features.

oo A TaR
o
S
Ehent o
S Srwsen
Peemanon™

EXAMPLES

The window object's print () method will cause the
browser's print dialog box to be shown:
window.print();

The screen object's width property will let you find
the width of the device's screen in pixels:
window.screen.width;

You meet the window object on p124 along with
some properties of the screen and history objects.

DOCUMENT OBJECT MODEL

The Document Object Model (DOM) creates a
model of the current web page.

The topmost object is the document object, which
represents the page as a whole. Its child objects
represent other items on the page.

document

attribute

EXAMPLES

The document object's getElementById() method
gets an element by the value of its id attribute:
document.getElementById('one');

The document object’s TastModi fied property will

tell you the date that the page was last updated:
document.lastModified;

You meet the document object on p126.
Chapter 5 goes into this object model in depth.

GLOBAL JAVASCRIPT OBJECTS

The global objects do not form a single model.
They are a group of individual objects that relate to
different parts of the JavaScript language.

The names of the global objects usually start with a
capital letter, e.g., the String and Date objects.

These objects represent basic data types:

FOR WORKING WITH STRING
STRING VALUES
FOR WORKING WITH NUMERIC
NUMBER VALUES

FOR WORKING WITH BOOLEAN
BOOLEAN [Reiids

These objects help deal with real-world concepts:

TO REPRESENT AND HANDLE

DATE DATES

R FOR WORKING WITH NUMBERS
AND CALCULATIONS

FOR MATCHING PATTERNS

REGEX WITHIN STRINGS OF TEXT

EXAMPLES

The String object’s tolpperCase() method makes
all letters in the following variable uppercase:
hotel.tolUpperCase();

The Math object’s PI property will return the
value of pi:
Math.PI();

You meet the String, Number, Date, and Math
objects later in this chapter.

FUNCTIONS, METHODS & OBJECTS @

THE BROWSER
OBJECT MODEL:
THE WINDOW OBJECT

The window object represents the current Here are a selection of the
: < . window object’s properties and
browser window or tab. It is the topmost object s i S

in the Browser Object Model, and it contains some properties of the screen
other objects that tell you about the browser. 3Eﬁduit:frizt:jfﬁ;i:ﬂﬂ;re
PROPERTY DESCRIPTION

window.innerHeight Height of window (excluding browser chrome/user interface) (in pixels)
window.innerWidth Width of window (excluding browser chrome/user interface) (in pixels)
window.pageXOffset Distance document has been scrolled horizontally (in pixels)
window.pageYOffset Distance document has been scrolled vertically (in pixels)

window.screenX X-coordinate of pointer, relative to top left corner of screen (in pixels)
window.screenY Y-coordinate of pointer, relative to top left corner of screen (in pixels)
window.location Current URL of window object (or local file path)

Reference to document object, which is used to represent the current page

window.document - prin s
contained in window

Reference to history object for browser window or tab, which contains details

window.history of the pages that have been viewed in that window or tab

window.history.length Number of items in history object for browser window or tab

window.screen Reference to screen object

window.screen.width Accesses screen object and finds value of its width property (in pixels)

window.screen.height Accesses screen object and finds value of its height property (in pixels)

METHOD DESCRIPTION
window.alert() Creates dialog box with message (user must click OK button to close it)
window.open() Opens new browser window with URL specified as parameter (if browser has

pop-up blocking software installed, this method may not work)

window.print() Tells browser that user wants to print contents of current page (acts like user has
clicked a print option in the browser's user interface)

FUNCTIONS, METHODS & OBJECTS

USING THE BROWSER
OBIEC P MQDER

Here, data about the browser is
collected from the window object
and its children, stored in the msg
variable, and shown in the page.
The += operator adds data onto
the end of the msg variable.

1. Two of the window object's
properties, innerWidth and
innerHeight, show width and
height of the browser window.

|msg += '<p>height:

[msg +=
@+ msg += '<h2>screen</h2><p>width:
Lmsg += '<p>height:

@Fvar el

Lel.innerHTML = msg;
@ alert('Current page:

C>:var msg = '<h2>browser window</h2><p>width:

2. Child objects are stored as

properties of their parent object.
So dot notation is used to access
them, just like you would access

any other property of that object.

In turn, to access the properties
of the child object, another dot is
used between the child object's
name and its properties,

e.g., window.history.length

'<h2>history</h2><p>items: ' + window.history.length +

' + window.location);

browser window

width:1419
height:1ioo

JavaScript Alert

Current page: hitp:] fjavascriptbook.com,/code/c03]

window-object.himl

history

items:1

screen

width:2560
height: 1440

3. The element whose id
attribute has a value of infois
selected, and the message that
has been built up to this point is
written into the page.

See p228 for notes on using
innerHTML because it can be
a security risk if it is not used
correctly.

c03/js/window-object.js

' + window.innerWidth + '</p>';
' + window.innerHeight + '</p>';

I‘q/pbl;

' + window.screen.width + '</p>';
" + window.screen.height + '</p>';
= document.getElementById('info');

4. The window object's alert()
method is used to create a dialog
box shown on top of the page.

It is known as an alert box.
Although this is a method of the
window object, you may see it
used on its own (as shown here)
because the window object is
treated as the default object if
none is specified. (Historically,
the alert() method was used to
display warnings to users. These
days there are better ways to
provide feedback.)

FUNCTIONS, METHODS & OBJECTS @

THE DOCUMENT
OBJECT MODEL:
THE DOCUMENT OBJECT

The topmost object in the Document Object Model (or DOM) is the
document object. It represents the web page loaded into the current
browser window or tab. You meet its child objects in Chapter 5.

Here are some properties of the
document object, which tell you
about the current page.

PROPERTY

As you will see in Chapter 5, the
DOM also creates an object for
each element on the page.

DESCRIPTION

document.title

Title of current document

document.lastModified

Date on which document was last modified

document.URL

Returns string containing URL of current document

document.domain

The DOM is vital to accessing
and amending the contents of
the current web page.

METHOD

Returns domain of current document

The following are a few of the
methods that select content or
update the content of a page.

DESCRIPTION

document.write()

Writes text to document (see restrictions on p226)

document.getElementById()

Returns element, if there is an element with the value of the id attribute

that matches (full description see p195)

document .querySelectorAll()

Returns list of elements that match a CSS selector, which is specified as

a parameter (see p202)

document.createElement ()

Creates new element (see p222)

document.createTextNode()

FUNCTIONS, METHODS & OBJECTS

Creates new text node (see p222)

LIS NG THE DOCUMENT
ek = S

This example gets information These details are stored inside 2. You have seen the document
about the page, and then adds a variable called msg, along object's getElementById()
that information to the footer. with HTML markup to display method in several examples so
the information. Again, the += far. It selects an element from
1. The details about the page are operator adds the new value the page using the value of its
collected from properties of the onto the existing content of the id attribute. You will see this
document object. msg variable. method in more depth on p195.

JAVASCRIPT c03/js/document-object.js

var msg = '<p>page title: ' + document.title + '<hr />';
msg += 'page address: ' + document.URL + '
';
msg += 'last modified: ' + document.lastModified + '</p>';

@_[var el = document.getElementById('footer');
el.innerHTML = msg;

?ee p228 for notes qn using
; innerHTML because it can be
a security risk if it is not used
correctly.

The URL will look very different
if you run this page locally rather
than on a web server. It will likely
begin with file:/// rather than
with http://.

= ——
page title: TravelWorthy
page address: http://javascriptbook.com/code/coa/document-object.htmi
last modified: 03/10/2014 14:46:23

FUNCTIONS, METHODS & OBJECTS @

GLOBAL OBJECTS:
STRING OBJECT

Whenever you have a value that is a string, you can use the properties
and methods of the String object on that value. This example stores the
phrase "Home sweet home " in a variable.

var saying = 'Home sweet home ';

These properties and methods PROPERTY DESCRIPTION

are often used to work with text

i i 4 length Returns number of characters in the string

in most cases (see note bottom-left)

On the right-hand page, note
how the variable name (saying) METHOD DESCRIPTION

is followed by a dot, then the

propertyior method that isbelng toUpperCase() Changes string to uppercase characters

demonstrated (like the name of toLowerCase() Changes string to lowercase characters
an object is followed by a dot
and its properties or methods). charAt () Takes an index number as a parameter, and returns

the character found at that position

This is why the String object is Returns index number of the first time a character or

known asr both a global object, index0f() set of characters is found within the string

because it works anywhere

within your script, and a wrapper lastIndex0f() Returns index number of the last time a character or
object because it acts like a set of characters is found within the string

wrapper around any value that

; : : Returns characters found between two index
is a string - you can use this

numbers where the character for the first index

object's propertie.s aml rtnethods Substringl) number is included and the character for the last

on any value that is a string. index number is not included

The Tength property counts When a character is specified, it splits the string

the number of "code units” in a split() each time it is found, then stores each individual part
string. In the majerity of cases, inan array

one character uses one code

unit, and most programmers use trim() Removes whitespace from start and end of string

it like this. But some of the rarely

used characters take up two Like find and replace, it takes one value that should
code units. replace() be found, and another to replace it (by default, it only

replaces the first match it finds)

FUNCTIONS, METHODS & OBJECTS

Each character in a string is automatically given a number, called an index
number. Index numbers always start at zero and not one (just like for
items in an array).

0O 00 600600000 O®OCO® O
EXAMPLE RESULT
saying.length; Home sweet home 16
EXAMPLE RESULT
saying.toUpperCase(); Home sweet home 'HOME SWEET HOME '
saying.tolowerCase(); Home sweet home 'home sweet home '
saying.charAt(12); Home sweet home ‘ol
saying.indexOf('ee'); Home sweet home 7
saying.lastIndexOf('e'); Home sweet home 14
saying.substring(8,14); Home sweet home 'et hom'
saying.split(' '); Home sweet home ['Home', 'sweet', 'home', '']
saying.trim(); Home sweet home '"Home sweet home'
saying.replace('me','w'); Home sweet home 'How sweet home '

FUNCTIONS, METHODS & OBJECTS

WORKING WITH STRINGS

This example demonstrates the
length property and many of the
string object's methods shown
on the previous page.

1. This example starts by storing
the phrase "Home sweet home "
in a variable called saying.

JAVASCRIPT

@ var

msg +=
msg +=
msg +=
Grmsg +=
msg +
msg
[msg

+ 4+
n 1

saying = 'Home sweet home ';
@ var msg = '<h2>length</h2><p>'
['<h2>uppercase</h2><p>'
'<h2>1owercase</h2><p>' +

2. The next line tells you how
many characters are in the string
using the Tength property of the
String object and stores the
result in a variable called msg.

3. This is followed by examples
showing several of the String
object's methods.

+ saying.length + '</p>';
+.

(:}{var el = document.getElementBylId('info');

el.innerHTML = msg;

—

f‘lf30\l FUNCTIONS, METHODS & OBJECTS

The name of the variable
(saying) is followed by a dot,
then the property or method that
is being demonstrated (in the
same way that the other objects
in this chapter used the dot
notation to indicate a property or
method of an object).

c03/js/string-object.js

saying.toUpperCase() + '</p>';
saying.toLowerCase() + '</p>';

‘<h2>character index: 12</h2><p>' + saying.charAt(12) + '</p>';
'<h2>first ee</h2><p>' + saying.indexOf('ee') + '</p>';

'<h2>1ast e</h2><p>' + saying.lastIndexOf('e') + '</p>';

= '<h2>character index: 8-14</h2><p>' + saying.substring(8, 14) + '</p>';
'‘<h2>replace</h2><p>" + saying.replace('me', 'w') + '</p>';

4. The final two lines select the
element with an id attribute
whose value is info and then
add the value of the msg variable
inside that element.

(Remember, security issues with
using the innerHTML property
are discussed on p228.)

DATA TYPES REVISITED

In JavaScript there are six data types:

Five of them are described as simple (or primitive) data types.
The sixth is the object (and is referred to as a complex data type).

SIMPLE OR PRIMITIVE DATA TYPES
JavaScript has five simple (or primitive) data types:

1. String

2.Number

3. Boolean

4,Undefined (a variable that has been declared, but
no value has been assigned to it yet)

5. Null (a variable with no value - it may have had
one at some point, but no longer has a value)

As you have seen, both the web browser and the
current document can be modeled using objects
(and objects can have methods and properties).

But it can be confusing to discover that a simple
value (like a string, a number, or a Boolean) can have
methods and properties. Under the hood, JavaScript
treats every variable as an object in its own right.

String: If a variable, or the property of an object,
contains a string, you can use the properties and
methods of the String object on it.

Number: If a variable, or property of an object,
stores a number, you can use the properties and
methods of the Number object on it (see next page).

Boolean: There is a Boolean object. It is rarely used.

(Undefined and null values do not have objects.)

COMPLEX DATA TYPE

JavaScript also defines a complex data type:
6.0bject

Under the hood, arrays and functions are considered
types of objects.

ARRAYS ARE OBJECTS

As you saw on p118, an array is a set of key/value
pairs (just like any other object). But you do not
specify the name in the key/value pair of an array - it
is an index number.

Like other objects, arrays have properties and
methods. On p72 you saw that arrays have a
property called 1ength, which tells you how many
items are in that array. There is also a set of methods
you can use with any array to add items to it, remove
items from it, or reorder its contents. You will meet
those methods in Chapter 12.

FUNCTIONS ARE OBJECTS

Technically, functions are also objects. But they
have an additional feature: they are callable, which
means you can tell the interpreter when you want to
execute the statements that it contains.

FUNCTIONS, METHODS & OBJECTS @

GLOBAL OBJECTS:
NUMBER OBJECT

Whenever you have a value that is a number,
you can use the methods and properties of the
Number object on it.

These methods are helpful Many calculations involving Or, in an animation, you might
when dealing with a range of currency (such as tax rates) will want to specify that certain
applications from financial need to be rounded to a specific elements should be evenly
calculations to animations. number of decimal places. spaced out across the page.
METHOD DESCRIPTION

isNaN() Checks if the value is not a number

toFixed() Rounds to specified number of decimal places (returns a string)
toPrecision() Rounds to total number of places (returns a string)
toExponential() Returns a string representing the number in exponential notation

COMMONLY USED TERMS:

@ Aninteger is a whole number (not a fraction).

® A real number is a number that can contain a fractional part.

@ A floating point number is a real number that uses decimals to represent a fraction. The term floating point
refers to the decimal point.

® Scientific notation is a way of writing numbers that are too big or too small to be conveniently written in
decimal form. For example: 3,750,000,000 can be represented as 3.75 x 109 or 3.75e+12.

@ FUNCTIONS, METHODS & OBJECTS

WORKING WITH
DECIMAL NUMBERS

As with the String object, the 1. In this example, a number In both cases, you need to
properties and methods of the is stored in a variable called indicate how many digits
Number object can be used with originalNumber, and it is then you want to round to. This is
with any value that is a number. rounded up or down using two provided as a parameter in the
different techniques. parentheses for that method.

JAVASCRIPT c03/js/number-object.js

(O var originalNumber = 10.23456;
3 decimol Placts
|—v_ar' msg = '<h2>original number</h2><p>' + originalNumber + '</p>';
@ msg += '<h2>bekixed()</h2><p>' + originalNumber.toFixed(3); + '</p>';
(® msg += '<h2>iePreeisten()</h2><p>' + originalNumber.toPrecision(3) + '</p>';
var el = document.getElementById('info');
‘e].innerHTML = Msg; 3 A‘ng't‘rs

i e ined
2.originalNumber.toFixed(3)

will round the number stored
in the variable originalNumber
to three decimal places. (The
origina] number num*f)?r o_f decimal places is

i specified in the parentheses.)
It will return the number as a
string. It returns a string because
fractions cannot always be
accurately represented using
floating point numbers.

2. toPrecision(3) uses the
number in parentheses to
indicate the total number of
digits the number should have.
It will also return the number
as a string. (It may returna
scientific notation if there are
more digits than the specified
number of positions.)

P
FUNCTIONS, METHODS & OBJECTS {‘@

GLOBAL OBJECTS:

MATH OBJECT

The Math object has properties and methods
for mathematical constants and functions.

PROPERTY DESCRIPTION
Math.PI Returns pi (approximately 3.14159265359)
METHOD DESCRIPTION

Math.round()

Rounds number to the nearest integer

Math.sqrt(n)

Returns square root of positive number, e.g., Math.sqrt (9) returns 3

Math.ceil()

Rounds number up to the nearest integer

Math.floor()

Rounds number down to the nearest integer

Math.random()

Because it is known as a global
object, you can just use the
name of the Math object followed
by the property or method you
want to access.

Generates a random number between 0 (inclusive) and 1 (not inclusive)

Typically you will then store the
resulting number in a variable.
This object also has many
trigonometric functions such as
sin(), cos(), and tan().

FUNCTIONS, METHODS & OBJECTS

The trigonometric functions
return angles in radians which
can then be converted into
degrees if you divide the number
by (pi/ 180).

MATH OBJECT TO CREATE
RANDOM NUMBERS

This example is designed to To get a random whole number The floor() method is used
generate a random whole between 1and 10, you need to to specifically round a number
number between 1and 10. multiply the randomly generated down (rather than up or down).
number by 10.
The Math object’s random() This will give you a value
method generates a random This number will still have many between O and 9. You then add
number between O and 1 (with decimal places, so you can round 1to make it a number between 1
many decimal places). it down to the nearest integer. and 10.

JAVASCRIPT c03/js/math-object.js

var randomNum = Math.floor((Math.random() * 10) + 1);

var el = document.getElementById('info');
el.innerHTML = '<h2>random number</h2><p>' + randomNum + '</p>"';

If you used the round () method
RESULT
- instead of the floor() method,

the numbers 1 and 10 would

be chosen around half of the
number of times that 2-9 would
be chosen.

Anything between 1.5 and 1.999
would get rounded up to 2, and
anything between 9 and 9.5
would be rounded down to 9.

Using the floor() method
ensures that the number is
always rounded down to the
nearest integer, and you can
then add 1to ensure the number
is between 1and 10.

FUNCTIONS, METHODS & OBJECTS @

CREATING AN INSTANCE
OF THE DATE OBJECT

In order to work with dates, you create an instance of the Date object.
You can then specify the time and date that you want it to represent.

To create a Date object, use the Date() object
constructor. The syntax is the same for creating any
object with a constructor function (see p108).

You can use it to create more than one Date object.

VARIABLE NAME

By default, when you create a Date object it will hold
today's date and the current time. If you want it to
store another date, you must explicitly specify the
date and time you want it to hold.

NEW KEYWORD

l_]_ll_J__I

—

VARIABLE DECLARATION

ASSIGNMENT
OPERATOR

You can think of the above as creating a variable
called today that holds a number. This is because
in JavaScript, dates are stored as a number:
specifically the number of milliseconds since
midnight on January 1, 1970.

Note that the current date / time is determined by
the computer's clock. If the user is in a different
time zone than you, their day may start earlier or
later than yours. Also, if the internal clock on their
computer has the wrong date or time, the Date
object could reflect this by holding the wrong date.

FUNCTIONS, METHODS & OBJECTS

var today T new Date();

L—]_l

DATE OBJECT CONSTRUCTOR

The Date() object constructor tells the JavaScript
interpreter that this variable is a date, and this in turn
allows you to use the Date object's methods to set
and retrieve dates and times from this Date object
(see right-hand page for a list of methods).

You can set the date and/or time using any of the
following formats (or methods shown on the right):

var dob = new Date(1996, 11, 26, 15, 45, 55);
var dob = new Date('Dec 26, 1996 15:45:55');
var dob = new Date(1996, 11, 26);

I

n

|

GLOBAL OBJECTS:
DATE OBJECT (AND TIME)

Once you have created a Date object, the following methods let you set
and retrieve the time and date that it represents.

METHOD DESCRIPTION
getDate() setDate() Returns / sets the day of the month (1-31)
getDay() Returns the day of the week (0-6)
getFullYear() setFullYear() Returns / sets the year (4 digits)
getHours () setHours() Returns / sets the hour (0-23)
getMilliseconds() setMilliseconds() Returns/ sets the milliseconds (0-999)
getMinutes () setMinutes() Returns / sets the minutes (0-59)
getMonth() setMonth() Returns / sets the month (0-11)
getSeconds () setSeconds () Returns / sets the seconds (0-59)
Number of milliseconds since January 1, 1970,
getTime() setTime() 00:00:00 UTC (Coordinated Universal Time)
and a negative number for any time before
getTimezoneOffset() Returns time zone offset in mins for locale
toDateString() Returns “date” as a human-readable string
toTimeString() Returns “time" as a human-readable string
toString() Returns a string representing the specified date

The toDateString() method
will display the date in the
following format:

Wed Apr 16 1975.

toTimeString() shows the time.
Several programming languages
specify dates in milliseconds
since midnight on Jan 1, 1970.
This is known as Unix time.

The Date object does not store
the names of days or months as
they vary between languages.

Instead, it uses a number from
0 to 6 for the days of the week
and 0 to 11 for the months.

If you want to display the date in
another way, you can construct
a different date format using the
individual methods listed above
to represent the individual parts:
day, date, month, year.

A visitor's location may affect
time zones and language spoken.
Programmers use the term
locale to refer to this kind of
location-based information.

To show their names, you need
to create an array to hold them
(see pl43).

FUNCTIONS, METHODS & OBJECTS @

CREATING A DATE OBJECT

1. In this example, a new Date
object is created using the
Date() object constructor

It is called today.

JAVASCRIPT

(® var today = new Date();

If you do not specify a date
when creating a Date object, it
will contain the date and time
when the JavaScript interpreter
encounters that line of code.

(@ var year = today.getFullYear();

@_[var el = document.getElementByld('footer');

el.innerHTML = '<p>Copyright ©' + year + '</p>';

Copyright ©2014

FUNCTIONS, METHODS & OBJECTS

Once you have an instance of the
Date object (holding the current
date and time), you can use any
of its properties or methods.

c03/js/date-object.js

2, In this example, you can see
that getFullYear() is used to
return the year of the date being
stored in the Date object.

3. In this case, it is being used
to write the current year in a
copyright statement.

WORKING WITH
DATES & TIMES

To specify a date and time, you The order and syntax for this is:

can use this format: Year four digits
Month 0-11 (Janis 0)

YYYY, MM, DD, HH, MM, SS Day 1-31

1996, 04, 16, 15, 45, 55 Hour 0-23

Minutes 0-59
Seconds 0-59
Milliseconds 0-999

This represents 3:45pm and 55
seconds on April 16, 1996,

JAVASCRIPT

var today = new Date();

var year = today.getFullYear();

var est = new Date('Apr 16, 1996 15:45:55');

var difference = today.getTime() - est.getTime();
difference = (difference / 31556900000);

©E

var elMsg = document.getElementById('message');

Another way to format the date
and time is like this:

MMM DD, YYYY HH:MM:SS
Apr 16, 1996 15:45:55

You can omit the time portion if
you do not need it.

c03/js/date-object-difference.js

elMsg.textContent = Math.floor(difference) + ' years of online travel advice';

1. In this example, you can see a
date being set in the past.

2. If you try to find the difference
between two dates, you will end
up with a result in milliseconds.

3. To get the difference in
days/weeks/years, you divide
this number by the number of
milliseconds in a day/week/year.

Here the number is divided by
31,556,900,000 - the number
of milliseconds in a year (that is
not a leap year).

FUNCTIONS, METHODS & OBJECTS '439

latest hotel offer

PARK

24000

rate when yo

EXAMPLE

FUNCTIONS,
METHODS & OBJECTS

This example is split into two parts. The first
shows you the details about the hotel, room
rate, and offer rate. The second part indicates
when the offer expires.

All of the code is placed inside an immediately invoked function
expression (IIFE) to ensure any variable names used in the script do not
clash with variable names used in other scripts.

The first part of the script creates a hotel object; it has three properties
(the hotel name, room rate, and percentage discount being offered), plus
a method to calculate the offer price which is shown to the user.

The details of the discount are written into the page using information
from this hotel object. To ensure that the discounted rate is shown with
two decimal places (like most prices are shown) the . toFixed() method
of the Number object is used.

The second part of the script shows that the offer will expire in seven
days. It does this using a function called offerExpires(). The date
currently set on the user's computer is passed as an argument to the
offerExpires() function so that it can calculate when the offer ends.

Inside the function, a new Date object is created; and seven days is
added to today's date. The Date object represents the days and months
as numbers (starting at 0) so - to show the name of the day and month -
two arrays are created storing all possible day and month names. When
the message is written, it retrieves the appropriate day/month from
those arrays.

The message to show the expiry date is built up inside a variable called
expiryMsg. The code that calls the of ferExpires() function and
displays the message is at the end of the script. It selects the element
where the message should appear and updates its content using the
innerHTML property, which you will meet in Chapter 5.

FUNCTIONS, METHODS & OBJECTS

EXAMPLE

FUNCTIONS, METHODS & OBJECTS

ct3/ s exanple. s

/* The script is placed inside an immediately invoked function expression
which helps protect the scope of variables */

(function() {
// PART ONE: CREATE HOTEL OBJECT AND WRITE OUT THE OFFER DETAILS

// Create a hotel object using object literal syntax
var hotel = {
name: 'Park',
roomRate: 240, // Amount in dollars
discount: 15, // Percentage discount
offerPrice: function() {
var offerRate = this.roomRate * ((100 - this.discount) / 100);
return offerRate;
}
}

// Write out the hotel name, standard rate, and the special rate
var hotelName, roomRate, specialRate; // Declare variables

hotelName = document.getElementById('hotelName'); // Get elements
roomRate = document.getElementById('roomRate');
specialRate = document.getElementById('specialRate');

hotelName.textContent = hotel.name; // Mrite hotel name
roomRate.textContent = '$' + hotel.roomRate.toFixed(2); // Write room rate
specialRate.textContent = '$§' + hotel.offerPrice(); // Write offer price

If you read the comments in the code, you can see how this example works.

FUNCTIONS, METHODS & OBJECTS

EXAMPLE

EUNC FIONS, METHCODS & OBJEC IS

JAVASCRIPT c03/js/example.js

// PART TWO: CALCULATE AND WRITE OUT THE EXPIRY DETAILS FOR THE OFFER

var expiryMsg; // Message displayed to users

var today; // Today's date

var elEnds; // The element that shows the message about the offer ending

function offerExpires(today) {

// Declare variables within the function for local scope

var weekFromToday, day, date, month, year, dayNames, monthNames;

// Add 7 days time (added in milliseconds)

weekFromToday = new Date(today.getTime() + 7 * 24 * 60 * 60 * 1000);

// Create arrays to hold the names of days / months

dayNames = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday',
© 'Friday', 'Saturday'];

monthNames = ['January', 'February', 'March', 'April', 'May', 'June',
© 'July', 'August', 'September', 'October', 'November', 'December'];

// Collect the parts of the date to show on the page

day = dayNames[weekFromToday.getDay()];

date = weekFromToday.getDate();

month = monthNames[weekFromToday.getMonth()];

year = weekFromToday.getFullYear();

// Create the message

expiryMsg = 'Offer expires next ';

expiryMsg += day + '
(' + date + ' ' + month + ' ' + year + ')';
return expiryMsg;
}
today = new Date(); // Put today's date in variable
elEnds = document.getElementById('offerEnds'); // Get the offerEnds element
elEnds.innerHTML = offerExpires(today); // Add the expiry message
// Finish the immediately invoked function expression
10)s
© This symbol indicates that This is a good demonstration of several concepts relating to date, but if
the code is wrapping from the the user has the wrong date on their computer (perhaps their clock is set
previous line and should not incorrectly), it will not show a date seven days from now - it will show a
contain line breaks. date seven days from the time the computer thinks it is.

FUNCTIONS, METHODS & OBJECTS

SUMMARY

FUNCTIONS, METHODS & OBJECTS

@ FUNCTIONS, METHODS & OBJECTS

Looking at a flowchart (for all but the most basic scripts),
the code can take more than one path, which means the
browser runs different code in different situations. In this
chapter, you will learn how to create and control the flow of
data in your scripts to handle different situations.

Scripts often need to behave differently depending upon how the user interacts with the web
page and/or the browser window itself. To determine which path to take, programmers often
rely upon the following three concepts:

EVALUATIONS

You can analyze values in
your scripts to determine
whether or note they
match expected results.

DECISIONS & LOOPS

DECISIONS

Using the results of
evaluations, you can
decide which path your
script should go down.

LOOPS

There are also many
occasions where you will
want to perform the same
set of steps repeatedly.

mathia ¥ iy
- et { (T &

I——

- ——

EUWLLsEYIEL

TARGET FRACTICE FOH YOUR MING

0 0 3 R

1+
2
3.
LTS
5+
B
7+
L K2
R
1 3

DECISIONS & LOOPS

DECISION MAKING

There are often several places in a script where decisions are made that
determine which lines of code should be run next. Flowcharts can help
you plan for these occasions.

In a flowchart, the diamond shape represents a In order to determine which path to take, you set
point where a decision must be made and the code a condition. For example, you can check that one
can take one of two different paths. Each pathis value is equal to another, greater than another, or
made up of a different set of tasks, which means less than another. If the condition returns true, you
you have to write different code for each situation. take one path; if it is false, you take another path.

Is test score
greater than
507?

Message: Try again... Message: You passed!

[CONTINUE SCRIPT...

In the same way that there are operators to do basic Examples of comparison operators include the
math, or to join two strings, there are comparison greater than (=) and less than (<) symbols, and
operators that allow you to compare values and test double equals sign (==) which checks whether two
whether a condition is met or not. values are the same.

DECISIONS & LOOPS

EVALUATING CONDITIONS &
CONDITIONAL STATEMENTS

There are two components to a decision:
1: An expression is evaluated, which returns a value
2: A conditional statement says what to do in a given situation

EVALUATION OF A CONDITION CONDITIONAL STATEMENTS

In order to make a decision, your code checks A conditional statement is based on a concept of

the current status of the script. This is commonly if/then/else; if a condition is met, then your code

done by comparing two values using a comparison executes one or more statements, else your code

operator which returns a value of true or false. does something different (or just skips the step).
CONDITION

| ' , WHAT THIS IS SAYING:
1 f (score > 50) { if the condition returns true
document.wr.ite(1 YOU passed! 1) ; execute the statements between

the first set of curly brackets

} 91 se { otherwise
document wr.i te (1 Try aga.‘ n 1) . execute the statements between

s the second set of curly brackets

(You will also meet truthy and
falsy values on p167. They are
treated as if true or false.)

You can also multiple conditions by combining two Over the next few pages, you will meet several

or more comparison operators. For example, you permutations of the if. .. statements, and also a
can check whether two conditions are both met, statement called a switch statement. Collectively,
or if just one of several conditions is met. these are known as conditional statements.

DECISIONS & LOOPS

COMPARISON OPERATORS:
EVALUATING CONDITIONS

You can evaluate a situation by comparing one value in the script to what
you expect it might be. The result will be a Boolean: true or false.

IS EQUAL TO

This operator compares two values (numbers,
strings, or Booleans) to see if they are the same.

'Hello"' == 'Goodbye' returns false
because they are not the same string.
'Hello' == "Hello' returns true

because they are the same string.

It is usually preferable to use the strict method:
—— —— —
I .

STRICT EQUAL TO

This operator compares two values to check that
both the data type and value are the same.

'3" === Jreturns false

because they are not the same data type or value.
'3" === '3' returns true

because they are the same data type and value.

DECISIONS & LOOPS

IS NOT EQUAL TO

This operator compares two values (numbers,

strings, or Booleans) to see if they are not the same.

"Hello' != 'Goodbye' returns true
because they are not the same string.
'Hello' != 'Hello' returns false

because they are the same string.

It is usually preferable to use the strict method:

STRICT NOT EQUAL TO

This operator compares two values to check that
both the data type and value are not the same.

'3' I== 3returns true

because they are not the same data type or value.
'3" I== '3' returns false

because they are the same data type and value.

Programmers refer to the testing or checking of a
condition as evaluating the condition. Conditions
can be much more complex than those shown here,
but they usually result in a value of true or false.

>

GREATER THAN

This operator checks if the number on the left is
greater than the number on the right.

4 > 3returns true
3 > 4returns false

> =

GREATER THAN OR EQUAL TO

This operator checks if the number on the left is
greater than or equal to the number on the right.

4 >= 3returns true
3 >= 4returns false
3 >= 3returns true

There are a couple of notable exceptions:

i) Every value can be treated as true or false even if it
is not a Boolean true or false value (see p167).

i) In short-circuit evaluation, a condition might not
need to run (see p169).

L

LESS THAN

This operator checks if the number on the left is less
than the number on the right.

4 < 3returns false
3 < 4returns true

-

LESS THAN OR EQUAL TO

This operator checks if the number on the left is less
than or equal to the number on the right.

4 <= 3returns false
3 <= 4returns true
3 <= 3returns true

DECISIONS & LOOPS @

STRUCTURING
COMPARISON OPERATORS

In any condition, there is usually one operator and two operands.
The operands are placed on each side of the operator. They can be
values or variables. You often see expressions enclosed in brackets.

ENCLOSING BRACKETS
l

(score >= pass)

OPERAND COMPARISON OPERAND

OPERATOR
If you remember back to Chapter 2, thisis an The enclosing brackets are important when the
example of an expression because the condition expression is used as a condition in a comparison
resolves into a single value: in this case it will be operator. But when you are assigning a value to a
either true or false. variable, they are not needed (see right-hand page).

@ DECISIONS & LOOPS

USING

COMPARISON OPERATORS

JAVASCRIPT c04/js/comparison-operator.js

var pass = 50; // Pass mark
var score = 90; // Score

// Check if the user has passed
var hasPassed = score >= pass;

// Write the message into the page
var el = document.getElementById('answer');
el.textContent = 'Level passed: ' + hasPassed;

Level passed: true

At the most basic level, you can
evaluate two variables using a
comparison operator to return a
true or false value.

In this example, a user is taking a
test, and the script tells the user
whether they have passed this
round of the test.

The example starts by setting
two variables:

1. pass to hold the pass mark

2. score to hold the users score

To see if the user has passed,

a comparison operator checks
whether score is greater than or
equal to pass. The result will be
true or false, and is stored in

a variable called hasPassed. On
the next line, the result is written
to the screen.

The last two lines select the
element whose 1id attribute

has a value of answer, and then
updates its contents. You will
learn more about this technique
in the next chapter.

DECISIONS & LOOPS @

USING EXPRESSIONS WITH
COMPARISON OPERATORS

The operand does not have to be a single value or variable name.
An operand can be an expression (because each expression evaluates
into a single value).

ENCLOSING BRACKETS
|

((scorel + score2) > (highScorel + highScore2))

L] | L]
I I
OPERAND COMPARISON OPERAND
OPERATOR

DECISIONS & LOOPS

COMPARING
TWO EXPRESSIONS

In this example, there are two The script starts by storing the The comparison operator checks
rounds to the test and the user's scores for each round if the user's total score is greater
code will check if the user has in variables. Then the highest than the highest score for the
achieved a new high score, scores for each round are stored test and stores the resultin a
beating the previous record. in two more variables. variable called comparison.
c04/js/comparison-operator-continued.js
var scorel = 90; // Round 1 score
var score2 = 95; // Round 2 score

var highScorel
var highScore2

75; // Round 1 high score
95; // Round 2 high score

// Check if scores are higher than current high scores
var comparison = (scorel + score2) > (highScorel + highScore2);

// Write the message into the page
var el = document.getElementById('answer');
el.textContent = 'New high score: ' + comparison;

RESULT In the comparison operator, the
operand on the left calculates

the user's total score. The
operand on the right adds
together the highest scores for
el T each round. The result is then
New hlghscore: true added to the page.

When you assign the result of
the comparison to a variable,
you do not strictly need the
containing parentheses (shown
in white on the left-hand page).

Some programmers use them
anyway to indicate that the code
evaluates into a single value.
Others only use containing
parentheses when they form
part of a condition.

DECISIONS & LOOPS @

LOGICAL OPERATORS

Comparison operators usually return single values of true or false.
Logical operators allow you to compare the results of more than one
comparison operator.

Do expression 1and expression 2 both evaluate to true?
false

EXPRESSION 3

((5 < 2) 88 (2 > 3))

| |
LOGICAL

EXPRESSION1 OPERATOR EXPRESSION 2
Is five less than two? Is two greater than or equal to three?
false false
In this one line of code are three expressions, each The third expression uses a logical operator (rather
of which will resolve to the value true or false. than a comparison operator). The logical AND
operator checks to see whether both expressions on
The expressions on the left and the right both use either side of it return true (in this case they do not,
comparison operators, and both return false. so it evaluates to false).

DECISIONS & LOOPS

&&

LOGICAL AND

This operator tests more than
one condition.

((2 < 5) 8& (3 >=2))
returns true

If both expressions evaluate to
true then the expression returns
true. If just one of these returns
false, then the expression will
return false.

true && true returns true
true 8& false returns false
false && true returns false
false && false returns false

LOGICAL OR

This operator tests at least one
condition.

((2<5) || (2<1))

returns true

If either expression evaluates
to true, then the expression
returns true. If both return
false, then the expression will
return false.

true || true returns true
true || false returns true
false || true returns true
false || false returns false

®
LOGICAL NOT

This operator takes a single
Boolean value and inverts it.

1(2 < 1)
returns true

This reverses the state of an
expression. If it was false
(without the ! before it) it would
return true. If the statement
was true, it would return false.

Itrue returns false
1false returns true

SHORT-CIRCUIT EVALUATION

Logical expressions are
evaluated left to right.

If the first condition can provide
enough information to get the
answer, then there is no need to
evaluate the second condition.

false && anything

~

it has found a false

There is no point continuing to
determine the other result.
They cannot both be true.

true || anything
it has found a true
There is no point continuing

because at least one of the
values is true.

DECISIONS & LOOPS @

USING LOGICAL AND

In this example, a math test The logical AND is used to see The example finishes off by
has two rounds. For each round if the user's score is greater letting the user know whether
there are two variables: one than or equal to the pass mark or not they have passed both
holds the user's scare for that in both of the rounds of the test. rounds.

round; the other holds the pass The result is stored in a variable

mark for that round. called passBoth.

c04/js/1ogical-and. js

var scorel = 8; // Round 1 score
var score2 = 8; // Round 2 score
var passl = 63 // Round 1 pass mark
var pass2 = 6; // Round 2 pass mark

// Check whether user passed both rounds, store result in variable
var passBoth = (scorel >= passl) && (score2 >= pass2);

// Create message
var msg = 'Both rounds passed: ' + passBoth;

// Write the message into the page
var el = document.getElementById('answer');
el.textContent = msg;

It is rare that you would ever
RESULT
write the Boolean result into the -

page (like we are doing here).
As you will see later in the
chapter, it is more likely that you
would check a condition, and if it
is true, run other statements.

DECISIONS & LOOPS

USING LOGICAL OR
& LOGICAL NOT

Here is the same test but this Look at the numbers stored in Next, the message is stored
time using the logical OR operator the four variables at the start in a variable called msg. At the
to find out if the user has passed of the example. The user has end of the message, the logical
at least one of the two rounds. passed both rounds, so the NOT will invert the result of the
If they pass just one round, they minPass variable will hold the Boolean variable so it is false.
do not need to retake the test. Boolean value of true. It is then written into the page.

JAVASCRIPT c04/js/logical-or-logical-not.js

var scorel = 8 // Round 1 score
var score2 = 8; // Round 2 score
var passl = 6; // Round 1 pass mark
var pass2 = 6; // Round 2 pass mark

// Check whether user passed one of the two rounds, store result in variable
var minPass = ((scorel >= passl) || (score2 >= pass2));

// Create message
var msg = 'Resit required: ' + !(minPass);

// Write the message into the page
var el = document.getElementById('answer');
el.textContent = msg;

Resit required: false

DECISIONS & LOOPS

IF STATEMENTS

The i f statement evaluates (or checks) a condition. If the condition
evaluates to true, any statements in the subsequent code block are

executed.
OPENING
KEYWORD CONDITION CURLY BRACE
I I By : 1 |
if (score >= 50) {
congratulate();
9
1]
} |
CODE TO EXECUTE IF VALUE IS TRUE
CLOSING
CURLY BRACE
If the condition evaluates to true, the following If the condition resolves to false, the statements in
code block (the code in the next set of curly braces) that code block are not run. (The script continues to
is executed. run from the end of the next code block.)

DECISIONS & LOOPS

USING IF STATEMENTS

var score = 75;
var msg;

c04/js/if-statement.js

// Score
// Message

if (score >= 50) { // If score is 50 or higher
msg = 'Congratulations!';
msg += ' Proceed to the next round.';

}
var el = document.getElementById('answer');
el.textContent = msg;

Congratulations!
Proceed to the next
round.

JAVASCRIPT

var score = 75;
]

1

var msg = '';

c04/js/if-statement-with-function.js

// Score
// Message

function congratulate() {
msg += 'Congratulations! ';

}

if (score >= 50) { // If score is 50 or more
congratulate():
msg += 'Proceed to the next round.';
}
var el = document.getElementById('answer');
el.innerHTML = msg;

©O

In this example, the i f statement
is checking if the value currently
held in a variable called score is
50 or more.

In this case, the statement
evaluates to true (because the
score is 75, which is greater than
50). Therefore, the contents

of the statements within the
subsequent code block are

run, creating a message that
congratulates the user and tells
them to proceed.

After the code block, the
message is written to the page.

If the value of the score variable
had been less than 50, the
statements in the code block
would not have run, and the code
would have continued on to the
next line after the code block.

On the left is an alternative
version of the same example
that demonstrates how lines of
code do not always run in the
order you expect them to. If the
condition is met then:

1. The first statement in the code
block calls the congratulate()
function.

2. The code within the
congratulate() function runs.
3. The second line within the i f
statement's code block runs.

DECISIONS & LOOPS

IF...ELSE STATEMENTS

The if...else statement checks a condition.
If it resolves to true the first code block is executed.
If the condition resolves to false the second code block is run instead.

if (score >= 50) {
congratulate();

I
} CODE TO EXECUTE IF VALUE IS TRUE

else {
encourage();

|
} CODE TO EXECUTE IF VALUE IS FALSE

@ CONDITIONAL STATEMENT @ CONDITION @ IFCODEBLOCK @ ELSE CODE BLOCK

DECISIONS & LOOPS

JAVASCRIPT

var pass = 50;
var score = 75; // Current score

var msg; // Message

// Select message to write based on score

if (score >= pass) {

}
}

var el = document.getElementById('answer');

msg = 'Congratulations, you passed!’;

else {
msg = 'Have another go!';

el.textContent = msg;

HSING I LBl E
STATEMENTS

Here you can see that an

c04/js/if-else-statement.js
f3s/ if...else statement allows you

// Pass mark to provide two sets of code:

1. one set if the condition
evaluates to true

2. another set if the condition is
false

In this test, there are two
possible outcomes: a user can
either get a score equal to or
greater than the pass mark
(which means they pass), or
they can score less than the pass
mark (which means they fail).
One response is required for
each eventuality. The response is
then written to the page.

Note that the statements inside
an if statement should be
followed by a semicolon, but

Congratulations! ;
Proceed to the next there is no need to place one
' : after the closing curly brace of
round. the code blocks.
An if statement only runs a set of statements if the Anif...else statement runs one set of code if the

condition is true:

? Is score >= 507 ?

I
{ You passed!

J

continue script...

condition is true or a different set if it is false:

? Is score >= 50? ?

I I
Try again... You passed!

{ J

DECISIONS & LOOPS

SWITCH STATEMENTS

A switch statement starts with a switch (Tevel) {
variable called the switch value.
= - - I Eia
Each case indicates a possible case 'One’:
- ; . = 7
value for this variable and the title Level 13
code that should run if the break;
variable matches that value. o,
case 'Two':
title = 'Level 2';
Here, the variable named 1evel is the switch value. break s
If the value of the 1evel variable is the string One,
then the code for the first case is executed. If it is
Two, the second case is executed. If it is Three, the case 'Three':
third case is executed. If it is none of these, the code : e 1.
for the default case is executed. title = 'Level 3 2
break;
The entire statement lives in one code block (set
of curly braces), and a colon separates the option
from the statements that are to be run if the case default:
matches the switch value. title = 'Test' -
At the end of each case is the break keyword. It tells break ’
the JavaScript interpreter that it has finished with
this switch statement and to proceed to run any }
subsequent code that appears after it.
IF... ELSE SWITCH
® There is no need to provide an else ® You have adefault option that is run if
option. (You can just use an i f none of the cases match,
statement.) VS ® |f a match is found, that code is run; then
® With a series of if statements, they are " the break statement stops the rest of
all checked even if a match has been found the switch statement running (providing
(so it performs more slowly than switch). better performance than multiple i f

statements).

DECISIONS & LOOPS

USING SWITCH
STATEMENTS

dOAf3s]switch-statenent.fs | o+ oiE kel e iRCe
of the switch statementis to

var msg; // Message present the user \h.vith a diff.erent
var level = 2; // Level message depending on which
* level they are at. The message is

// Determine message based on level stored in a variable called msg.

switch (level
) The variable called 1evel

case 1:
msg = 'Good Tuck on the first test's contains a number indicating
breaks which level the user is on. This

is then used as the switch value.
case 2: (The switch value could also be

msg = 'Second of three - keep going!'; an expression.)

break;
In the following code block
case 3: (inside the curly braces), there
msg = 'Final round, almost there!'; are three options for what the
break: value of the Tevel variable might
be: the numbers 1, 2, or 3.
default:
msq = 'Good Tuck!'; If the value of the 1evel variable
break; ’ is the number 1, the value of the

} msg variable is set to ‘Good Tuck
on the first test'.

var el = document.getElementById('answer');

el.textContent = msg; If the value is 2, it will read:

‘Second of three - keep going!’

If the value is 3, the message
will read: 'Final round, almost

there!’

If no match is found, then the
value of the msg variable is set to

Second of three - 'Good Tuck!"

keep going!
Each case ends with the break
keyword which will tell the
JavaScript interpreter to skip
the rest of this code block and
continue onto the next.

DECISIONS & LOOPS

TYPE COERCION
& WEAK TYPING

If you use a data type JavaScript did not expect,
it tries to make sense of the operation rather
than report an error.

JavaScript can convert data DATA TYPE PURPOSE

types behind the scenes to string Text

complete an operation. This is

known as type coercion. For number Number

example, a string '1' could be Boolean true or false

converted to a number 1 in the

following expression: ('1' > 0). null Empty value

As a result, the above expression undefined Variable has been declared but not yet assigned a value

would evaluate to true.

JavaScript is said to use weak NaN is a value that is counted as a number. You may see it when a
typing because the data type number is expected, but is not returned, e.g., ('ten'/2) results in NaN.
for a value can change. Some

other languages require that you

specify what data type

each variable will be. They are

said to use strong typing.

Type coercion can lead to
unexpected values in your

code (and also cause errors).
Therefore, when checking if two
values are equal, it is considered
better to use strict equals
operators === and !==

rather than == and != as these
strict operators check that the
value and data types match.

DECISIONS & LOOPS

TRUTHY & FALSY

VALUES

Due to type coercion, every value in JavaScript
can be treated as if it were true or false; and
this has some interesting side effects.

FALSY VALUES

VALUE DESCRIPTION

var highScore = false; The traditional Boolean false

var highScore = 0; " The number zero

var h']ghSc.(.).;'.'.F:-""= by NaN (Not a Num r){

var highScore = 10/'score'; Empty valuai S

var highScore;

A variable with no value assigned to it

Almost everything else evaluates to truthy...

TRUTHY VALUES

VALUE DESCRIPTION

var highScore = true; The traditional Boolean true

var higﬁgcore = 1; Numbers other than zero
.\.'r.a.i';mb;%ghScoré. = Yearvotty Strings with C{;r.'n.tent

var highScore - 10/5; Number calculations

.\;‘ar highScore ;..“.;‘rue', tlr'ue wrsttenasastnng
var highScore = '0'; Zerowrittenasasting
var highScore = 'false's falsewrittenasastring

Falsy values are treated as if they
are false. The table to the left
shows a highScore variable with
a series of values, all of which
are falsy.

Falsy values can also be treated
as the number 0.

Truthy values are treated as if
they are true, Almost everything
that is not in the falsy table can
be treated as if it were true.

Truthy values can also be treated
as the number 1.

In addition, the presence of an
object or an array is usually
considered truthy, too. This is
commonly used when checking
for the presence of an element
in a page.

The next page will explain more
about why these concepts are
important. '

DECISIONS & LOOPS

CHECKING EQUALITY
& EXISTENCE

Because the presence of an object or array can
be considered truthy, it is often used to check
for the existence of an element within a page.

A unary operator returns a
result with just one operand.
Here youcanseean if
statement checking for the
presence of an element. If the
element is found, the result is
truthy, so the first set of code is
run. If it is not found, the second
set is run instead.

if (document.getElementById('header')) {

// Found: do something
} else {

// Not found: do something else

}

Those new to JavaScript often think the following would do the same:
if (document.getElementById('header') == true)

but document.getElementById('header') would return an object
which is a truthy value but it is not equal to a Boolean value of true.

Because of type coercion, the strict equality operators === and ! == result
in fewer unexpected values than == and ! = do.

If you use == the following values
can be considered equal:

false, 0,and '' (empty string).
However, they are not equivalent
when using the strict operators.

Although nul1 and undefined are
both falsy, they are not equal to
anything other than themselves.
Again, they are not equivalent
when using strict operators.

Although NaN is considered falsy,
it is not equivalent to anything;

it is not even equivalent to itself
(since NaN is an undefinable
number, two cannot be equal).

EXPRESSION RESULT EXPRESSION RESULT EXPRESSION RESULT
(false == 0) true (undefined == null) true (Nan == null) false
=== false T ==
(false 0) alse F——— yiti (NaN NaN) false
(false == '') true (undefined == false) false
(false === '') false (null == 0) false
(0 == ') —— (undefined == 0) false
(0 === "") false (undefined === null) false

DECISIONS & LOOPS

SHORT CIRCUIT VALUES

Logical operators are processed left to right.
They short-circuit (stop) as soon as they have a
result - but they return the value that stopped
the processing (not necessarily true or false).

On line 1, the variable artist is given a value of Rembrandt.

On line 2, if the variable artist has a value, then artistA will be

given the same value as artist (because a non-empty string is truthy).
var artist = 'Rembrandt’;

var artistA = (artist || 'Unknown');

If the string is empty (see below), artistA becomes a string 'Unknown'.
var artist = '';
var artistA = (artist || 'Unknown');

You could even create an empty object if artist does not have a value:

var artist = :
var artistA = (artist || {});

Here are three values. If any one of them is considered truthy, the code
inside the if statement will execute. When the script encounters valueB
in the logical operator, it will short circuit because the number 1is
considered truthy and the subsequent code block is executed.

valueA = 0;
valueB = 1;
valueC = 2;

if (valueA || valueB || valueC) {
// Do something here

}

This technique could also be used to check for the existence of elements
within a page, as shown on p168.

Logical operators will not always
return true or false, because:

@ They return the value that
stopped processing.

@ That value might have been
treated as truthy or falsy
although it was not a Boolean.

Programmers use this creatively
(for example, to set values for
variables or even create objects).

As soon as a truthy value is
found, the remaining options

are not checked. Therefore,
experienced programmers often:

® Put the code most likely
to return true first in OR
operations, and false answers
first in AND operations.

® Place the options requiring
the most processing power
last, just in case another
value returns true and they
do not need to be run.

DECISIONS & LOOPS

LOOPS

Loops check a condition. If it returns true, a code block will run.

Then the condition will be checked again and if it still returns true,

the code block will run again. It repeats until the condition returns false.
There are three common types of loops:

FOR

If you need to run code a specific
number of times, use a for loop.
(It is the most common loop.)

In a for loop, the condition is
usually a counter which is used
to tell how many times the loop
should run.

KEYWORD
|

WHILE

If you do not know how many
times the code should run, you
canuse a while loop. Here the
condition can be something
other than a counter, and the
code will continue to loop for as
long as the condition is true.

CONDITION (COUNTER)

DO WHILE

The do...while loopis very
similar to the while loop, but
has one key difference: it will
always run the statements
inside the curly braces at |east
once, even if the condition
evaluates to false.

OPENING
CURLY BRACE

1

for (var i

=0;

i< I
document.write(i):

} CODE TO EXECUTE DURING LOOP

CLOSING
CURLY BRACE

This is a for loop. The condition
is a counter that counts to ten.
The result would write
"0123456789" to the page.

DECISIONS & LOOPS

If the variable i is less than ten,
the code inside the curly braces
is executed. Then the counter is
incremented.

1++j E

The condition is checked again,
if 1 is less than ten it runs again.
The next three pages show how
this loop works in greater detail.

A for loop uses a counter as a condition.
This instructs the code to run a specified number of times.
Here you can see the condition is made up of three statements:

INITIALIZATION

Create a variable and set it to 0.
This variable is commonly called
i, and it acts as the counter.

var i = 03

The variable is only created the
first time the loop is run.

(You may also see the variable
called index, rather than just i.)

You will sometimes see this
variable declared before the
condition. The following is
the same and it is mainly a
preference of the coder.

var i;

for (i = 0; i < 10; i++) {
/! Code goes here

¥

CONDITION

The loop should continue to
run until the counter reaches a
specified number.

=< M

The value of i was initially set to
0, so in this case the loop will run
10 times before stopping.

The condition may also use a
variable that holds a number.
If a variable called rounds held
the number of rounds in a test
and the loop ran once for each
round, the condition would be:

var rounds = 3;
i < (rounds);

LOOP COUNTERS

UPDATE

Every time the loop has run the
statements in the curly braces, it
adds one to the counter.

i++

One is added to the counter
using the increment (++)
operator.

Another way of reading this is
that it says, "Take the variable
i, and add one using the ++
operator.”

Itis also possible for loops to
count downwards using the
decrement operator (--).

DECISIONS & LOOPS @

LOOPING

isO<]0? addﬂ:oo is1<10? add1to1

-‘

write to page:

write to page:

START i=0 i=1 i=2
The first time the loop is run, Every time the loop is run, the Then the code inside the loop

the variable i (the counter) is condition is checked. Is the (the statements between the

assigned a value of zero. variable i less than 107 curly brackets) is run.

@ DECISIONS & LOOPS

for (var i = 0; i < 10; i++) {
document.write(i);

is 8 < 10> is9 <107 add1to 9 is 10 < 105

write to page: write to page:

The variable i can be used When the statements have When the condition is no longer
inside the loop. Here it is used to finished, the variable i is true, the loop ends. The script
write a number to the page. incremented by 1. moves to the next line of code.

DECISIONS & LOOPS @

KEY LOOP CONCEPTS

Here are three points to consider when you
are working with loops. Each is illustrated in
examples on the following three pages.

KEYWORDS

You will commonly see these
two keywords used with loops:

break

This keyword causes the
termination of the loop and tells
the interpreter to go onto the
next statement of code outside
of the loop. (You may also see it
used in functions.)

continue

This keyword tells the interpreter
to continue with the current
iteration, and then check the
condition again. (If it is true, the
code runs again.)

DECISIONS & LOOPS

LOOPS & ARRAYS

Loops are very helpful when
dealing with arrays if you want to
run the same code for each item
in the array.

For example, you might want
to write the value of each item
stored in an array into the page.

You may not know how many
items will be in an array when
writing a script, but, when the
code runs, it can check the total
number of items in a loop. That
figure can then be used in the
counter to control how many
times a set of statements is run.

Once the loop has run the right
number of times, the loop stops.

PERFORMANCE ISSUES

It is important to remember
that when a browser comes
across JavaScript, it will stop
doing anything else until it has
processed that script.

If your loop is dealing with only
a small number of items, this
will not be an issue. If, however,
your loop contains a lot of items,
it can make the page slower to
load.

If the condition never returns
false, you get what is commonly
referred to as an infinite loop.
The code will not stop running
until your browser runs out of
memory (breaking your script).

Any variable you can define
outside of the loop and that
does not change within the loop
should be defined outside of it.
If it were declared inside the
loop, it would be recalculated
every time the loop ran,
needlessly using resources.

JAVASCRIPT

USING FOR LOOPS

c04/js/for-loop.js

var scores = [24, 32, 17]; // Array of scores
var arraylLength = scores.length;// Items in array
var roundNumber = 0; // Current round
var msg = ''; // Message

var i; // Counter

// Loop through the items in the array

for (i =

}

0; i < arraylLength; i++) {

// Arrays are zero based (so 0 is round 1)
// Add 1 to the current round

roundNumber = (i + 1);

// Write the current round to message
msg += 'Round ' + roundNumber + ': ';

// Get the score from the scores array
msg += scores[i] + '
';

document.getETementById('answer').innerHTML = msg;

Round 1: 24
Round 2: 32
Round 3: 17

The counter and array both start from 0 (rather than 1). So, within the loop,
to select the current item from the array, you use the counter variable i to
specify the item from the array, e.g., scores[i]. But remember that it is a
number lower then you might expect (e.g., first iteration is 0, second is 1).

A for loop is often used to loop
through the items in an array.

In this example, the scores for
each round of a test are stored in
an array called scores.

The total number of items in
the array is stored in a variable
called arrayLength. This
number is obtained using the
length property of the array.

There are three more variables:
roundNumber holds the round of
the test; msg holds the message
to display; i is the counter
(declared outside the loop).

The loop starts with the for
keyword, then contains the
condition inside the parentheses.
As long as the counter is less
than the total number of items

in the array, the contents of the
curly braces will continue to

run. Each time the loop runs, the
round number is increased by 1.

Inside the curly braces are rules
that write the round number and
the score to the msg variable. The
variables declared outside of the
loop are used within the loop.

The msg variable is then written
into the page. It contains HTML
so the innerHTML property is
used to do this. Remember,
p228 will talk about security
issues relating to this property.

DECISIONS & LOOPS @

USING WHILE LOOPS

Here is an example of awhile
loop. It writes out the 5 times
table. Each time the loop is run,
another calculation is written
into the variable called msg.

This loop will continue to run
for as long as the condition in
the parentheses is true. That
condition is a counter indicating
that, as long as the variable

i remains less than 10, the
statements in the subsequent
code block should run.

Inside the code block there are
two statements:

The first statement uses the +=
operator, which is used to add
new content to the msg variable.
Each time the loop runs, a new
calculation and line break is
added to the end of the message
being stored in it. So += works as
a shorthand for writing:

msg = msg + 'new msg'

(See bottom of the next page for
a breakdown of this statement.)

The second statement
increments the counter variable
by one. (This is done inside

the loop rather than with the
condition.)

When the loop has finished, the
interpreter goes to the next line
of code, which writes the msg
variable to the page.

DECISIONS & LOOPS

c04/js/while-Toop.js JAVASCRIPT

var i = 1; // Set counter to 1

(B}

var msg 5 // Message

// Store 5 times table in a variable

while (i < 10) {
msg ¥= i ¥ " x 5=t g (1 *86) » "abr 5%
i+t

}

document.getElementBylId('answer').innerHTML = msg;

1x5=5
2x5=10
3x 5elS
4x5=20
S5x85=25
6x5=30
1%x5=35
8x5=40
9x5=45

In this example, the condition specifies that the code should run nine
times. A more typical use of awhile loop would be when you do not
know how many times you want the code to run. It should continue to
run as long as a condition is met.

USING DO WHILE LOOPS

con/ix /o Te-Toop:ds The ?(ey difference betwe'en
awhileloop and adowhile
var i = 13 // Set counter to 1 loop is that the statements in
var msg = ''; // Message the code block come before the

condition. This means that those

// Store 5 times table in a variable “ateme”tsa’er”"?“GEWhether
do { or not the condition is met.

msg 4= 1 + ' x5=" 4 (i *5) + '<sbr [>';s

i+4s If you take a look at the
} while (i < 1); condition, it is checking that the
value of the variable called i is
less than 1, but that variable has
already been set to a value of 1.

// Note how this is already 1 and it still runs

document.getElementById('answer').innerHTML = msg;

Therefore, in this example the

result is that the 5 times table is
written out once, even though

the counter is not less than 1.

Some people like to write while
on a separate line from the
closing curly brace before it.

1x85=5

Breaking down the first statement in these examples:

4 5 6

: x5 = l+(1 * 5) %+?§'€br />,,

1. Take variable called msg 4. Write out the string x5 =
2. Add to the following to its value 5. The counter multiplied by 5
3. The number in the counter 6. Add a line break

DECISIONS & LOOPS @

e
=

~ W
-
i

TARGET PRACTICE FOR YOUR MIND

l+3=4
2+3=5
3+3=6
4+3=7
5+3=8
6+3=9
7+3=10
8+3=11
9+3=12
10+3=13

DECISIONS & LOOPS

EXAMPLE

DECISIONS & LOOPS

In this example, the user can either be shown
addition or multiplication of a given number.
The script demonstrates the use of both
conditional logic and loops.

The example starts with two variables:

1. number holds the number that the calculations will be performed with
(in this case it is the number 3)

2.operator indicates whether it should be addition or multiplication
(in this case it is performing addition)

Anif...elsestatement is used to decide whether to perform addition
or multiplication with the number. If the variable called operator has the
value addition, the numbers will be added together; otherwise they will
be multiplied.

Inside the conditional statement, a while loop is used to calculate the

results. It will run 10 times because the condition is checking whether
the value of the counter is less than 11.

DECISIONS & LOOPS

EXAMPLE

DECISIONS & LOOPS

c04/example.htm]

<!DOCTYPE html>
<html>
<head>
<title>Bullseye! Tutoring</title>
<link rel="stylesheet" href="css/c04.css" />
</head>
<body>
<section id="page2">
<h1>Bullseye</hl>

<section id="blackboard"></section>

</section>
<script src="js/example.js"></script>
</body>
</html>
The HTML for this example is very slightly different You can see the script is added to the page just
than the other examples in this chapter because before the closing </body> tag.

there is a blackboard which the table is written onto.

DECISIONS & LOOPS

EXAMPLE

DECISIONS & LOOPS

JAVASCRIPT c04/js/example.js

var table = 3; // Unit of table

var operator = 'addition'; // Type of calculation (defaults to addition)
var i = 1; // Set counter to 1

var msg = ''; // Message

if (operator 'addition') { // If the operator variable says addition

while (i < 11) { // While counter is less than 11
msg += i + ' + ' + table + ' = ' + (i + table) + '
'; // Calculation
by // Add 1 to the counter

}

} else { // Otherwise

while (i < 11) { // While counter is less than 11
msg += i + ' x ' + table + ' = ' + (i * table) + '
'; // Calculation
bt // Add 1 to the counter

}

}

// Write the message into the page
var el = document.getElementById('blackboard');
el.innerHTML = msg;

If you read the comments in the code, you can If you change the value of the operator variable

see how this example works. The script starts by to anything other than addition, the conditional

declaring four variables and setting values for them. statement will select the second set of statements.
These also contain a while loop, but this time it will

Then, an i f statement checks whether the value of perform multiplication (rather than addition).

the variable called operatoris addition. If itis, it

uses a while loop to perform the calculations and When one of the loops has finished running, the last

store the results in a variable called msg. two lines of the script select the element whose id

attribute has a value of blackboard, and updates the
the page with the content of the msg variable.

DECISIONS & LOOPS

SUMMARY

DECISIONS & LOOPS

DECISIONS & LOOPS

The Document Object Model (DOM) specifies

how browsers should create a model of an HTML

page and how JavaScript can access and update the
contents of a web page while it is in the browser window.

The DOM is neither part of HTML, nor part of JavaScript; it is a separate set of rules.
It is implemented by all major browser makers, and covers two primary areas:

MAKING A MODEL OF THE
HTML PAGE

When the browser loads a web page, it
creates a model of the page in memory.

The DOM specifies the way in which the

browser should structure this model using
a DOM tree.

The DOM is called an object model
because the model (the DOM tree) is
made of objects.

Each object represents a different part of
the page loaded in the browser window.

DOCUMENT OBJECT MODEL

ACCESSING AND CHANGING
THE HTML PAGE

The DOM also defines methods and
properties to access and update each
object in this model, which in turn updates
what the user sees in the browser.

You will hear people call the DOM an

Application Programming Interface (API).

User interfaces let humans interact with
programs; APls let programs (and scripts)
talk to each other. The DOM states what
your script can ask the browser about the
current page, and how to tell the browser
to update what is being shown to the user.

vl b 4

In each example of this

chapter

the JavaScript

v

will amend the HTML list

shown here. Colors are used
to convey the priority and
status of each list item:

THE DOM TREE IS A
MODEL OF A WEB PAGE

As a browser loads a web page, it creates a model of that page.
The model is called a DOM tree, and it is stored in the browsers’ memory.

It consists of four main types of nodes.

BODY OF HTML PAGE

<html>
<body>
<div id="page">

<hl id="header">List</hl>
<h2>Buy groceries</h2>

<1i id="one" class="hot">fresh figs</1i>
<1i id="two" class="hot">pine nuts</1i>

<1i id="three" class="hot">honey</1i>

<1i id="four">balsamic vinegar</1i>

</u]>

<script src="js/list.js"></script>

</div>
</body>
</html>

THE DOCUMENT NODE

Above, you can see the HTML code for a shopping
list, and on the right hand page is its DOM tree.
Every element, attribute, and piece of text in the
HTML is represented by its own DOM node.

At the top of the tree a document node is added; it
represents the entire page (and also corresponds to
the document object, which you first met on p36).

When you access any element, attribute, or text
node, you navigate to it via the document node, It is
the starting point for all visits to the DOM tree.

DOCUMENT OBJECT MODEL

ELEMENT NODES

HTML elements describe the structure of an HTML
page. (The <hl> - <h6> elements describe what
parts are headings; the <p> tags indicate where

paragraphs of text start and finish; and so on.)

To access the DOM tree, you start by looking for
elements. Once you find the element you want, then
you can access its text and attribute nodes if you
want to. This is why you start by learning methods
that allow you to access element nodes, before
learning to access and alter text or attributes.

Note: We will continue to use this list example
throughout this chapter and the next two chapters
so that you can see how different techniques allow
you to access and update the web page (which is
represented by this DOM tree).

Relationships between the document and all of
the element nodes are described using the same
terms as a family tree: parents, children, siblings,
ancestors, and descendants. (Every node is a
descendant of the document node.)

Each node is an object with methods and properties.
Scripts access and update this DOM tree (not the source HTML file).
Any changes made to the DOM tree are reflected in the browser.

DOM TREE document
|
htm]
[
body
|
div - attribute
|
| . | | [
hl — attribute h2 ul script — attribute
: ;
text text
|] | 1
1i — attribute 1i — attribute 1i — attribute 1i = attribute
| | |) |
text text text
em text
|
text
- ATTRIBUTE NODES TEXT NODES

The opening tags of HTML elements can carry
attributes and these are represented by attribute
nodes in the DOM tree.

Attribute nodes are not children of the element that’
carries them; they are part of that element. Once
you access an element, there are specific JavaScript
methods and properties to read or change that
element's attributes. For example, it is common to
change the values of class attributes to trigger new
CSS rules that affect their presentation.

Once you have accessed an element node, you
can then reach the text within that element. This is
stored in its own text node.

Text nodes cannot have children. If an element
contains text and another child element, the child
element is not a child of the text node but rather

a child of the containing element. (See the
element on the first <11> item.) This illustrates how
the text node is always a new branch of the DOM
tree, and no further branches come off of it.

DOCUMENT OBJECT MODEL

WORKING WITH
THE DOM TREE

Accessing and updating the DOM tree involves two steps:
1: Locate the node that represents the element you want to work with.
2: Use its text content, child elements, and attributes.

STEP 1; ACCESS THE ELEMENTS

Here is an overview of the methods and properties that access elements covered on p192 - p211.
The first two columns are known as DOM queries. The last column is known as traversing the DOM.

SELECT AN INDIVIDUAL
ELEMENT NODE

Here are three common ways to
select an individual element:

getElementById()

Uses the value of an element'’s
id attribute (which should be
unique within the page).

See p195

querySelector()

Uses a CSS selector, and returns
the first matching element.

See p202

You can also select individual
elements by traversing from one
element to another within the
DOM tree (see third column).

DOCUMENT OBJECT MODEL

SELECT MULTIPLE
ELEMENTS (NODELISTS)

There are three common ways to
select multiple elements.

getElementsByClassName()
Selects all elements that have
a specific value for their class
attribute.

See p200

getElementsByTagName()
Selects all elements that have the
specified tag name.

See p201

querySelectorAll()

Uses a CSS selector to select all
matching elements.

See p202

TRAVERSING BETWEEN
ELEMENT NODES

You can move from one element
node to a related element node.

parentNode

Selects the parent of the current
element node (which will return
just one element).

See p208

previousSibling / nextSibling
Selects the previous or next
sibling from the DOM tree.

See p210

firstChild /TastChild

Select the first or last child of the
current element.

See p211

Throughout the chapter you will see notes where DOM methods only work in certain browsers or are buggy.
Inconsistent browser support for the DOM was a key reason why jQuery became so popular.

The terms elements and element nodes are used interchangeably
but when people say the DOM is working with an element,
it is actually working with a node that represents that element.

STEP 2: WORK WITH THOSE ELEMENTS

Here is an overview of methods and properties that work with the elements introduced on p186.

ACCESS / UPDATE
TEXT NODES

1i — attribute

Lo

The text inside any element is

stored inside a text node. To

access the text node above:

1. Select the <1i> element

2.Use the firstChild property
to get the text node

3. Use the text node's only
property (nodeValue) to get
the text from the element

nodeValue

This property lets you access or
update contents of a text node.
See p214

The text node does not include
text inside any child elements.

WORK WITH HTML
CONTENT

One property allows access to
child elements and text content:
innerHTML

See p220

Another just the text content:
textContent
See p216

Several methods let you create
new nodes, add nodes to a tree,
and remove nodes from a tree:
createElement ()
createTextNode()
appendChild() / removeChild()

This is called DOM manipulation.

See p222

ACCESS OR UPDATE
ATTRIBUTE VALUES

11 attribute

|
text

Here are some of the properties
and methods you can use to
work with attributes:
className / id

Lets you get or update the value
of the class and id attributes.
See p232

hasAttribute()
getAttribute()
setAttribute()
removeAttribute()

The first checks if an attribute
exists. The second gets its value,
The third updates the value.

The fourth removes an attribute.
See p232

DOCUMENT OBJECT MODEL

CACHING DOM QUERIES

Methods that find elements in the DOM tree are called DOM queries.
When you need to work with an element more than once, you should
use a variable to store the result of this query.

When a script selects an Below, the interpreter is told to Once it has found the node that
element to access or update, look through the DOM tree for represents the element(s), you
the interpreter must find the an element whose id attribute can work with that node, its
element(s) in the DOM tree. has a value of one. parent, or any children.

getElementById('one');

DOCUMENT OBJECT MODEL

When people talk about storing elements in variables, they are really
storing the location of the element(s) within the DOM tree in a variable.
The properties and methods of that element node work on the variable.

If your script needs to use the This saves the browser looking Programmers would say that the
the same element(s) more than through the DOM tree to find variable stores a reference to

once, you can store the location the same element(s) again. It is the object in the DOM tree. (It is
of the element(s) in a variable. known as caching the selection. storing the location of the node.)

var itemOne = getElementById('one');

N N I =

itemOne does not store the <1i> element, it stores a reference to where that node is in the DOM tree.
To access the text content of this element, you might use the variable name: itemOne.textContent

DOCUMENT OBJECT MODEL

ACCESSING ELEMENTS

DOM queries may return one element, or they may return a NodelList,
which is a collection of nodes.

Sometimes you will just want to access one Here, the DOM tree shows the body of the page of
individual element (or a fragment of the page that the list example. We focus on accessing elements
is stored within that one element). Other times you first so it only shows element nodes. The diagrams
may want to select a group of elements, for example, in the coming pages highlight which elements a
every <hl>element in the page or every <1i> DOM query would return. (Remember, element
element within a particular list. nodes are the DOM representation of an element.)
body
div
hl h2 ul script
] T : 1
1i 14 1i 14
GROUPS OF ELEMENT NODES FASTEST ROUTE
If a method can return more than one node, it will Finding the quickest way to access an element
always return a NodelList, which is a collection of within your web page will make the page seem
nodes (even if it only finds one matching element). faster and/or more responsive. This usually means
You then need to select the element you want from evaluating the minimum number of nodes on the
this list using an index number (which means the way to the element you want to work with. For
numbering starts at 0 like the items in an array). example, getElementById () will quickly return one
element (because no two elements on the same
For example, several elements can have the same page should have the same value for an id attribute),
tag name, so getElementsByTagName() will always but it can only be used when the element you want
return a NodeList. to access has an id attribute.

DOCUMENT OBJECT MODEL

METHODS THAT RETURN A SINGLE ELEMENT NODE:

getElementById('id")

Selects an individual element given the value of its id attribute.
The HTML must have an id attribute in order for it to be selectable. =

getElementBylId('one')

First supported: IE5.5, Opera 7, all versions of Chrome, Firefox, Safari.

querySelector('css selector')

Uses CSS selector syntax that would select one or more elements. i
This method returns only the first of the matching elements. [;

First supported: |IE8, Firefox 3.5, Safari 4, Chrome 4, Opera 10 querySelector('1i.hot")

METHODS THAT RETURN ONE OR MORE ELEMENTS (AS A NODELIST):

getElementsByClassName('class"')

Selects one or more elements given the value of their class attribute.

The HTML must have a c1ass attribute for it to be selectable. X I e
This method is faster than querySelectorAl1().

getElementsByClassName('hot')

First supported: IE9, Firefox 3, Safari 4, Chrome 4, Opera 10
(Several browsers had partial / buggy support in earlier versions)

getElementsByTagName('tagName')

-

Selects all elements on the page with the specified tag name.

This method is faster than querySelectorAl1(). o) e .

First supported: |E6+, Firefox 3, Safari 4, Chrome, Opera 10 getElementsByTagName('1i")
(Several browsers had partial / buggy support in earlier versions)

querySelectorAl1('css selector')

L
r T T 1

Uses CSS selector syntax to select one or more elements and returns all :

of those that match. D N S

First supported: IE8, Firefox 3.5, Safari 4, Chrome 4, Opera 10 querySelectorAl1('11.hot')

DOCUMENT OBJECT MODEL

METHODS THAT SELECT
INDIVIDUAL ELEMENTS

getElementById() and querySelector() can
both search an entire document and return
individual elements. Both use a similar syntax.

getElementByld() is the quickest and most efficient
way to access an element because no two elements
can share the same value for their id attribute.

The syntax for this method is shown below, and an
example of its use is on the page to the right.

document refers to the document
object. You always have to
access individual elements via
the document object.

OBJECT
]

querySelector() is a more recent addition to the
DOM, so it is not supported in older browsers.
But it is very flexible because its parameter is a
CSS selector, which means it can be used to
accurately target many more elements.

The getElementById() method
indicates that you want to find
an element based upon the
value of its id attribute.

METHOD
1

document.getElementById('one')

MEMBER OPERATOR

The dot notation indicates that
the method (on the right) is
being applied to the node on the
left of the period.

This code will return the element node for the
element whose id attribute has a value of one.

You often see element nodes stored in a variable for
use later in the script (as you saw on p190).

DOCUMENT OBJECT MODEL

I_]__.I

PARAMETER

The method needs to know
the value of the id attribute on
the element you want. It is the
parameter of the method.

Here the method is used on the document object so
it looks for that element anywhere within the page.
DOM methods can also be used on element nodes
within the page to find descendants of that node.

SELECTHING ELEMENTS
USING ID ATTRIBUTES

c05/get-element-by-id.html

<hl id="header">List King</h1l>
<h2>Buy groceries</h2>

<1i id="one" class="hot">fresh
figs</1i>
<1i id="two" class="hot">pine nuts</1i>
<1i id="three" class="hot">honey</1i>
<1i id="four">balsamic vinegar</1i>
</u]>

JAVASCRIPT c05/js/get-element-by-id.js

// Select the element and store it in a variable.
var el = document.getElementByld('one');

// Change the value of the class attribute.
el.className = 'cool';

freshfigs

pine nuts
honey

balsamic vinegar

This result window shows the example after the script has updated
the first list item. The original state, before the script ran, is shown on
p185.

getElementById() allows you
to select a single element node
by specifying the value of its
id attribute.

This method has one parameter:
the value of the id attribute on
the element you want to select.
This value is placed inside quote
marks because it is a string. The
quotes can be single or double
quotes, but they must match.

In the example on the left , the
first line of JavaScript code finds
the element whose id attribute
has a value of one, and stores
areference to that node ina
variable called el.

The code then uses a property
called className (which you
meet on p232) to update the
value of the class attribute

of the element stored in this
variable. Its value is cool, and
this triggers a new rule in the
CSS that sets the background
color of the element to aqua.

Note how the className
property is used on the variable
that stores the reference to the
element.

Browser Support: This is one of

the oldest and best supported
methods for accessing elements.

DOCUMENT OBJECT MODEL

NODELISTS: DOM QUERIES
THAT RETURN MORE THAN

ONE ELEMENT

When a DOM method can return more than one element, it returns a
NodelList (even if it only finds one matching element).

A Nodelist is a collection of element nodes. Each
node is given an index number (a number that starts
at zero, just like an array).

The order in which the element nodes are stored in a
Nodelist is the same order that they appeared in the
HTML page.

When a DOM query returns a NodelList, you may

want to:

® Select one element from the NodelList.

® Loop through each item in the NodeList and
perform the same statements on each of the
element nodes.

LIVE & STATIC NODELISTS

There are times when you will want to work with
the same selection of elements several times, so
the Nodelist can be stored in a variable and re-used
(rather than collecting the same elements again).

In a live NodelList, when your script updates the
page, the Nodelist is updated at the same time.
The methods beginning getElementsBy.. return live
NodelLists. They are also typically faster to generate
than static Nodelists.

DOCUMENT OBJECT MODEL

Nodelists look like arrays and are numbered like
arrays, but they are not actually arrays; they are a
type of object called a collection.

Like any other object, a NodeList has properties and

methods, notably:

® The length property tells you how many items
are in the Nodelist.

® The item() method returns a specific node from
the NodeList when you tell it the index number
of the item that you want (in the parentheses).
However, it is more common to use array syntax
(with square brackets) to retrieve an item from a
Nodelist (as you will see on p199).

In a static NodelList when your script updates the
page, the NodelList is not updated to reflect the
changes made by the script.

The new methods that begin querySelector...
(which use CSS selector syntax) return static
Nodelists. They reflect the document when the
query was made. If the script changes the content
of the page, the Nodelist is not updated to reflect
those changes.

Here you can see four different DOM queries that all return a NodelList.
For each query, you can see the elements and their index numbers in the
NodelList that is returned.

getElementsByTagName('hl')

Even though this query only INDEX NUMBER & ELEMENT

= returns one element, the method 0 <hl>
[: still returns a NodeList because
: ' ' of the potential for returning
more than one element.

getElementsByTagName('11")

This method returns four INDEX NUMBER & ELEMENT

elements, one for each of the 0 <1i id="one" class="hot">
<1i> elements on the page. <1i id="two" class="hot">

T T T 1 1
R) e) They appear in the same order 2 <li id="three" class="hot">
as they do in the HTML page. 3

<11 id="four">

getElementsByClassName('hot')

This NodelList contains only INDEX NUMBER & ELEMENT

three of the <1i> elements 0 <Ii id="one" class="hot">
; because we are searching for 1 <li id="two" class="hot">
D G elements by the value of their 2 <17 id="three" class="hot">

class attribute, not tag name.

querySelectorAl1('1i[id]")

This method returns four INDEX NUMBER & ELEMENT
elements, one for each of the 0 <1i id="one" class="hot"=>
<1i>elements on the page that 1 <1i id="two" class="hot"=>

() (i S have an id attribute (regardless 2 <1 id="three" class="hot">

of the values of the id attributes).

3 <1i id="four">

DOCUMENT OBJECT MODEL

SELECTING AN ELEMENT
FROM A NODELIST

There are two ways to select an element from a NodelList:
The item() method and array syntax.
Both require the index number of the element you want.

THE item() METHOD

Nodelists have a method
called item() which will return
an individual node from the
Nodelist.

You specify the index number

of the element you want as a
parameter of the method (inside
the parentheses).

Executing code when there are
no elements to work with wastes
resources. So programmers
often check that there is at least
one item in the NodelList before
running any code. To do this,

use the 1ength property of the
Nodelist - it tells you how many
items the NodelList contains.

Here you can see thatan if
statement is used. The condition
for the if statement is whether
the Tength property of the
Nodelist is greater than zero.

If it is, then the statements inside
the if statement are executed.

If not, the code continues to run
after the second curly brace.

var elements = document.getElementsByClassName('hot')
if (elements.length >= 1) {

var firstltem

1

Select elements that have a
class attribute whose value is
hot and store the Nodelist in a
variable called elements.

DOCUMENT OBJECT MODEL

= elements.item(0);

2

Use the Tength property to
check how many elements were
found. If 1 or more are found, run
the code in the if statement.

3

Store the first element from the
Nodelist in a variable called
firstItem. (It says 0 because
index numbers start at zero.)

Lo

Array syntax is preferred over the item() method because it is faster.

Before selecting a node from a Nodelist, check that it contains nodes.
If you repeatedly use the Nodelist, store it in a variable.

ARRAY SYNTAX

You can access individual nodes
using a square bracket syntax
similar to that used to access
individual items from an array.

You specify the index number
of the element you want inside
square brackets that follow the
NodelList.

As with all DOM queries, if

you need to access the same
Nodelist several times, store
the result of the DOM query in a
variable.

‘In the examples on both of these

pages, the Nodelist is stored in
a variable called elements.

If you create a variable to hold a
Nodelist (as shown below) but
there are no matching elements,
the variable will be an empty
NodeList. When you check the
length property of the variable,
it will return the number 0
because it does not contain any
elements.

var elements = document.getElementsByClassName('hot');
if (elements.length >= 1) {
var firstItem

]

Create a NodeList containing
elements that have aclass

attribute whose value is hot, and
store it in the variable elements.

= elements[0];

2

If that number is greater than or

equal to one, run the code inside

the if statement.

@

Get the first element from the
Nodelist (it says 0 because
index numbers start at zero).

DOCUMENT OBJECT MODEL

SELECTHNG EEEMENTS
USING CLASS ATTRIBUTES

The getElementsByClassName() The method has one parameter: Because several elements can
method allows you to select the c1ass name which is given have the same value for their
elements whose class attribute in quotes within the parentheses class attribute, this method
contains a specific value. after the method name. always returns a Nodelist.

c05/js/get-elements-by-class-name. js JAVASCRIPT

var elements = document.getElementsByClassName('hot'); // Find hot items

if (elements.length > 2) { // 1f 3 or more are found
var el = elements[2]; // Select the third one from the Nodelist
el.className = 'cool’; // Change the value of its class attribute
}
This example starts by looking *

for elements whose class
attribute contains hot. (The value

of a class attribute can contain :
several class names, each fTGSh flgs
separated by a space.) The result]

of this DOM query is stored pine nuts
in a variable called elements T
because it is used more than V- -.ﬁl']"lley

once in the example.

An i f statement checks if the balsamic vinegar
query found more than two
elements. If so, the third one is
selected and stored in a variable
called el. The class attribute of
that element is then updated to
say class. (In turn, this triggers
a new CSS style, changing the -
presentation of that element.)

Browser Support: |E9, Firefox 3,
Chrome 4, Opera 9.5, Safari 3.1

DOCUMENT OBJECT MODEL

SEEEC HNGEEEMENTES
BY TAG NAME

The getElementsByTagName() The element name is specified Note that you do not include the

method allows you to select as a parameter, so it is placed angled brackets that surround

elements using their tag name. inside the parentheses and is the tag name in the HTML (just
contained by quote marks. the letters inside the brackets).

JAVASCRIPT c05/js/get-elements-by-tag-name.js

var elements = document.getElementsByTagName('1i'); // Find <1i> elements

if (elements.length > 0) { // 1f 1 or more are found
var el = elements[0]; // Select the first one using array syntax
el.className = 'cool'; // Change the value of the class attribute
)
This example looks for any <1i>

elements in the document. It
stores the result in a variable
called elements because the
result is used more than once in
this example.

pine nuts

An if statement checks if any
hUﬂBY <1i> elements were found. As
with any element that can return
a NodeList, you check that there
balsamicvinegar will be a suitable element before

you try to work with it.

If matching elements were
found, the first one is selected
and its class attribute is
updated. This changes the color
of the list item to make it aqua.

Browser Support: Very good - it
is safe to use in any scripts.

DOCUMENT OBJECT MODEL

SEEECTHING EEEMENTS
USING CSS SELECTORS

querySelector() returns Both methods take a CSS just specifying a class name
the first element node that selector as their only parameter. or a tag name, and should also
matches the CSS-style selector. The CSS selector syntax offers be familiar to front-end web
querySelectorAll() returns a more flexibility and accuracy developers who are used to
Nodelist of all of the matches. when selecting an element than targeting elements using CSS.

c05/js/query-selector. js JAVASCRIPT

// querySelector() only returns the first match
var el = document.querySelector('1i.hot');
el.className = 'cool';

// querySelectorAll returns a Nodelist

// The second matching element (the third list item) is selected and changed
var els = document.querySelectorAll('li.hot');

els[1].className = 'cool';

These two methods were

RESULT
introduced by browser -
manufacturers because a lot

of developers were including : :
scripts like jQuery in their freshfigs

pages so that they could select
elements using CSS selectors.
(You meet jQuery in Chapter 7.) e

honey

pine nuts

If you look at the final line of
code, array syntax is used to rh
select the second item from balsamic vinegar
the NodelList, even though that
Nodelist is stored in a variable.

Browser Support: The drawback IE8+ (released Mar 2009)

with these two methods is that Firefox 3.5+ (released Jun 2009)
they are only supported in more Chrome 1+ (released Sep 2008)
recent browsers. Opera 10+ (released Sep 2009)

Safari 3.2+ (released Nov 2008)

DOCUMENT OBJECT MODEL

JavaScript code runs one line at If a DOM query runs when a Below you can see how the

a time, and statements affect page loads, the same query example on the left-hand page
the content of a page as the could return different elements if (query-selector. js) changes
interpreter processes them. it is used again later in the page. the DOM tree as it runs.

1: WHEN THE PAGE FIRST LOADS

T D - 1. This is how the p'age starts.
There are three <11> elements
 that have a class attribute
<1i id="one" class="hot"> whose value is hot. The
fresh figs</1i> quer‘ySelector{) method finds
<1i id="two" class="hot">pine nl.l'tS<f-|'i> the first one, and updates the

<1i id="three" cl ass:uhotll>h0ney</1 i> value of its class attribute from

<1i id="four">balsamic vinegar</1i> hot to cool. This also updates
 the DOM tree stored in memory

so - after this line has run -
only the second and third <1i>
elements have a class attribute

with a value of hot.
2: AFTER THE FIRST SET OF STATEMENTS

S TR A 2. When the second selector
runs, there are now only two
<yl=> <1i>elements whose class
<17 id="one" class="cool"> attributes have a value of hot
fresh figs</1i> (see left), so it just selects these
<1i id="two" class="hot">pine nuts</1i> two. This time, aay syl
<1i id="three" class="hot">honey</1i> A T el
<11 id="four">balsamic vinegar . the matching elements (which
 is the third list item). Again the

value of its class attribute is
changed from hot to cool.

3. AFTER THE SECOND SET OF STATEMENTS

3. When the second selector has
HTML c05/query-selector.html done its job, the DOM tree now
only holds one <11> element

 whose class attribute has a
<1i id="one" class="cool"> value of hot. Any further code
fresh figs</1i> looking for <1i> elements whose
<11 id="two" class="hot">pine nuts</1i> class attribute has a value of
<1i id="three" class="cool">honey</1i> hot would find only this one.
<1i id="four">balsamic vinegar</1i> However, if they were looking
 for <1i> elements whose class

attribute has a value of cool,
they would find two matching
element nodes.

DOCUMENT OBJECT MODEL

REPEATING ACTIONS FOR
AN ENTIRE NODELIST

When you have a Nodelist, you can loop
through each node in the collection and
apply the same statements to each.

In this example, once a Nodelist
has been created, a for loop is
used to go through each element

All of the statements inside
the for loop's curly braces are
applied to each element in the

To indicate which item of the
Nodelist is currently being
worked with, the counter 1 is

in the NodeList. Nodelist one-by-one. used in the array-style syntax.

var hotItems = documéent.querySelectorAl1('1i.hot');
for (var i = 0; i < hotlItems.length; i++) {
hotItems[i].className = 'cool';

1 0. 2

The variable hotItems contains
a Nodelist. It contains all

list items whose class
attribute has a value of hot.
They are collected using the
querySelectorAll () method.

The 1ength property of the
Nodelist indicates how many
elements are in the NodeList.
The number of elements
dictates how many times the
loop should run.

Array syntax is used to indicate
which item in the Nodelist is
currently being worked with:
hotItems[i]

It uses the counter variable
inside the square brackets.

DOCUMENT OBJECT MODEL

LOOPING THROUGH
A NODELIST

If you want to apply the same It involves finding out how many Each time the loop runs, the
code to numerous elements, items are in the Nodelist, and script checks that the counter
looping through a Nodelist is a then setting a counter to loop is less than the total number of
powerful technique, through them, one-by-one. items in the NodeList.

JAVASCRIPT c05/js/node-1ist.js

var hotItems = document.querySelectorAl1('1i.hot'); // Store NodeList in array
F (hotItems.length > 0) { // 1f it contains items

or (var i=0; i<hotItems.length; i++) { // Loop through each item
[= 'cool'; // Change value of class attribute

In this example, the

Nodelist is generated using
querySelectorAll (), anditis
looking for any <1i> elements

that have a class attribute
whose value is hot.

The Nodelist is stored in a
variable called hotItems, and the
number of elements in the listis
found using the 1ength property.

balsamic vinegar

For each of the elements in the
Nodelist, the value of the class
attribute is changed to cool.

DOCUMENT OBJECT MODEL

LOOPING THROUGH A
NODELIST: PLAY-BY-PLAY

@

LISTKING

BUY GROCERIES

START

At the start of this example, there
are three list items with a class
attribute whose value is hot so the
value of hotItems.length is 3.

DOCUMENT OBJECT MODEL

isO< 3> add‘ltoo

%

LISTKING

BUY GROCERIES

At first, the value of the counter
is set to 0, so the first item from
the Nodelist (which has an index
of 0) is targeted and the value of
its class attribute is set to cool.

for (var i = 0; i < hotItems.length; i++) {
hotItems[i].className = 'cool';

is3<3>

: —

add1to1 is2< 3>

add 1to p

%

LISTKING

BUY GROCERIES

%,.

LISTKING

BUY GROCERIES

When the value of the counter When the value of the counter When the value of the counter

is 1, the second item from the is 2, the third item from the is 3, the condition no longer
NodelList (which has an index of NodelList (which has an index of returns true, so the loops ends.
1) is targeted and the value of its 2) is targeted and the value of its The script then continues to the
class attribute is set to cool. class attribute is set to cool. first line of code after the loop.

DOCUMENT OBJECT MODEL

TRAVERSING THE DOM

When you have an element node, you can select
another element in relation to it using these five
properties. This is known as traversing the DOM.

parentNode

This property finds the element
node for the containing (or
parent) element in the HTML.

(1) If you started with the

first <11> element, then its
parent node would be the one
representing the element.

These are properties of the
current node (not methods to
select an element); therefore,
they do not end in parentheses.

DOCUMENT OBJECT MODEL

previousSibling
nextSibling

These properties find the
previous or next sibling of a node
if there are siblings.

If you started with the first <1i>
element, it would not have a
previous sibling. However, its next
sibling (2) would be the node
representing the second <1i>,

If you use these properties and

they do not have a previous/next

sibling, or a first/last child, the
result will be null,

firstChild
lastChild

These properties find the first or
last child of the current element.

If you started with the
element, the first child would be
the node representing the first
<1i> element, and (3) the last
child would be the last <11i>,

These properties are read-only;
they can only be used to select
a new node, not to update a
parent, sibling, or child.

WHITESPACE NODES

Most browsers, except IE, treat
whitespace between elements
(such as spaces or carriage
returns) as a text node, so the
properties below return different
elements in different browsers:

previousSibling
nextSibling
firstChild

lastChild

Traversing the DOM can be difficult because
some browsers add a text node whenever they
come across whitespace between elements.

Below, you can see all of the
whitespace nodes added to the
DOM tree for the list example.
Each one is represented by a
green square. You could strip
all the whitespace out of a page
before serving it to the browser.
This would also make the page

smaller and faster to serve/load.

However, it would also make the
code much harder to read.

Another way around this
problem is to avoid using these
DOM properties altogether.

One of the most popular ways to
address this kind of problem is
to use a JavaScript library such
as jQuery, which helps deal with
such problems. These types of
browser inconsistencies were a
big factor in jQuery's popularity.

11

1i

Internet Explorer (shown above) ignores whitespace and does not create extra text nodes.

m .

_u'I
1 - H

..

Chrome, Firefox, Safari, and Opera create text nodes from whitespace (spaces and carriage returns).

DOCUMENT OBJECT MODEL

PREVIOUS & NEXT SIBLING

You have just seen that For this example, all spaces From this element node, the
these properties can return between the HTML elements previousSibling property will
inconsistent results in different have been removed. In order to return the first <1i> element,
browsers. However, it is safe demonstrate these properties, and the nextSib1ing property
to use them when there is no the second list item is selected will return the third <1i>
whitespace between elements. using getElementById(). element.

c05/sibling.html HTML

<1i id="one" class="hot">fresh figs<li id="two"
class="hot">pine nuts</1i><1i id="three" class="hot">honey</1i><l1i
id="four">balsamic vinegar

c05/js/sibling.js JAVASCRIPT

// Select the starting point and find its siblings
var startItem = document.getElementByld('two');
var previtem = startItem.previousSibling;

var nextItem = startItem.nextSibling;

// Change the values of the siblings' class attributes
previtem.className = 'complete';
nextItem.className = 'cool';

ul
E m - freshfigs

@ START
@ PREVIOUS SIBLING
@ NEXT SIBLING

Note how references to sibling
nodes are stored in new
variables. This means properties
such as className can be used
on that node by adding the dot
notation between the variable
name and the property.

DOCUMENT OBJECT MODEL

balsamic vinegar

FIRST & LAST CHILD

These properties also return next to the opening tags of element from the page. From this
inconsistent results if there is the next element, making it element node, the firstChild
whitespace between elements. a little more readable. The property will return the first <1i>
In this example, a slightly example starts by using the element, and the TastChild
different solution is used in the getElementsByTagName () property will return the last <1i>
HTML - the closing tags are put method to select the element.

c05/child.html

<1i id="one" class="hot">fresh figs</1i
><1i id="two" class="hot">pine nuts</1i
><1i id="three" class="hot">honey</1i
><1i id="four">balsamic vinegar</1i
><fu1>

JAVASCRIPT c05/js/child.js

// Select the starting point and find its children

var startItem = document.getElementsByTagName('ul')[0];
var firstItem = startItem.firstChild;

var lastltem = startItem.lastChild;

// Change the values of the children's class attributes
firstItem.setAttribute('class', 'complete');
lastItem.setAttribute('class', ‘cool');

o

+ v
freshfigs m i B 1 ﬁ
: @ START
pine nuts @ FIRST CHILD

@ LASTCHILD

DOCUMENT OBJECT MODEL @

HOW TO GET/UPDATE
ELEMENT CONTENT

So far this chapter has focused on finding elements in the DOM tree.
The rest of this chapter shows how to access/update element content.
Your choice of techniques depends upon what the element contains.

Take a look at the three examples of <1i> elements
on the right. Each one adds some more markup and,
as a result, the fragment of the DOM tree for each
list item is very different.

@ The first (on this page) just contains text.
@ The second and third (on the right-hand page)
contain a mix of text and an element.

You can see that by adding something as simple as
an element, the DOM tree's structure changes
significantly. In turn, this affects how you might work
with that list item. When an element contains a mix
of text and other elements, you are more likely to
work with the containing element rather than the
individual nodes for each descendant.

<1i id="one">figs</1i>

attribute

Above, the <1i> element has:

® One child nade holding the word that you can see
in the list item: figs
® An attribute node holding the id attribute.

To work with the content of elements you can:

® Navigate to the text nodes. This works best
when the element contains only text, no other
elements.

® Work with the containing element. This allows
you to access its text nodes and child elements.
It works better when an element has text nodes
and child elements that are siblings.

@ DOCUMENT OBJECT MODEL

TEXT NODES

Once you have navigated from an element to its text
node, there is one property that you will commonly
find yourself using:

PROPERTY
nodeValue

DESCRIPTION
Accesses text from node (p214)

<1i id="one">fresh figs</1i>

1i — attribute

An element is added. It becomes the first child.

® The element node has its own child text
node which contains the word fresh.

® The original text node is now a sibling of the node
that represents the element.

<1i id="one">six fresh figs</1i>

1i — attribute
|
|]
em text:
| figs
text:
fresh

When text is added before the element:

@ The first child of the <11>element is a text node,
which contains the word six.

@ |t has a sibling which is an element node for the
 element. In turn, that element node
has a child text node containing the word fresh,

@ Finally, there is a text node holding the word
figs, which is a sibling of both the text node for
the word "six" and the element node, .

CONTAINING ELEMENT

When you are working with an element node (rather

than its text node), that element can contain markup.

You have to choose whether you want to retrieve
(get) or update (set) the markup as well as the text.

PROPERTY
innerHTML
textContent
innerText

DESCRIPTION

Gets/sets text & markup (p220)
Gets/sets text only (p216)
Gets/sets text only (p216)

When you use these properties to update the
content of an element, the new content will
overwrite the entire contents of the element (both
text and markup).

For example, if you used any of these properties to

update the content of the <body> element, it would
update the entire web page.

DOCUMENT OBJECT MODEL @

ACCESS & UPDATE A TEXT
NODE WITH NODEVALUE

When you select a text node, you can retrieve or amend the content of it
using the nodeValue property.

<1i id="one">fresh figs</1i>
14 — attribute

em

text:
fresh

The code below shows how you access the second text node. It will return the result: figs

document.getElementById('one').firstChild.nextSibling.nodeValue;

@ i @ P @ i i @
In order to use nodeValue, you 1. The <1i> element node is selected using the getElementByld() method.
must be on a text node, not the 2. The first child of <11> is the element.
element that contains the text. 3. The text node is the next sibling of that element.

4, You have the text node and can access its contents using nodeValue.
This example shows that
navigating from the element
node to a text node can be
complicated.

If you do not know whether there
will be element nodes alongside
text nodes, it is easier to work
with the containing element.

@ DOCUMENT OBJECT MODEL

ACCESSING & CHANGING

To work with text in an element,
first the element node is
accessed and then its text node.

JAVASCRIPT

var itemTwo

var elText

el Text

elText.replace('pine nuts', 'kale');

The text node has a property

A TEXT NODE

You can also use the nodeValue

called nodeValue which returns property to update the content
the text in that text node. of a text node.

itemTwo.firstChild.nodeValue =

freshfigs
kale

honey

balsamic vinegar

document.getElementById('two');

itemTwo.firstChild.nodeValue;

elText;

c05/js/node-value.js
// Get second list item
// Get its text content
// Change pine nuts to kale

// Update the list item

This example takes the text
content of the second list item
and changes it from pine nuts
to kale.

The first line collects the second
list item. It is stored in a variable
called itemTwo.

Next the text content of that
element is stored in a variable
called e1Text.

The third line of text replaces
the words 'pine nuts' with
'kale' using the String object's
replace() method.

The last line uses the nodeValue
property to update the content
of the text node with the
updated value.

DOCUMENT OBJECT MODEL @

ACCESS & UPDATE TEXT
WITH TEXTCONTENT
(& INNERTEXT)

The textContent property allows you to
collect or update just the text that is in the
containing element (and its children).

textContent <1i id="one">fresh figs</1i>

To collect the text from the
<1i>elements in our example
(and ignore any markup inside
the element) you can use the
textContent property on the
containing <1i> element. In this
case it would return the value:
fresh figs.

1 — attribute

You can also use this property document.getElementById('one').textContent;

to update the content of the
element; it replaces the entire

content of it (including any One issue with the textContent property is that Internet Explorer did
markup). not support it until IES. (All other major browsers support it.)
innerText

You may also come across a property called innerText, but you should generally avoid it for three key reasons:

SUPPORT OBEYS CSS PERFORMANCE

Although most browser It will not show any content Because the innerText property

manufacturers adopted the that has been hidden by CSS. takes into account layout rules

property, Firefox does not For example, if there were a CSS that specify whether the element

because innerText is not part of rule that hid the elements, is visible or not, it can be slower

any standard. the innerText property would to retrieve the content than the
return only the word figs. textContent property.

DOCUMENT OBJECT MODEL

ACCESSING TEXT ONLY

In order to demonstrate the The script starts off by getting Finally, the value of the first
difference between textContent the content of the first list item list item is then updated to say
and innerText, this example using both the textContent sourdough bread. This is done
features a CSS rule to hide the property and innerText. It then using the textContent property.
contents of the element. writes the values after the list.

JAVASCRIPT c05/js/inner-text-and-text-content.js

rstitem = document.getElementById('one'); // Find first list item
_ firstItem.textContent; // Get value of textContent
var showInnerText = firstItem.innerText; // Get value of innerText

// Show the content of these two properties at the end of the Tist
* msg = '<p>textContent: ' + showTextContent + '</p>';
msg += '<p=>innerText: ' + showlnnerText + '</p>';

var el = document.getElementById('scriptResults');

innerHTML = msg;

T

firstItem.textContent = 'sourdough bread'; // Update the first list item
In most browsers:
LT
® textContent collects
the words fresh figs.
® innerHTML just shows figs
suurduugh bread (because fresh was hidden
: by the CSS).
pine nuts
But:

® In|E8 or earlier, the
textContent property

_ _ 5 _ does not work,

ha‘IS?a'mi'c#inega‘r | @ InFirefox, the innerText

property will return

undefined because the it was

never implemented in Firefox.

textContent: fresh figs

innerText: figs

DOCUMENT OBJECT MODEL @

ADDING OR REMOVING
HTML CONTENT

There are two very different approaches to adding and removing content
from a DOM tree: the innerHTML property and DOM manipulation.

THE innerHTML PROPERTY

Note: there are security risks associated with using innerHTML - these issues are described on p228.

APPROACH ADDING CONTENT REMOVING CONTENT
innerHTML can be used on any To add new content: To remove all content from an
element node. It is used both to 1. Store new content (including element, you set innerHTML to
retrieve and replace content. markup) as a string in a variable. an empty string. To remove one
To update an element, new 2. Select the element whose element from a DOM fragment,
content is provided as a string. content you want to replace. e.g., one <1i>from a ,

It can contain markup for 3. Set the element's innerHTML you need to provide the entire
descendant elements. property to be the new string. fragment minus that element.

EXAMPLE: CHANGING A LIST ITEM

1: Create variable holding markup 2: Select element whose 3: Update content of selected
content you want to update element with new markup

var item;

item = 'Fresh figs";

You can have as much or as little
markup in the variable as you
want. It is a quick way to add a
lot of markup to the DOM tree.

DOCUMENT OBJECT MODEL

DOM manipulation easily targets individual nodes in the DOM tree,
whereas innerHTML is better suited to updating entire fragments.

DOM MANIPULATION METHODS

DOM manipulation can be safer than using innerHTML, but it requires more code and can be slower.

APPROACH ADDING CONTENT REMOVING CONTENT
DOM manipulation refers to a To add content, you use a DOM You can remove an element
set of DOM methods that allow method to create new content (along with any contents and
you to create element and text one node at a time and store it in child elements it may contain)
nodes, and then attach them to avariable. Then another DOM from the DOM tree using a
the DOM tree or remove them method is used to attach it to single method.

from the DOM tree. the right place in the DOM tree.

EXAMPLE: ADDING A LIST ITEM

1: Create new text node 4: Select element you want to 5: Append the new fragment to
- add the new fragment to the selected element

2: Create new element node m

3: Add text node to element node

DOCUMENT OBJECT MODEL

ACCESS & UPDATE TEXT &
MARKUP WITH INNERHTML

Using the innerHTML property, you can access
and amend the contents of an element,
including any child elements.

innerHTML <1i id="one">fresh figs</1i>
When getting HTML from an ,
element, the innerHTML property 11 TiARERe
will get the content of an
element and return it as one long em
string, including any markup that
the element contains.
When used to set new content
for an element, it will take a
string that can contain markup
and process that string, adding GET CONTENT .
any elements within it to the The following line of code collects the content of the list item and adds it
DOM tree. to a variable called e1Content:
var elContent = document.getElementById('one').innerHTML;
When adding new content using
innerHTML, be aware that one The el1Content variable would now hold the string:
missing closing tag could throw 'fresh figs'
out the design of the entire page.
Even worse, if innerHTML is used SET CONTENT
to add content that your users The following line of code adds the content of the e1Content variable
created to a page, they could add (including any markup) to the first list item:
malicious content, See p228. document.getElementById('one').innerHTML = elContent;

DOCUMENT OBJECT MODEL

UPDATE TEXT & MARKUP

This example starts by storing It then retrieves the content of
the first list item in a variable this list item and storesitin a
called firstItem. variable called itemContent.

JAVASCRIPT

// Store the first 1ist item in a variable
var firstItem = document.getElementById('one');

// Get the content of the first list item
var itemContent = firstltem.innerHTML;

Finally, the content of the list
item is placed inside a link. Note
how the quotes are escaped.

c05/js/inner-html.js

// Update the content of the first Tist item so it is a Tink
firstItem.innerHTML = '' + itemContent + '';

freshfigs &

pine nuts

honey

halsamic vinegar

As the content of the string

is added to the element using
the innerHTML property, the
browser will add any elements
in the string to the DOM. In
this example, an <a> element
has been added to the page.
(Any new elements will also be
available to other scripts in the
page.)

If you use attributes in your
HTML code, escaping the
quotation using the backslash
character \ can make it clearer
that those characters are not
part of the script.

DOCUMENT OBJECT MODEL

ADDING ELEMENTS USING
DOM MANIPULATION

DOM manipulation offers another technique
to add new content to a page (rather than
innerHTML). It involves three steps:

1

CREATE THE ELEMENT
createElement ()

You start by creating a new
element node using the
createElement () method.
This element node is stored
in a variable.

When the element node is
created, it is not yet part of the
DOM tree. It is not added to
the DOM tree until step 3.

In the example at the end of the
chapter, you will see another
method that can be used to
insert an element into the DOM
tree. The insertBefore()
method is used to add a new
element before the selected
DOM node.

@ DOCUMENT OBJECT MODEL

2

GIVE IT CONTENT
createTextNode()

createTextNode() creates a
new text node. Again, the node
is stored in a variable. It can be
added to the element node using
the appendChild() method.

This provides the content for the
element, although you can skip

this step if you want to attach an
empty element to the DOM tree.

5

ADD IT TO THE DOM
appendChild()

Now that you have your element
(optionally with some content

in a text node), you can add

it to the DOM tree using the
appendChild() method.

The appendChild() method
allows you to specify which

element you want this node
added to, as a child of it.

DOM manipulation and innerHTML both have uses. You will see a
discussion of when to choose each method on p226.

Note: You may see developers leave an empty element in their HTML
pages in order to attach new content to that element, but this practice is
best avoided unless absolutely necessary.

ADDING AN ELEMENT TO
THE-DOM. TREE

createElement () creates an This new element is stored createTextNode() allows you to
element that can be added to the inside a variable called newEl create a new text node to attach
DOM tree, in this case an empty until it is attached to the DOM to an element. It is stored in a
<1i> element for the list. tree later on. variable called newText.

JAVASCRIPT c05/js/add-element.js

// Create a new element and store it in a variable.
var newtl = document.createElement('1i');

// Create a text node and store it in a variable.
var newText = document.createTextNode('quinoa');

// Attach the new text node to the new element.
newkl.appendChild(newText);

// Find the position where the new element should be added.
var position = document.getElementsByTagName('ul')[0];

// Insert the new element into its position.
position.appendChild(newEl);

The text node is added to

the new element node using

appendChild().
freshﬁgs The getElementsByTagName()
: method selects the position in
pine nuts the DOM tree to insert the new
element (the first <u1> element
hﬂney in the page).

Finally, appendChild() is used
again - this time to insert the
new element and its content into
the DOM tree.

balsamic vinegar

quinoa

DOCUMENT OBJECT MODEL @

REMOVING ELEMENTS VIA
DOM MANIPULATION

DOM manipulation can be used to remove
elements from the DOM tree.

1

STORE THE ELEMENT
TO BE REMOVED IN A
VARIABLE

You start by selecting the
element that is going to be
removed and store that element
node in a variable.

You can use any of the methods
you saw in the section on DOM
queries to select the element.

When you remove an element
from the DOM, it will also
remove any child elements.

DOCUMENT OBJECT MODEL

2

STORE THE PARENT OF
THAT ELEMENT IN A
VARIABLE

Next, you find the parent element
that contains the element you
want to remove and store that
element node in a variable.

The simplest way to get this
element is to use the parentNode
property of this element.

The example on the right is quite
simple, but this technique can
significantly alter the DOM tree.

3

REMOVE THE ELEMENT
FROM ITS CONTAINING
ELEMENT

The removeChild() method is
used on the containing element
that you selected in step 2.

The removeChild() method
takes one parameter: the
reference to the element that
you no longer want.

Removing elements from the
DOM will affect the index
number of siblings in a NodelList.

REMOVING AN ELEMENT
FROM THE DOM- REE

This example uses the The first variable, removeET, The second variable,
removeChild() method to stores the actual element you containerkl, stores the
remove the fourth item from the want to remove from the page element that contains the

list (along with its contents). (the fourth list item). element you want to remove.

JAVASCRIPT c05/js/remove-element.js

var removeEl = document.getElementsByTagName('11')[3]; // The element to remove

var containerEl = removeEl.parentNode; // 1ts containing element
containerEl.removeChild(removeEl); // Removing the element
The removeChild() methodis

used on the variable that holds
the container node.

freshfigs

It requires one parameter: the
¥ element you want to remove
pine nuts (which is stored in the second
variable).

honey

I i 1
o s lIEIl
@ CONTAINER ELEMENT
@ ELEMENT TO BE REMOVED

DOCUMENT OBJECT MODEL @

COMPARING TECHNIQUES:
UPDATING HTML CONTENT

So far, you have seen three techniques for adding HTML to a web page.
It's time to compare when you should use each one.

In any programming language, there are often
several ways to achieve the same task. In fact, if you
asked ten programmers to write the same script, you
may well find ten different approaches.

Some programmers can be rather opinionated and
believe that their way is always the "right” way to do
things - when there are often several right ways. If
you understand why people prefer some approaches
over others, then you are in a strong position to
decide whether it meets the needs of your project.

DOCUMENT OBJECT MODEL

document.write()

The document object's write() method is a simple
way to add content that was not in the original
source code to the page, but its use is rarely advised.

ADVANTAGES

® |tis a quick and easy way to show beginners how
content can be added to a page.

DISADVANTAGES

® |t only works when the page initially loads.

® |[f you use it after the page has loaded it can:
1. Overwrite the whole page
2. Not add the content to the page
3. Create a new page

@ |t can cause problems with XHTML pages that
are strictly validated.

@ This method is very rarely used by programmers
these days and is generally frowned upon.

You can choose different techniques depending on the task (and keep in
mind how the site might be developed in the future).

element.innerHTML

The innerHTML property lets you get/update the
entire content of any element (including markup) as
a string.

ADVANTAGES

® You can use it to add a lot of new markup using
less code than DOM manipulation methods.

® [t can be faster than DOM manipulation when
adding a lot of new elements to a web page.

® |tisasimple way to remove all of the content

from one element (by assigning it a blank string).

DISADVANTAGES

@ |t should not be used to add content that has
come from a user (such as a username or blog
comment), as it can pose a significant security
risk which is discussed over the next four pages.

@ |t can be difficult to isolate single elements
that you want to update within a larger DOM
fragment.

@ Event handlers may no longer work as intended.

DOM MANIPULATION

DOM manipulation refers to using a set of methods
and properties to access, create, and update
elements and text nodes.

ADVANTAGES

@ |t is suited to changing one element from a DOM
fragment where there are many siblings.

@ |t does not affect event handlers.

® |t easily allows a script to add elements
incrementally (when you do not want to alter a lot
of code at once).

DISADVANTAGES

® [f you have to make a lot of changes to the
content of a page, it is slower than innerHTML.

® You need to write more code to achieve the same
thing compared with innerHTML.

DOCUMENT OBJECT MODEL @

CROSS-SITE SCRIPTING
(XSS) ATTACKS

If you add HTML to a page using innerHTML (or several jQuery methods),
you need to be aware of Cross-Site Scripting Attacks or XSS; otherwise,
an attacker could gain access to your users' accounts.

This book has several warnings about security issues The next four pages describe the issues you need
when you add HTML to a page using innerHTML. to be aware of, and how to make your site secure
(There are also notes about it when using jQuery.) against these kinds of attacks.
HOW XSS HAPPENS WHAT CAN THESE ATTACKS DO?
XSS involves an attacker placing malicious code into XSS can give the attacker access to information in:
a site. Websites often feature content created by
many different people. For example: ® The DOM (including form data)
® That website's cookies

@ Users can create profiles or add comments ® Session tokens: information that identifies you
® Multiple authors may contribute articles from other users when you log into a site
@ Data can come from third-party sites such as ”

Facebook, Twitter, news tickers, and other feeds This could let the attacker access a user account and:

@ Files such as images and video may be uploaded
® Make purchases with that account
Data you do not have complete control over is known ® Post defamatory content
as untrusted data; it must be handled with care. ® Spread their malicious code further / faster

EVEN SIMPLE CODE CAN CAUSE PROBLEMS:

Malicious code often mixes HTML and JavaScript (although URLs and CSS can be used to trigger XSS attacks).
The two examples below demonstrate how fairly simple code could help an attacker access a user's account.

This first example stores cookie data in a variable, which could then be sent to a third-party server:
<script>var adr='http://example.com/xss.php?cookie=' + escape(document.cookie);</script>

This code shows how a missing image can be used with an HTML attribute to trigger malicious code:

Any HTML from untrusted sources opens your site to XSS attacks. But the threat is only from certain characters.

DOCUMENT OBJECT MODEL

DEFENDING AGAINST
CROSS-SITE SCRIPTING

VALIDATE INPUT GOING TO THE SERVER

1. Only let visitors input the kind
of characters they need to when
supplying information. This is
known as validation. Do not
allow untrusted users to submit
HTML markup or JavaScript.

2. Double-check validation on
the server before displaying user
content/storing it in a database.
This is important because users
could bypass validation in the

browser by turning JavaScript off.

3. The database may safely
contain markup and script

from trusted sources (e.g., your
content management system).
This is because it does not try to
process the code; it just stores it.

REQUESTS PAGES FROM
AND SENDS FORM DATA
TO WEB SERVER

1 —

BROWSER
PROCESSES HTML, CSS,

AND JAVASCRIPT FILES
SENT FROM WEB SERVER

P

COLLECTS INFORMATION
FROM BROWSER AND
PASSES IT TO DATABASE

| == |
| === |
== |

-]

WEB SERVER

GENERATES PAGES USING
DATA FROM DATABASE AND
INSERTS IT INTO TEMPLATES

4

STORES INFORMATION
CREATED BY WEBSITE
ADMINS AND USERS

DATABASE

RETURNS CONTENT NEEDED
TO CREATE WEB PAGES

ESCAPE DATA COMING FROM THE SERVER & DATABASE

6. Do not create DOM fragments
containing HTML from untrusted
sources. It should only be added

as text once it has been escaped.

5. Make sure that you are only
inserting content generated by
users into certain parts of the
template files (see p230).

4, As your data leaves the
database, all potentially
dangerous characters should be
escaped (see p231).

So, you can safely use innerHTML to add markup to a page if you have written the code - but content from any
untrusted sources should be escaped and added as text (not markup), using properties like textContent.

DOCUMENT OBJECT MODEL

XSS: VALIDATION

& TEMPLATES

Make sure that your users can only input characters they need to use
and limit where this content will be shown on the page.

FILTER OR VALIDATE INPUT

The most basic defense is to prevent users from
entering characters into form fields that they do not
need to use when providing that kind of information.

For example, users' names and email addresses
will not contain angled brackets, ampersands, or
parentheses, so you can validate data to prevent
characters like this being used.

This can be done in the browser, but must also be
done on the server (in case the user has JavaScript
turned off). You learn about validation in Chapter 13.

You may have seen that the comment sections on
websites rarely allow you to enter a lot of markup
(they sometimes allow a limited subset of HTML).
This is to prevent people from entering malicious
code such as <script>tags, or any other character
with an event handling attribute.

Even the HTML editors used in many content
management systems will limit the code that you are
allowed to use within them, and will automatically
try to correct any markup that looks malicious.

DOCUMENT OBJECT MODEL

LIMIT WHERE USER CONTENT GOES

Malicious users will not just use <script> tags to
try and create an XSS attack. As you saw on p228,
malicious code can live in an event handler attribute
without being wrapped in <script>tags. XSS can
also be triggered by malicious code in CSS or URLs.

Browsers process HTML, CSS, and JavaScript in
different ways (or execution contexts), and in each
language different characters can cause problems.
Therefore, you should only add content from
untrusted sources as text (not markup), and place
that text in elements that are visible in the viewport.

Never place any user's content in the following
places without detailed experience of the issues
involved (which are beyond the scope of this book):

Script tags: <script>not here</script>
HTML comments: <!-- not here -->

Tag names: <notHere href="/test" />
Attributes: <div notHere="norHere" />
CSS values: {color: not here}

XSS: ESCAPING &
CONTROLLING MARKUP

Any content generated by users that contain characters that are used
in code should be escaped on the server. You must control any markup

added to the page.

ESCAPING USER CONTENT

All data from untrusted sources should be escaped
on the server before it is shown on the page.

Most server-side languages offer helper functions
that will strip-out or escape malicious code.

HTML

Escape these characters so that they are displayed
as characters (not processed as code).

& & ! ' (not ')
&1t; " "
> / /
`

JAVASCRIPT

Never include data from untrusted sources in
JavaScript. It involves escaping all ASCII characters
with a value less than 256 that are not alphanumeric
characters (and can be a security risk).

URLS

If you have links containing user input (e.g., links to
a user profile or search queries), use the JavaScript
encodelURIComponent () method to encode the user
input. It encodes the following characters:

i f P e & = + § #

ADDING USER CONTENT

When you add untrusted content to an HTML page,
once it has been escaped on the server, it should still
be added to the page as text. JavaScript and jQuery
both offer tools for doing this:

JAVASCRIPT

DO use: textContent or innerText (see p216)
DO NOT use: innerHTML (see p220)

JQUERY

DO use: .text() (see p316)
DO NOT use: . htm1 () (see p316)

You can still use the innerHTML property and jQuery
.html () method to add HTML to the DOM, but you
must make sure that:

® You control all of the markup being generated
(do not allow user content that could contain
markup).

@ The user's content is escaped and added as text
using the approaches noted above, rather than
adding the user's content as HTML.

DOCUMENT OBJECT MODEL @

ATTRIBUTE NODES

Once you have an element node, you can use
other properties and methods on that element
node to access and change its attributes.

There are two steps to accessing First, select the element node Then, use one of the methods or
and updating attributes. that carries the attribute and properties below to work with
follow it with a period symbol. that element's attributes.
Finds the element node (works with any Gets the value of the attribute that was
technique covered in this chapter) given as a parameter of the method
DOM QUERY METHOD

| l
I LA |

document.getElementById('one').getAttribute('class');
|

MEMBER OPERATOR

Indicates that the Subsequent method will
be used on the node specified to the left

METHOD DESCRIPTION You have seen that the DOM
getAttribute() gets the value of an attribute treats each HTML element as
hasAttribute() checks if element node has a specified attribute its own Oble'_:t inthe DOM tree.
setAttribute() sets the value of an attribute The properties of the ‘?b}“t
removeAttribute() removes an attribute from an element node correspond to the attributes

that type of element can carry.
On the left, you can see the

PROPERTY DESCRIPTION ; ;

: className and id properties.
className gets or sets the value of the class attribute (Others include accessKey,
id gets or sets the value of the id attribute checked, href, 1ang, and title.)

@ DOCUMENT OBJECT MODEL

CHECK FOR AN ATTRIBUTE
AND GET ITS VALUES

Before you work with an The hasAttribute() method Using hasAttribute() inanif
attribute, it is good practice to of any element node lets you statement like this means that
check whether it exists. This will check if an attribute exists. The the code inside the curly braces
save resources if the attribute attribute name is given as an will run only if the attribute
cannot be found. argument in the parentheses. exists on the given element.

JAVASCRIPT c05/js/get-attribute.js

var firstItem = document.getElementById('one'); // Get first list item

if (firstItem.hasAttribute('class')) { // If it has class attribute
var attr = firstItem.getAttribute('class'); // Get the attribute

// Add the value of the attribute after the Tist
var el = document.getElementById('scriptResults');
el.innerHTML = '<p>The first item has a class name: ' + attr + '</p>';

In this example, the DOM query
getElementById() returns the

element whose 1d attribute has

freshﬁgs a value of one.
; The hasAttribute() method
pine nuts is used to check whether this

element has a class attribute,
and returns a Boolean. This

is used with an if statement
so that the code in the curly
braces will run only if the class
attribute does exist.

The first item has a class name: hot THe GEEALEFBUEE() micthod

returns the value of the class
attribute, which is then written
to the page.

balsamic vinegar

Browser Support: Both of these
methods have good support in
all major web browsers.

DOCUMENT OBJECT MODEL @

CREATING ATTRIBUTES &
CHANGING THEIR VALUES

The className property allows You have seen this property The setAttribute() method
you to change the value of the used throughout the chapter allows you to update the value
class attribute. If the attribute to update the status of the of any attribute. It takes two
does not exist, it will be created list items. Below, you can see parameters: the attribute name,
and given the specified value. another way to achieve the task. and the value for the attribute.

c05/js/set-attribute.js JAVASCRIPT

var firstItem = document.getElementByld('one'); // Get the first item
firstitem.className = 'complete'; // Change its class attribute

var fourthItem = document.getElementsByTagName('1i').item(3);// Get fourth item
el2.setAttribute('class', 'cool'); // Add an attribute to it

When there is a property (like
RESULT
the className or id properties), _

it is generally considered better
to update the properties rather freshfi

than use a method (because, gs
behind the scenes, the method)
would just be setting the pine nuts
properties anyway).

honey

When you update the value
of an attribute (especially the
class attribute) it can be used balsamic vinegar
to trigger new CSS rules, and
therefore change the appearance
of the elements.

Note: These techniques override the entire value of the class attribute.
They do not add a new value to the existing value of the class attribute.

If you wanted to add a new value onto the existing value of the class
attribute, you would need to read the content of the attribute first, then
add the new text to that existing value of the attribute (or use the
jQuery .addClass () method covered on p320).

DOCUMENT OBJECT MODEL

REMOVING ATTRIBUTES

To remove an attribute from an Trying to remove an attribute In this example, the

element, first select the element, that does not exist will not cause getElementByld() method is
then call removeAttribute(). an error, but it is good practice used to retrieve the first item
It has one parameter: the name to check for its existence before from this list, which has an id
of the attribute to remove. attempting to remove it. attribute with a value of one.

JAVASCRIPT c05/js/remove-attribute.js

var firstItem = document.getElementById('one'); // Get the first item

if (firstItem.hasAttribute('class')) { // 1f it has a class attribute
firstItem.removeAttribute('class'); // Remove its class attribute
}
The script checks to see if the

selected element has a class
attribute and, if so, it is removed.

freshfigs
pine nuts

honey

balsamic vinegar

DOCUMENT OBJECT MODEL @

EXAMINING THE DOM
IN CHROME

Modern browsers come with tools that help
you inspect the page loaded in the browser
and understand the structure of the DOM tree.

In the screenshot to the right, the
<11i>element is highlighted and
the Properties panel (1) indicates
that this is an:

® 11 element with an id
attribute whose value is one
and class whose value is hot
an HTMLLIElement

an HTMLElement

an element

anode

an object

Each of these object names has
an arrow next to it which you can
use to expand that section.

It will tell you what properties

are available to that kind of node.

They are separated because
some properties are specific

to list item elements, others

to element nodes, others to all
nodes, and others to all objects,
and the different properties are
listed under the corresponding
type of node. But they do remind
you of which properties you can
access through the DOM node
for that element.

DOCUMENT OBJECT MODEL

e_ 6 e J . JavaScript HQturv—Er;:;- '\:; A

.." {

= == @ [file:/{ finitial-page.html

ésj

€3 | Elements | Resources Network Sources Timeline Profiles Audits Console |
» Computed Style (I Show in heriled»!’
¥<htal> e |
D » Styles + B & |
¥ <body> P Metrics /"\1 |
Y<div id="page"> " Pr Y s) M SEE——
<hl id="header"»List King</hl> | P EE—— St)
<hZ=Buy groceries</hZ» .
s » HTHLLIElement
¥<1i id="one" class="hot"=> * HTHLELement
<exrfreshe/en» |
" figs" * Element |
</1i> > Node |
<li ide"two" class="hot"»pine nuts</li= Object |
<li id="three" class="hot">honey</li» b |
=11 id="four">balsamic vinegar</li» » DOM Breakpoints
<ful=> » Event Listeners =
<fdivs> | |
</body> |
</html>
D,)5 Q hml body divepage ul & J

To get the developer tools in
Chrome on a Mac, go to the
View menu, select Developer and
then Developer Tools. On a PC,
go to Tools (or More Tools) and
select Developer Tools.

Or right-click on any element
and select Inspect Element.

Select Elements from the menu
that runs across the top of this
tool. The source of the page will
be shown on the left and several
other options to the right.

Any element that has child
elements has an arrow next
to it that lets you expand and
collapse the item to show and
hide its content.

The Properties panel (on the
right) tells you the type of object
the selected element is. (In some
versions of Chrome this is shown
as a tab.) When you highlight
different elements in the main
left-hand window, you can see
the values in the Properties panel
on the right reflect that element.

EXAMINING THE DOM
IN FIREFOX

Firefox has similar built-in tools, but you can
also download a DOM inspector tool that
shows the text nodes.

[:N:X:] JavaSeripe & jQuery - Chapter 5: Docurment Object Moded - Initial Page

If you search online for "DOM
Inspector”, you will find the tool
designed for Firefox shown on
the left. In the screen shot, you
can see a similar tree view to
the one shown in Chrome, but
it also shows you where there
are whitespace nodes (they are
shown as #text). In the panel to
T A . the right, you can see the value
gy in the nodes; whitespace nodes
o ; have no value in this panel.

: e Another Flrefox extension worth
trying is called Firebug.

Firefox also has a 3D view of

the DOM, where a box is drawn
around each element, and you
can change the angle of the
page to show which parts of it
stick out more than others. The
further they protrude the further
into child elements they appear.

This can give you an interesting
(and quick) glimpse into the
complexity of the markup used
on a page and the depth to which
elements are nested.

DOCUMENT OBJECT MODEL @

LISTKING
BUY GROCERIES ©

EXAMPLE

DOCUMENT OBJECT MODEL

This example brings together a selection of
the technigues you have seen throughout the
chapter to update the contents of the list.

It has three main aims:

1: Add a new item to the start and end of the list
Adding an item to the start of a list requires the use of a different method
than adding an element to the end of the list.

2: Set a class attribute on all items
This involves looping through each of the <1i> elements and updating
the value of the class attribute to cool.

3: Add the number of list items to the heading
This involves four steps:

1. Reading the content of the heading

2. Counting the number of <1i> elements in the page

3. Adding the number of items to the content of the heading
4.Updating the heading with this new content

DOCUMENT OBJECT MODEL

EXAMPLE

DOCUMENT OBJECT MODEL

c05/js/example.js

JAVASCRIPT

// ADDING ITEMS TO START AND END OF LIST

var list = document.getElementsByTagName('ul')[0]; // Get the element

// ADD NEW ITEM TO END OF LIST

var newltemLast = document.createElement('1i');

// Create element

var newTextlLast = document.createTextNode('cream'); // Create text node

newltemLast.appendChild(newTextLast);

list.appendChild(newlItemLast);

// ADD NEW ITEM START OF LIST

var newItemFirst = document.createElement('1i');

// Add text node to element
// Add element end of 1ist

// Create element

var newTextFirst = document.createTextNode('kale'); // Create text node

newltemFirst.appendChild(newTextFirst);
1list.insertBefore(newItemFirst, list.firstChild);

This part of the example adds two new list items to
the element: one to the end of the list and one
to the start of it. The technique used here is DOM
manipulation and there are four steps to creating a
new element node and adding it to the DOM tree:

1. Create the element node

2. Create the text node

3. Add the text node to the element node
4. Add the element to the DOM tree

To achieve step four, you must first specify the
parent that will contain the new node. In both cases,
this is the element. The node for this element
is stored in a variable called 1ist because it is used
many times.

DOCUMENT OBJECT MODEL

// Add text node to element
// Add element to list

The appendChild() method adds new nodes as a
child of the parent element. It has one parameter:
the new content to be added to the DOM tree. If the
parent element already has child elements, it will be
added after the fast of these (and will therefore be
the last child of the parent element).

parent .appendChild(newItem) ;

(You have seen this method used several times both
to add new elements to the tree and to add text
nodes to element nodes.)

To add the item to the start of the list, the
insertBefore() method is used. This requires one
extra piece of information: the element you want to
add the new content before (the target element).

parent.insertBefore(newItem, target);

EXAMPLE

DOCUMENT OB JECT MODEL

JAVASCRIPT

var listItems = document.querySelectorAl1('1i');

// ADD A CLASS OF COOL TO ALL LIST ITEMS

var i;

for (i = 0; i < listItems.length; i++) {

listItems[i].className = 'cool';

}

c05/js/example.js
//. A1l <1i> elements
// Counter variable

// Loop through elements
// Change class to cool

// ADD NUMBER OF ITEMS IN THE LIST TO THE HEADING

var heading = document.querySelector('h2');
var headingText = heading.firstChild.nodeValue;

var totallItems = TistItems.length;

// h2 element
// h2 text
// No. of <1i> elements

var newHeading = headingText + ‘' + totalltems + ''; // Content

heading.textContent = newHeading;

The next step of this example is to loop through all of
the elements in the list and update the value of their
class attributes, setting them to cool.

This is achieved by first collecting all of the list

item elements and storing them in a variable called
listItems. A for loop is then used to go through
each of them in turn. In order to tell how many times
the loop should run, you use the 1ength property.

Finally, the code updates the heading to include
the number of list items. It updates it using the
innerHTML property as opposed to the DOM
manipulation techniques used earlier in the script.

This demonstrates how you can add to the content
of an existing element by reading its current value -
and adding to it. You could use a similar technigue if
you needed to add a value to an attribute - without
overwriting its existing value.

// Update h2

To update the heading with the number of items in
the list, you need two pieces of information:
1. The original content of the heading so that
you can add the number of list items toit. It is
collected using the nodeValue property (although
innerHTML or textContent would do the same).
2.The number of list items, which can be found
using the 1ength property on the 1istItems
variable.

With this information ready, there are two steps to

updating the content of the <h2> element:

1. Creating the new heading and storingitin a
variable - the new heading will be made up of the
original heading content, followed by the number
of items in the list.

2.Updating the heading, which is done by updating
the content of the heading element using the
innerText property of that node.

DOCUMENT OBJECT MODEL

SUMMARY

DOCUMENT OBJECT MODEL

DOCUMENT OBJECT MODEL

@ EVENTS

When you browse the web, your browser registers different
types of events. It's the browser's way of saying, “Hey, this
just happened.” Your script can then respond to these events.

Scripts often respond to these events by updating the content of the web page (via the
Document Object Madel) which makes the page feel more interactive. In this chapter, you

will learn how:

INTERACTIONS
CREATE EVENTS

Events occur when users
click or tap on a link, hover
or swipe over an element,
type on the keyboard,
resize the window, or
when the page they
requested has loaded.

EVENTS TRIGGER
CODE

When an event occurs,
or fires, it can be used
to trigger a particular
function. Different code
can be triggered when
users interact with

different parts of the page.

CODE RESPONDS
TO USERS

In the last chapter, you
saw how the DOM can

be used to update a page.
The events can trigger the

-kinds of changes the DOM

is capable of. This is how a
web page reacts to users.

S | TR

o A e el e WG N L it el

T IFNERE

e et e U s et

i

DIFFERENT EVENT TYPES

Here is a selection of the events that occur in the browser while you are
browsing the web. Any of these events can be used to trigger a function

in your JavaScript code.

Ul EVENTS Occur when a user interacts with the browser's user interface (Ul) rather than the web page
EVENT DESCRIPTION

load Web page has finished loading

unload Web page is unloading (usually because a new page was requested)
error Browser encounters a JavaScript error or an asset doesn't exist
resize Browser window has been resized

scroll U .;er has scrolled upordown the page

KEYBOARD EVENTS

Occur when a user interacts with the keyboard (see also input event)

EVENT DESCRIPTION

keydown User first presses a key (repeats while key is depressed)

e e .(.;,l.é.ases R A
keypress Character is being inst.a.l.r‘t.;g.grepeats whii; key is depressed)

MOUSE EVENTS

Occur when a user interacts with a mouse, trackpad, or touchscreen

EVENT DESCRIPTION

click User presses and releases a button over the same element
;ilglcl ick User presses and releases a button twice over the same element
‘mousedown User presses a mouse button while over an element

;:.;;;eup User releases a mouse button while over an element

mouse.:.r;;)ve User moves the mouse (not on a touchscreen)

lmuc.n.l..;;gaver User moves tl;;.mouse over an e.;i;ment (not c;;;"touchscreen)
mouseout User moves the mouse off an element (not on a touchscreen)

EVENTS

TERMINOLOGY

EVENTS FIRE OR ARE RAISED

When an event has occurred, it is often described as having fired or
been raised. In the diagram on the right, if the user is tapping on a link, a
click event would fire in the browser.

EVENTS TRIGGER SCRIPTS

Events are said to trigger a function or script. When the c1ick event
fires on the element in this diagram, it could trigger a script that enlarges

the selected item.

FOCUS EVENTS

EVENT

Occur when an element (e.g., a link or form field) gains or loses focus

DESCRIPTION

focus / focusin

Element gains focus

blur / focusout

FORM EVENTS

Element loses focus

Occur when a user interacts with a form element

EVENT DESCRIPTION
input Value in any <input> or <textarea> element has changed (IES9+)
or any element with the contenteditable attribute
change Value in select box, checkbox, or radio button changes (IE9+)
submt U .ser subms;t.;‘;form (using a button or a key)
reset User chclb(l;;‘r.l";a form's reset button (rarely used these days)
Cut .. U = cm;..;;.ment from a form L e
Copy Use.;;;;),es content eSS
paste .. R S o .
Se]ect .. e son.;e i ;i.ad

MUTATION EVENTS®

Occur when the DOM structure has been changed by a script
* To be replaced by mutation observers (see p284)

EVENT DESCRIPTION

DOMSubtreeModified Change has been made to document

DOMNodeInserted Node has been inserted as a direct child of another node
DOMNodeRemoved Node has been rem.c;;; from another node

DOMNodeInsertedIntoDocument

Node has been inserted as a descendant of another node

DOMNodeRemovedFromDocument

Node has been removed as a descendant of another node

EVENTS

248

HOW EVENTS TRIGGER

JAVASCRIPT CODE

When the user interacts with the HTML on a web page, there are three
steps involved in getting it to trigger some JavaScript code.

Together these steps are known as event handling.

1

Select the element
node(s) you want the
script to respond to.

For example, if you want to
trigger a function when a user
clicks on a specific link, you need
to get the DOM node for that
link element. You do this using a
DOM query (see Chapter 5).

The Ul events that relate to the
browser window (rather than the
HTML page loaded in it) work
with the window object rather
than an element node. Examples
include the events that occur
when a requested page has
finished loading, or when the
user scrolls. You will learn about
using these on p272.

EVENTS

2

Indicate which event on
the selected node(s) will
trigger the response.

Programmers call this binding an
event to a DOM node.

The previous two pages showed
a selection of the popular events
that you can monitor for.

Some events work with most
element nodes, such as the
mouseover event, which is
triggered when the user rolls
over any element. Other events
only work with specific element
nodes, such as the submit event,
which only works with a form.

5

State the code you want
to run when the event
occurs.

When the event occurs, on a
specified element, it will trigger
a function. This may be a named
or an anonymous function.

Here you can see how event handling can be used to provide feedback to
users filling in a registration form. It will show an error message if their

username is too short.

SELECT ELEMENT

The element that users are
interacting with is the text input
where they enter the username.

SPECIFY EVENT

When users move out of the
text input, it loses focus, and the
blur event fires on this element.

Event: blur on username

© FUNCTION: checkUsername ()
Check the username is long enough

Get username

Is username

less than five
characters?

Clear message

Show error message

3
CALL CODE

When the blur event fires

on the username input, it

will trigger a function called
checkUsername(). This function
checks if the username is less
than 5 characters.

If there are not enough
characters, it shows an error
message that prompts the user
to enter a longer username.

If there are enough characters,
the element that holds the error
message should be cleared.

This is because an error
message may have been shown
to the user already and they
subsequently corrected their
mistake. (If the error message
was still visible when they had
filled in the form correctly, it
would be confusing.)

EVENTS

THREE WAYS TO BIND AN
EVENT TO AN ELEMENT

Event handlers let you indicate which event you
are waiting for on any particular element.
There are three types of event handlers.

HTML EVENT
HANDLERS

See p251

This is bad practice, but you
need to be aware of it because
you may see it in older code.

Early versions of HTML included
a set of attributes that could
respond to events on the
element they were added to.
The attribute names matched
the event names. Their values
called the function that was to
run when that event occurred.

For example, the following:

indicated that when a user
clicked on this <a> element, the

hide() function would be called.

This method of event handling
is no longer used because it is
better to separate the JavaScript
from the HTML. You should use
one of the other approaches
shown on this page instead.

EVENTS

TRADITIONAL DOM
EVENT HANDLERS

See p252

DOM event handlers were
introduced in the original
specification for the DOM.
They are considered better than
HTML event handlers because
they let you separate the
JavaScript from the HTML.

Support in all major browsers is
very strong for this approach.
The main drawback is that you
can only attach a single function
to any event. For example, the
submit event of a form cannot
trigger one function that checks
the contents of a form, and a
second to submit the form data if
it passes the checks.

As a result of this limitation, if
more than one script is used on
the same page, and both scripts
respond to the same event, then
one or both of the scripts may
not work as intended.

DOM LEVEL 2 EVENT
LISTENERS

See p254

Event listeners were introduced
in an update to the DOM
specification (DOM level 2,
released in the year 2000).
They are now the favored way of
handling events.

The syntax is quite different and,
unlike traditional event handlers,
these newer event listeners allow
one event to trigger multiple
functions. As a result, there

are less likely to be conflicts
between different scripts that
run on the same page.

This approach does not work
with IE8 (or earlier versions of
IE) but you meet a workaround
on p258. Differences in
browser support for the DOM
and events helped speed
adoption of jQuery (but you
need to know how events work
to understand how jQuery uses
them).

HTML EVENT HANDLER
ATTRIBUTES (DO NOT USE)

Please note: This approach is In the HTML, the first <input> The value of the event handler

now considered bad practice; element has an attribute called attributes would be JavaScript.

however, you need to be aware onblur (triggered when the user Often it would call a function

of it because you may see it if leaves the element). The value of that was written either in the

you are looking at older code. the attribute is the name of the <head> element or a separate

(See previous page.) function that it should trigger. JavaScript file (as shown below).
c06/event-attributes.html

<form method="post" action="http://www.example.org/register">
<label for="username">Create a username: </label>
<input type="text" id="username" onblur="checkUsername()" />
<div id="feedback"></div>

<label for="password">Create a password: </label>
<input type="password" id="password" />

<input type="submit" value="Sign up!" />
</form>

<script type="text/javascript" src="js/event-attributes.js"></script>

JAVASCRIPT c06/js/event-attributes.js

function checkUsername() { // Declare function
var elMsg = document.getElementById('feedback'); // Get feedback element
var elUsername = document.getElementById('username');// Get username input
if (elUsername.value.length < 5) { // If username too short
elMsg.textContent = 'Username must be 5 characters or more'; // Set msg
} else { // Otherwise
elMsg.textContent = ''; // Clear message
}
}
The names of the HTML event For example:
handler attributes are identical ® <a>elements can have onclick, onmouseover, onmouseout
to the event names shown on ® <form>elements can have onsubmit
p246 - p247, preceded by ® <input>elements for text can have onkeypress, onfocus, onblur
the word "on."

EVENTS @

TRADITIONAL DOM
EVENT HANDLERS

All modern browsers understand this way of creating an event handler,
but you can only attach one function to each event handler.

Here is the syntax to bind an event to an element using an event handler,
and to indicate which function should execute when that event fires:

element .onevent = functionName;
L |

ELEMENT EVENT CODE

DOM element Event bound to node(s) MName of function to call (with
node to target preceded by word "on" no parentheses following it)

Below, the event handler is on When a function is called, the We don't want the code to

the last line (after the function parentheses that follow its name run until the event fires, so the
has been defined and the DOM tell the JavaScript interpreter to parentheses are omitted from
element node(s) selected). "run this code now." the event handler on the last line.

The code starts
by defining the

function checkUsername() { named function.
Kedarance // code to check the length of username e fanditon
to the DOM : is called by the
element node { var el = document.getElementById('username'); event handler on
isoftenstored @] ,onblur = checkUsername; the last line, but
in a variable. = the parentheses
The event name is preceded by the word "on." are omitted.

An example of an anonymous function and a function with parameters is shown on p256.

EVENTS

USING DOM EVENT
HANDLERS

2. The DOM element node is
stored in a variable. Here the text
input (whose id attribute has a
value of username) is placed into
a variable called elUsername.

In this example, the event
handler appears on the last line
of the JavaScript. Before the
DOM event handler, two things
are put in place:

1. If you use a named function
when the event fires on your

chosen DOM node, write that
function first. (You could also
use an anonymous function.)

JAVASCRIPT

[function checkUsername() {
var elMsg = document.getElementById('feedback'); // Get feedback element
if (this.value.length < 5) { // If username too short
elMsg.textContent = 'Username must be 5 characters or more'; // Set msg
O } else { // Otherwise
elMsg.textContent = ''; // Clear message

c06/js/event-handler.js

// Declare function

}
}

(@ var elUsername = document.getElementById('username');
(® elUsername.onblur = checkUsername;

When using event handlers, the
event name is preceded by the
word "on" (onsubmit, onchange,
onfocus, onblur, onmouseover,
onmouseout, etc).

3. On the last line of the code
sample above, the event handler
elUsername.onblur indicates
that the code is waiting for the
blur event to fire on the element
stored in the variable called
ellUsername.

This is followed by an equal sign,
then the name of the function
that will run when the event
fires on that element. Note that
there are no parentheses on the
function name. This means you
cannot pass arguments to this
function. (If you want to pass
arguments to a function in an
event handler, see p256.)

The HTML is the same as that
shown on p251 but without

the onbTur event attribute. This
means that the event handler is
in the JavaScript, not the HTML.

// Get username input
// When it Toses focus call checkuserName()

Browser support: On line 3,
the checkUsername () function
uses the this keywordin the
conditional statement to check
the number of characters the
user entered. It works in most
browsers because they know
this refers to the element the
event happened on.

However, in Internet Explorer

8 or earlier, |E would treat this
as the window object. As a
result, it would not know which
element the event occurred on
and there would be no value
that it checked the length of, so
it would raise an error. You will
learn a solution for this issue on
p264.

EVENTS @

EVENT LISTENERS

Event listeners are a more recent approach to handling events.
They can deal with more than one function at a time
but they are not supported in older browsers.

Here is the syntax to bind an event to an element using an event listener,
and to indicate which function should execute when that event fires:

Adds an event listener to the DOM element node(s)
METHOD
|

N 1
element .addEventListener('event', functionName [, Boolean]);

l_|_| | I] | I I 1 | !

ELEMENT EVENT CODE EVENT FLOW
DOM element Event to bind node(s) Name of function Indicates something called
node to target to in quote marks to call capture, and is usually set
to false (see p260)

The code starts

function checkUsername() { by defining the
named function.
P // code to check the length of username .
to the DOM :
element node—{ var el = document.getElementById('username'); ;sv(;ilﬁidsgéﬁn
isoftenstored g1, addEventListener('blur', checkUsername, false); inejast fine, but
in a variable. | | the parentheses
The event name is enclosed in quotation marks. are omitted.

An example of an anonymous function and a function with parameters is shown on p256.

EVENTS

LUSING EVENT LISTENERS

In this example, the event
listener appears on the last
line of the JavaScript. Before
you write an event listener, two
things are put in place:

JAVASCRIPT

[function checkUsername() {
var elMsg = document.getElementBylId('feedback'); // Get feedback element
if (this.value.length < 5) { // 1f username too short
o elMsg.textContent = 'Username must be 5 characters or more'; // Set msg

} else { // Otherwise

2. The DOM element node(s) is
stored in a variable. Here the text
input (whose id attribute has a
value of username) is placed into
avariable called elUsername.

1. If you use a named function
when the event fires on your

chosen DOM node, write that
function first. (You could also
use an anonymous function.)

c06/js/event-listener.js

// Declare function

}

L}

@ var elUsername = document.getElementById('username');

elMsg.textContent =

// When it loses focus call checkUsername()
elUsername.addEventListener('blur', checkUsername, false);

The addEventListener()
method takes three properties:

i) The event you want it to listen
for. In this case, the blur event.

ii) The code that you want it

to run when the event fires.

In this example, it is the
checkUsername () function. Note
that the parentheses are omitted
where the function is called
because they would indicate that
the function should run as the
page loads (rather than when the
event fires).

iii) A Boolean indicating how
events flow, see p260. (This is
usually set to false.)

® ®
BROWSER SUPPORT

Internet Explorer 8 and earlier
versions of IE do not support the
addEventListener() method,
but they do support a method
called attachEvent () and

you will see how to use this on
p258.

Also, as with the previous
example, IE8 and older versions
of IE would not know what this
referred to in the conditional
statement. An alternative
approach for dealing with it is
shown on p270.

// Clear msg

// Get username input

EVENT NAMES

Unlike the HTML and traditional
DOM event handlers, when you
specify the name of the event
that you want to react to, the
event name is not preceded by
the word "on".

If you need to remove an event
listener, there is a function called
removeEventListener() which
removes the event listener from
the specified element (it has the
same parameters).

EVENTS @

USING PARAMETERS WITH

EVENT HANDLERS
& LISTENERS

Because you cannot have parentheses after the
function names in event handlers or listeners,
passing arguments requires a workaround.

Usually, when a function needs When the interpreter sees the Therefore, if you need to pass

some information to do its job, parentheses after a function call, arguments to a function that is

you pass arguments within the it runs the code straight away. called by an event handler or

parentheses that follow the In an event handler, you want it listener, you wrap the function

function name. to wait until the event triggers it. call in an anonymous function.
Event name Start of anonymous function

1 I

The anonymous

The named function

includes parentheses ~ €1.addEventListener('blur', function() { | functionisused

containing the checkUsername(5) ;
parameter after the }, false);
function name. I

End of statement
End of addEventListener() method
Event flow Boolean (see p260)
End of anonymous function

The named function that Although the anonymous
requires the arguments lives function has parentheses, it only
inside the anonymous function. runs when the event is triggered.

@ EVENTS

as the second
argument. It "wraps
around" the named
function.

The named function can use
arguments as it only runs if the
anonymous function is called.

USING PARAMETERS WITH
EVENTISSTERBRS

The first line of this example shows the updated
checkUsername() function. The minLength
parameter specifies the minimum number of
characters that the username should be.

JAVASCRIPT

The value that is passed into the checkUsername ()
function is used in the conditional statement to
check if the name is long enough, and provide
feedback if the username name is too short.

c06/js/event-listener-with-parameters.js

var elUsername = document.getElementByld('username'); // Get username input
var elMsg = document.getElementById('feedback'); // Get feedback element

function checkUsername(minLength) {

// Declare function

if (elUsername.value,length < minLength) { // If username too short

// Set the error message

elMsg.textContent = 'Username must be ' + minLength + ' characters or more';

} else { // Otherwise
elMsg.innerHTML = ''; // Clear msg
}

}

elUsername.addEventListener('blur', function() { // When it loses focus

checkUsername (5) ;
}, false);

The event listener on the last three lines is longer
than the previous example because the call to the
checkUsername () function needs to include the
value for theminLength parameter.

// Pass arguments here

To receive this information, the event listener uses
an anonymous function, which acts like a wrapper.
Inside that wrapper the checkUsername() function is
called, and passed an argument.

Browser support: On the next page you also see
how to deal with the lack of support for event
listeners in IE8 and earlier,

EVENTS @

SUPPORTING OLDER
VERSIONS OF |E

IE5-8 had a different event model and did not support
addEventListener() but you can provide fallback code
to make event listeners work with older versions of |E.

|ES-IE8 did not support the addEventListener() Using an if...else statement, you can check if the
method. Instead, it used its own method called browser supports the addEventListener() method.
attachEvent () which did the same job, but was The condition in the i f statement will return true
only available in Internet Explorer. If you want to use if the browser supports the addEventListener()
event listeners and need to support Internet Explorer method, and you can use it. If the browser does not
8 or earlier, you can use a conditional statement as support that method, it returns false, and the code
illustrated below. will try to use the attachEvent () method.
If the browser supports . .
S if (el.addEventListener) {
el.addEventListener('blur', function() {
Run the code inside ChECkuserﬂamE(s) .
these curly braces ’
}, false);
If it doesn't, do } else {

something else:

el.attachEvent('onblur', function() {

Run the code inside checkUsername(S) A

these curly braces }) .
-]

When attachEvent () is used, the event name should be preceded by the word “on" (e.g., blur becomes onblur).
You will see another approach to supporting the older [E event model in Chapter 13 (using a utility file).

EVENTS

FALLBACK FOR USING
EVENRELISTENERS INIES

The event handling code builds on the last example,
but it is a lot longer this time because it contains the
fallback for Internet Explorer 5-8.

After the checkUsername() function, an if
statement checks whether addEventListener() is
supported or not; it returns true if the element node
supports this method, and false if it does not.

JAVASCRIPT

If the browser supports the addEventListener()
method, the code inside the first set of curly braces
is run using addEventListener().

If it is not supported, then the browser will use the
attachEvent() method that older versions of IE will
understand. In the |E version, note that the event
name must be preceded by the word "on."

c06/js/event-1istener-with-ie-fallback.js

var elUsername = document.getElementById('username'); // Get username input

var elMsg = document.getElementById('feedback');

function checkUsername(minLength) {

if (elUsername.value.length < minLength) ({

// Set message

// Get feedback element

// Declare function
// If username too short

elMsg.innerHTML = 'Username must be ' + minLength + ' characters or more';

} else {
elMsg.innerHTML L
}
}

if (elUsername.addEventListener) {

// Otherwise
// Clear message

- // If event 1istener supported

elUsername.addEventListener('blur', function(){// When username loses focus

checkUsername(5) ;
}, false);
} else {

elUsername.attachEvent('onblur', function(){

checkUsername (5) ;

1
}

If you need to support IE8 (or older), instead of
writing this fallback code for every event you are
responding to, it is better to write your own function
(known as a helper function) that creates the
appropriate event handler for you. You will see a
demonstration of this in Chapter 13, which covers
form enhancement and validation.

// Call checkUsername()

// Capture during bubble phase
// Otherwise

// IE fallback: onblur

// Call checkUsername()

It is, however, important to understand this syntax,
used by |IE8 (and older) so that you know why the
helper function is used and what it is doing.

As you will see in the next chapter, this is another
type of cross-browser inconsistency that jQuery can
take care of for you.

EVENTS

EVENT FLOW

HTML elements nest inside other elements. If you hover or click on a
link, you will also be hovering or clicking on its parent elements.

Imagine a list item contains a link. When you hover Event handlers/listeners can be bound to the

over the link or click on it, JavaScript can trigger containing <1i>, , <body>, and <html>

events on the <a> element, and also any elements elements, plus the document object, and the window
the <a> element sits inside. object. The order in which the events fire is known

as event flow, and events flow in two directions.

sragent®?

anses s Ra,,

EVENT BUBBLING EVENT CAPTURING
The event starts at the most specific node and flows The event starts at the least specific node and
outwards to the least specific one. This is the default flows inwards to the most specific one. This is not
type of event flow with very wide browser support. supported in Internet Explorer 8 and earlier.

cvents

WHY FLOW MATTERS

The flow of events only really matters when your code has event
handlers on an element and one of its ancestor or descendant elements.

The example below has event
listeners that respond to the
click event on each of the
following elements:

® One onthe element
® Oneontheelement

® Oneonthe<a>elementin
the list item

The event will show the HTML
content of that element in an
alert box, and event flow will tell
you which element the click is
registered upon first.

S

LISTKING

BUBBLE

For traditional DOM event handlers (and HTML event attributes), all
modern browsers default to using event bubbling rather than capturing.
With event listeners, the final parameter in the addEventListener()
method lets you choose the direction to trigger events:

® true = capturing phase

® false =bubbling phase (false is often a default choice because
capturing was not supported in IE8 or earlier.)

The event-flow. js file (shown on the left, and available in the
download code) demonstrates the difference between bubbling and
capturing. In this example, the event handlers have a value of false for
their last parameter indicating events should be followed in bubbling
phase. So the first alert box shows the content of the innermost <a>
element, and works its way out. You can also see the capturing version
in the download code.

JavaScript

JavaScript

<3 id="link">fresh figs

JavaScript

THE EVENT OBJECT

When an event occurs, the event object tells
you information about the event, and the
element it happened upon.

Every time an event fires, the

event object contains helpful

data about the event, such as:

® Which element the event
happened on

® Which key was pressed for a
keypress event

® What part of the viewport the
user clicked for a cTick event
(the viewport is the part of
the browser window that
shows the web page)

The event object is passed to
any function that is the event
handler or listener.

If you need to pass arguments

to a named function, the event
object will first be passed to the
anonymous wrapper function
(this happens automatically);
then you must specify it as a
parameter of the named function
(as shown on the next page).

When the event object is
passed into a function, it is often
given the parameter name e
(for event). It is a widely used
shorthand (and you see it
adopted throughout this book).

Note, however, that some
programmers also use the
parameter name e to refer to the
error object; so e may mean
event or error in some scripts.

Not only did IE8 have a different syntax for event listeners (as shown on p258), the event object in IE5-8 also
had different names for the properties and methods shown in the tables below, and the example on p265.

PROPERTY IE5-8 EQUIVALENT PURPOSE
target srcElement The target of the event (most specific element interacted with)
type ‘ type Type of event that was fired
cancelable not supported Whether you can cancel the default behavior of an element
METHOD IE5-8 EQUIVALENT PURPOSE

PROPERTY
preventDefault() returnValue Cancel default behavior of the event (if it can be canceled)

stopPropagation() cancelBubble

EVENTS

Stops the event from bubbling or capturing any further

EVENT LISTENER WITH NO PARAMETERS

@ ¢
function checkUsername(e) {

®var target = e.target; // get target of event

}

var el = document.getElementById('username');
el.addEventListener('blur', checkUsername, false);

1. Without you doing anything, 2. To here, where the function
a reference to the event object is defined. At this point, the

is automatically passed from parameter must be named.
the number 1, where the event It Is often given the name e for
listener calls the function... event.

EVENT LISTENER WITH PARAMETERS

@ ¢

-

@

3. This name can then be used
inside the function as a reference
to the event object. You can now
use the properties and methods
of the event object.

function checkUsername(e, minLength) {
@ var target = e.target; // get target of event

}

var el = document.getElementById('username');
el.addEventListener('blur', function(e){

checkUsername(e, 5);

}, false); (E ¢

1. The reference to the event 2. The reference to the event
object is automatically passed object can then be passed onto
to the anonymous function, the named function. It is given as
but it must be named in the the first parameter of the named
parentheses, function.

3. The named function receives
the reference to the event object
as the first parameter of the
method. 4, It can now be used by
this name in the named function.

EVENTS

THE EVENT OBJECT
IN IE5-8

Below you can see how you get the event object in |[E5-8.
It is not passed automatically to event handler/listener functions;
but it is available as a child of the window object.

On the right, an if statement function checkUsername(e) {
checks if the event object has if (le) {

been passed into the function. e = window.event;

As you saw on p168, the

existence of an object is]

treated as a truthy value, so the }

condition here is saying "if the
event object does not exist..."

In IE8 and less, e will not hold

an object, so the following code
block runs and e is set to be the
event object that is a child of the
window object.

GETTING PROPERTIES

Once you have a reference to var target;

the event object, you can get its target = e.target || e.srcElement;
properties using the technique

on the right. This works on short

circuit evaluation (see p169).

A FUNCTION TO GET THE TARGET OF AN EVENT

If you need to assign event function getEventTarget(e) {
listeners to several elements, if (le) {
here is a function that will return &

e = window.event;
areference to the element the }

event happened on.
return e.target || e.srcElement;

}

EVENTS

USING EVENT LISTENERS
WITH THE EVENT OBJECH

Here is the example that has been used throughout
the chapter so far with some modifications:

1. The function is called checkLength() rather than
checkUsername(). It can be used on any text input.
2. The event object is passed to the event listener.
The code includes fallbacks for IE5-8 (Chapter 13
demonstrates using helper functions to do this).

3. In order to determine which element the user
was interacting with, the function uses the event
object's target property (and for IE5-8 it uses the
equivalent srcElement property).

JAVASCRIPT

function checkLength(e, minLength) {
var el, elMsg;
if (le) {
e = window.event;
}
el = e.target || e.srcElement;
elMsg = el.nextSibling;

if (el.value.length < minLength) {

This function is now far more flexible than the
previous code you have seen in this chapter because:
1. It can be used to check the length of any text

input so long as that input is directly followed by an
empty element that can hold a feedback message
for the user. (There should not be space or carriage
returns between the two elements; otherwise, some
browsers might return a whitespace node.)

2. The code will work with IE5-8 because it tests
whether the browser supports the latest features (or
whether it needs to fallback to use older techniques).

c06/js/event-listener-with-event-object.js

// Declare function

// Declare variables

// 1f event object doesn't exist
// Use IE fallback

// Get target of event
// Get its next sibling

// If length is too short set msg

eIMsg.innerHTML = 'Username must be ' + minLength + ' characters or more';

} else {
elMsg.innerHTML = '';
}
}

// Otherwise
// Clear message

var elUsername = document.getElementById('username');// Get username input

if (elUsername.addEventListener) {

// 1f event listener supported

elUsername.addEventListener('blur', function(e) { // On blur event

checkUsername(e, 5);
}, false);
} else {

elUsername.attachEvent('onblur', function(e){

checkUsername(e, 5);

})s

// Call checkUsername()

// Capture in bubble phase
// Otherwise

// IE fallback onblur

// Call checkUsername()

EVENTS

EVENT DELEGATION

Creating event listeners for a lot of elements
can slow down a page, but event flow allows
you to listen for an event on a parent element.

If users can interact with a lot of
elements on the page, such as:
@ alot of buttons in the Ul

® along list

® every cell of a table

adding event listeners to each
element can use a lot of memory
and slow down performance.

Because events affect containing
(or ancestor) elements (due

to event flow - p260), you

can place event handlers on a
containing element and use the
event object’s target property
to find which of its children the
event happened on.

ADDITIONAL BENEFITS OF EVENT DELEGATION

WORKS WITH NEW
ELEMENTS

If you add new elements to the
DOM tree, you do not have to
add event handlers to the new
elements because the job has
been delegated to an ancestor.

EVENTS

By attaching an event listener
to a containing element, you are
only responding to one element
(rather than having an event
handler for each child element).

You are delegating the job of the
event listener to a parent of the
elements. In the list shown here,
if you place the event listener

on the element rather than
on links in each <1i> element,
you only need one event listener.
This gives better performance,
and if you add or remove items
from the list it would still work
the same. (The code for this
example is shown on p269.)

SOLVES LIMITATIONS
WITH this KEYWORD

Earlier in the chapter, the this
keyword was used to identify an
event's target, but that technique
did not work in IE8, or when a
function needed parameters.

.

LISTKING

BUY GROCERIES

pinenuts

honey

halsamic vinegar

SIMPLIFIES YOUR
CODE

It requires fewer functions
to be written, and there are

fewer ties between the DOM

and your code, which helps
maintainability.

CHANGING DEFAULT
BEHAVIOR

preventDefault()

Some events, such as clicking on
links and submitting forms, take
the user to another page.

To prevent the default behavior
of such elements (e.g., to keep
the user on the same page
rather than following a link

or being taken to a new page
after submitting a form), you
can use the event object's
preventDefault() method.

IE5-8 have an equivalent
property called returnValue
which can be set to false. A
conditional statement can check
if the preventDefault () method
is supported, and use IE8's
approach ifitisn't:

if (event.preventDefault) {
event.preventDefault();

} else {
event.returnValue = false;

}

The event object has methods that change:
the default behavior of an element and how
the element's ancestors respond to the event.

stopPropagation()

Once you have handled an
event using one element, you
may want to stop that event
from bubbling up to its ancestor
elements (especially if there
are separate event handlers
responding to the same events
on the containing elements).

To stop the event bubbling up,
you can use the event object's
stopPropogation() method.

The equivalent in IE8 and earlier
is the cancelBubble property
which can be set to true. Again,
a conditional statement can
check if the stopPropogation()
method is supported and use
IE8's approach if not:

if (event.stopPropogation) {
event.stopPropogation();

} else {
event.cancelBubble = true;

}

USING BOTH METHODS

You will sometimes see the
following used in similar
situations that are in a function:
return false;

It prevents the default behavior
of the element, and prevents

the event from bubbling up or
capturing further. It also works in
all browsers, so it is popular.

Note, however, when the
interpreter comes across the
return false statement, it stops
processing any subsequent code
within that function and moves
to the next statement after the
function was called.

Since this blocks any further
code within the function,

it is often better to use the
preventDefault() method of
the event object rather than
return false.

EVENTS

USING EVENT DELEGATION

This example will put together a lot of what you have
learned in the chapter so far. Each list item contains
a link. When the user clicks on that link (to indicate
they have completed that task), the item will be
removed from the list.

@ Thereis a screen grab of the example on p266.

® On theright there is a flowchart that helps
explain the order in which the code is processed.

® Theright-hand page has the code for the example

1. The event listener will be added to the
element, so this needs to be selected.

2. Check whether or not the browser supports
addEventListener().

3. If so, use it to call the itemDone() function when
the user clicks anywhere on that list.

4, |f not, use the attachEvent () method.

5. The itemDone() function will remove the item
from the list. It requires three pieces of information.
6. Three variables are declared to hold the info.

7. target holds the element the user clicked on.

To obtain this, the getTarget () function is called.
This is created at the start of the script, and shown
at the bottom of the flowchart.

8. elParent holds that element's parent (the <1i>)
9. elGrandparent holds that element’s grandparent
10. The <1i> element is removed from the <u1>
element.

11. Check if the browser supports preventDefault()
to prevent the link taking the user to a new page.
12. If so, use it.

13. If not, use the older |E returnValue property.

In the HTML, the links would take you to
itemDone.php if the browser did not support
JavaScript. (The PHP file is not supplied with the
code download because server-side languages are
beyond the scope of this book.)

EVENTS

o Get element for shopping list
4
]
Is
(2] addEventListener()
supported?
Use attachEvent() Use addEventListener()
& +

1 I
Event: click on any link in list
|

(s FUNCTION: itemDone()
Removes an item when completed

Create variables:

o target: the element that was clicked on
elParent: the parent of that element
elGrandparent: the grandparent of it

(7] Get element clicked on; call getTarget()
|

(&) Get its parent (the <11> element)
I

e Get its grandparent (the element)
¥
I

@ Remove <11> from element
v
i

1) Is preventDefault()

supported?
Use returnValue preventDefault()

FUNCTION: getTarget ()
Gets element user clicked on

Is there
no
event object?

Get target Get target of event using
of event old IE event object

c06/event-delegation.html

<ul id="shoppinglList">
<1i class="complete">fresh figs</1i>
<11 class="complete">pine nuts</1i>
<1i class="complete">honey</1i>
<1i class="complete">balsamic vinegar</1i>
c/u'i>

JAVASCRIPT c06/js/event-delegation.js

function getTarget(e) { // Declare function
if (le) { // 1f there is no event object
e = window.event; // Use old IE event object
}
return e.target || e.srcElement; // Get the target of event

}

(® function itemDone(e) { // Declare function

// Remove item from the 1list
var target, elParent, elGrandparent; // Declare variables
target = getTarget(e); // Get the item clicked 1ink
elParent = target.parentNode; // Get its 1ist item
elGrandparent = target.parentNode.parentNode; // Get its list
elGrandparent.removeChild(elParent); // Remove list item from 1ist

// Prevent the link from taking you elsewhere

® @@ GOEO®

if (e.preventDefault) f{ // 1f preventDefault() works
e.preventDefault(); "// Use preventDefault()

} else { // Otherwise
e.returnValue = false; // Use old IE version

}

}

// Set up event listeners to call itemDone() on click

(@ var el = document.getElementById('shoppinglList');// Get shopping Tist
@ if (el.addEventListener) { // If event listeners work
® el.addEventlListener('click', function(e) { // Add listener on click
itemDone(e); // 1t calls itemDone()
}, false); // Use bubbling phase for flow
} else { ' // Otherwise
@ el.attachEvent('onclick', function(e){ // Use old IE model: onclick
itemDone(e); // Call itemDone()
})s
}

EVENTS

WHICH ELEMENT DID AN
EVENT OCCUR ON?

When calling a function, the event object's target property is the best
way to determine which element the event occurred on. But you may see
the approach below used; it relies on the this keyword.

THE this KEYWORD

The this keyword refers to the
owner of a function. On the right,
this refers to the element that
the event is on.

This works when no parameters
are being passed to the function
(and therefore it is not called
from an anonymous function).

USING PARAMETERS

If you pass parameters to the
function, the this keyword no
longer works because the owner
of the function is no longer

the element that the event
listener was bound to, it is an
anonymous function.

You could pass the element the
event was called on as another
parameter of the function.

In both cases, the event object is
the preferred approach.

EVENTS

function checkUsername() {
var elMsg = document.getElementBylId('feedback');
if (this.value.length < 5) {
elMsg.innerHTML = 'Not long enough';
} else |{
eIMsg.innerHTML = '';
]
}

var el = document.getElementById('username');
el.addEventListener('blur', checkUsername, false);

1

It's like the function had been
written here rather than higher up

function checkUsername(el, minLength) {
var elMsg = document.getElementById('feedback');
if (el.value.length < minLength) {
elMsg.innerHTML = 'Not long enough';
} else {
elMsg.innerHTML = '';
}
}

var el = document.getElementById('username');

el.addEventListener('blur', function() {
checkUsername(el, 5);

}, false);

Events are defined in:

® The W3C DOM specification
® The HTML5 specification

® [nBrowser Object Models

W3C DOM EVENTS

The DOM events specification is
managed by the W3C (who also
look after other specifications
including HTML, CSS, and XML).
Most of the events you will meet
in this chapter are part of this
DOM events specification.

Browsers implement all the
events using the same event
object that you already met.

It also provides feedback such
as which element the event
occurred on, which key a user
pressed, or where the cursor is
positioned).

There are, however, some events
that are not covered in the DOM
event model - in particular those
that deal with form elements.
(They used to be part of the
DOM, but got moved to the
HTMLS specification.)

DIFFERENT TYPES
OF EVENTS

In the rest of the chapter, you learn about the
different types of events you can respond to.

Most are a result of the user
interacting with the HTML, but
there are a few that react to the
browser or other DOM events.

HTMLS EVENTS

The HTMLS specification

(that is still being developed)
details events that browsers are
expected to support that are
specifically used with HTML.
For example, events that are
fired when a form is submitted
or form elements are changed
(which you will meet on p282):

submit
input
change

There are also new events
introduced with the HTML5
specification that are only
supported by more recent
browsers. Here are a few (which
you will meet on p286):

readystatechange
DOMContentLoaded
hashchange

We do not show every event,
but the examples you see should
teach you enough so that you
can work with all types of events.

BOM EVENTS

Browser manufacturers also
implement some events as part
of their Browser Object Model
(or BOM). Typically these are
events not (yet) covered by
W3C specifications (although
some will be added to W3C
specifications in the future).
Several of these events dealt
with touchscreen devices:

touchstart
touchend
touchmove
orientationchange

Other events are being added
to capture gestures and take
advantage of accelerometers.
Care is needed using such
features, as different browsers
often create different
implementations of similar
functionality.

EVENTS <:>

USER INTERFACE EVENTS

User interface (Ul) events occur as a result of interaction with the
browser window rather than the HTML page contained within it,
e.g., a page having loaded or the browser window being resized.

The event handler / listener for In old HTML code, you may see these events used as attributes on the
Ul events should be attached to opening <body> tag. (For example, older code used the onload attribute
the browser window. to trigger code that would run when the page had loaded.)

EVENT TRIGGER BROWSER SUPPORT

load Fires when the web page has finished loading. The DOM Level 2 (Nov 2000) states that it fires
It can also fire on nodes of other elements that on the document object, but prior to this it fired
load, such as images, scripts, or objects. on the window object. Browsers support both for
backwards compatibility, and developers often
still attach 1oad event handlers to the window (not
document) object.

unload Fires when the web page is unloading (usually The DOM Level 2 states that it fires on the node

because a new page has been requested). for the <body> element, but in older browsers it
See also the beforeunload event (on p286) fired on the window object (this is often used for
which fires before the user leaves a page. backwards compatibility).

error Fires when the browser encounters a JavaScript Support for this event is inconsistent across
error or an asset doesn't exist. browsers and so it is not reliable for error handling,
a topic you learn more about in Chapter 10.

resize Fires when the browser window has been resized. Browsers repeatedly fire the resize event as the
window is being resized, so avoid using this event
to trigger complicated code because this might
make the page appear less responsive.

scroll Fires when the user has scrolled up or down the Browsers repeatedly fire the event as the window is
page. It can relate to the entire page or a specific scrolled, so avoid running complicated code as the
element on the page (such as a <textarea>that user scrolls.
has scrollbars).

@ EVENTS

The Toad event is commonly
used to trigger scripts that
access the contents of the page.
In this example, a function called
setup() gives focus to the text
input when the page has loaded.

JAVASCRIPT

function setup() {
var textInput;

The event is automatically raised
by the window object when a
page has finished loading the
HTML and all of its resources:
images, CSS, scripts (even third
party content e.g., banner ads).

LOAD

The setup() function would not
work before the page has loaded
because it relies on finding the
element whose id attribute has
a value of username, in order to
give it focus.

c06/js/1oad. js

// Declare function
// Create variable

textInput = document.getElementById('username');

textInput.focus();

}

// Get username input

// Give username focus

window.addEventListener('load', setup, false); // When page loaded call setup()

NEW ACCOUNT

Create a username:

Create a password:

Because the l1oad event only
fires when everything else on the
page has loaded (images, scripts,
even ads), the user already have
started to use the page before the
script has started to run.

Users particularly notice when a
script changes the appearance
of the page, changes focus, or
selects form elements after they
have started to use it. (It can
make a site look slower to load.)

Note that the event listener is
attached to the window object
(not the document object - as
this can cause cross-browser
compatibility issues).

If the <script>element is at the
end of the HTML page, then the
DOM would have loaded the
form elements before the script
runs, and there would be no
need to wait for the l1oad event.
(See also: the DOMContentLoaded
event on p286 and jQuery's
document.ready() method on
p312.)

Imagine this form had more
inputs; the user may be filling

in the second or third box when
the script fires - moving focus
back to the first box too late and
interrupting the user.

EVENTS 23?

FOCUS & BLUR EVENTS

The HTML elements you can interact with, such as links and form
elements, can gain focus. These events fire when they gain or lose focus.

If you can interact with an HTML element, then it
can gain (and lose) focus. You can also tab between
the elements that can gain focus (a technique often
used by those with visual impairments).

In older scripts, the focus and blur events were
often used to change the appearance of an element
as it gained focus, but now the CSS : focus pseudo-
class is a better solution (unless you need to affect
an element other than the one that gained focus).

The focus and blur events are most commonly used
on forms. They can be particularly helpful when:

® You want to show tips or feedback to users as
they interact with an individual element within a
form (the tips are usually shown in other elements
and not the one they are interacting with)

@ You need to trigger form validation as a user
moves from one control to the next (rather than
waiting for them to submit the entire form first)

EVENT TRIGGER FLOW

focus When an element gains focus, the focus event fires for that DOM node. Capture

b1ur When an elem;.r;;loses focus, the blur event fires for that DOM node. Capture

.;t.).;:usi n Same as focus (see above but not supported in Firefox at time of writing) Bubble & capture
focusout Same as blur (see above but not supported in Firefox at.t"[.r;w..;;f"wﬁting) ‘ Bubblegt capture

EVENTS

In this example, as the text input
gains and loses focus, feedback
is shown to the user in the <div>
element under the text input.
The feedback is given using two
functions.

FOCUS & BLUR

tipUsername() is triggered

when the text input gains focus.

It changes the class attribute
of the element containing the
message, and updates the
contents of the element.

checkUsername() is triggered
when the text input loses focus.
It adds a message and changes
the class if the username is less
than 5 characters; otherwise, it
clears the message.

c06/js/focus-blur.js

JAVASCRIPT

function checkUsername() {
var username = el.value;

// Declare function

// Store username in variable

if (username.length < 5) { // 1f username < 5 characters
elMsg.className = 'warning'; // Change class on message
elMsg.textContent = 'Not Tong enough, yet...';// Update message

} else { // Otherwise
elMsg.textContent = ''; // Clear the message

1
I

function tipUsername() f{ // Declare function
elMsg.className = 'tip'; // Change class for message
elMsg.innerHTML = 'Username must be at least 5 characters'; // Add message

}

var el = document.getElementById('username'); // Username input
var elMsg = document.getElementById('feedback');- // Element to hold message

// When the username input gains / lToses focus call functions above:

el.addEventListener('focus', tipUsername, false); // focus call tipUsername()
el.addEventListener('blur', checkUsername, false);// blur call checkUsername()

Create a username:

Max

1. Notlongenough, yet...

EVENTS @Eg

MOUSE EVENTS

The mouse events are fired when the mouse is moved and also when its
buttons are clicked.

All of the elements on a page support the mouse

events, and all of these bubble. Note that actions are

different on touchscreen devices.

Preventing a default behavior can have unexpected
results. E.g., a click event only fires when both the
mousedown and mouseup event have fired.

EVENT TRIGGER TOUCH

click Fires when the user clicks on the primary mouse button A tap on the touchscreen will be
(usually the left button if there is more than one). The click treated like a single left-click.
event will fire for the element that the mouse is currently
over. It will also fire if the user presses the Enter key on the
keyboard when an element has focus.

dblclick Fires when the user clicks the primary mouse button twice A double-tap will be treated as a
in quick succession. double left click.

mousedown Fires when the user clicks down on any mouse button. You can use the touchstart event.
(Cannot be triggered by keyboard.)

mouseup Fires when the user releases a mouse button. (Cannot be You can use the touchend event.
triggered by keyboard.)

mouseover Fires when the cursor was outside an element and is then Fires when the cursor is moved over
moved inside it. (Cannot be triggered by keyboard.) an element.

mouseout Fires when the cursor is over an element, and then moves Fires when the cursor is moved off an
onto another element - outside of the current element ora €lement.
child of it (Cannot be triggered by keyboard.)

mousemove Fires when the cursor is moved around an element, This Fires when the cursor is moved.

event is repeatedly fired. (Cannot be triggered by keyboard.)

WHEN TO USE CSS
The mouseover and mouseout events were often

used to change the appearance of boxes or to switch

images as the user rolls over them. To change the

appearance of the element, a preferable technique

would be to use the CSS :hover pseudo-class.

EVENTS

WHY SEPARATE MOUSEDOWN & UP?

The mousedown and mouseup events separate
out the press and release of a mouse button.

They are commonly used for adding drag and
drop functionality, or to add controls in game
development.

CHK

The aim of this example is to use Because the note is over the When the click event fires on
the c1ick event to remove the top of the page, we only want the close link the dismissNote()
big note that has been added to to show it to users who have function is called. This function
the middle of the page. But first, JavaScript enabled (otherwise will remove the note that was
the script has to create that note. they could not hide it). added by the same script.

JAVASCRIPT c06/js/click.js

// Create the HTML for the message

var msg = '<div class=\"header\">close X</div>';
msg += '<djv><h2>System Maintenance</h2>';

msg += 'Our servers are being updated between 3 and 4 a.m. ';

msg += 'During this time, there may be minor disruptions to service.</div>';

var elNote = document.createElement('div'); // Create a new element
elNote.setAttribute('id', 'note'); // Add an id of note
elNote.innerHTML = msg; // Add the message
document.body.appendChild(elNote); // Add it to the page
function dismissNote() { // Declare function
document .body.removeChild(elNote); // Remove the note

}

var elClose = document.getElementById('close'); // Get the close button
elClose.addEventListener('click', dismissNote, false);// Click close-clear note

ACCESSIBILITY

The click event can be applied
to any element, but it is better
to only use it on items that are
usually clicked or it will not be
accessible to people who rely

SYSTEM MAINTENANCE upon keyboard navigation.

Our servers are being updated between You may also be tempted to use
3and 4 a.m. During this time, there may the click event to run a script

, 4 : : when a user clicks on a form
be minor disruptions to service. -
element, but it is better to use

the focus event because that
fires when the user accesses
that control using the tab key.

EVENTS @

close X

WHERE EVENTS OCCUR

The event object can tell you where the cursor
was positioned when an event was triggered.

®

N

SCREEN

The screenX and screenY
properties indicate the position
of the cursor within the entire
screen on your monitor,
measuring from the top left
corner of the screen (rather than
the browser).

EVENTS

PAGE

The pageX and pageY properties
indicate the position of the
cursor within the entire page.
The top of the page may be
outside of the viewport so

even if the cursor is in the

same position, page and client
coordinates can be different.

CLIENT

The clientX and clientY
properties indicate the
position of the cursor within
the browser's viewport. If the
user has scrolled down and the
top of the page is no longer in
view, it will not affect the client
coordinates.

DETERMINING POSITION

In this example, as you move

your mouse around the screen,
the text inputs across the top of
the page are updated with the

current mouse position.

This demonstrates the three
different positions you can
retrieve when the mouse is
moved or when one of the
buttons is clicked.

Note how showPosition() is
passed event as a parameter,
which refers to the event object.
The positions are all properties
of this event object.

JAVASCRIPT

var
var
var
var
var
var

func
SX

Sy.
pX.
py.
CX

cy.

}

var el = document.getElementById('body');

SX
5Y =
px
Y =
CX
CY =

I

tion
.value
value
value
value
value
value

document.
document.
document.
document
document.
document.

event

event.
event.
event.
event.

fuinoa

getElementById('sx');
getElementById('sy');
getElementById('px');

.getElementById('py');

getElementById('cx');
getElementById('cy');

showPosition(event) {
event.

screenX;
.screenY;
pageX;
pageY;
clientX;
clientY;

// Element
// Element
// Element
// Element
// Element
// Element

// Declare
// Update
// Update
// Update
// Update
// Update
// Update

element

c06/js/position.js

to hold
to hold
to hold
to hold
to hold
to hold

function

with
element with
element with
element with
element with

element with

screenX
screenY
pageX
pageY
clientX
clientY

screenX
screenY
pageX
pageY
clientX
clientY

// Get body element
el.addEventListener('mousemove', showPosition, false); // Move updates position

J i clionux [N clientv: (3

sourdough bread

kale

almond

milk

mushrooms

EVENTS

KEYBOARD EVENTS

The keyboard events are fired when a user interacts with the keyboard
(they fire on any kind of device with a keyboard).

EVENT TRIGGER

input Fires when the value of an <input> or <textarea> element changes. First supported in IE9 (although
it does not fire when deleting text in IE9). For older browsers, you can use keydown as a fallback.

keydown Fires when the user presses any key on the keyboard. If the user holds down a key, the event
continues to fire repeatedly. This is important because it mimics what would happen in a text input
if the user holds down a key (the same character would be added repeatedly while the key is held
down).

keypress Fires when the user presses a key that would result in a character being shown on the screen. For
example, this event would not fire when the user presses the arrow keys, whereas the keydown event
would. If the user holds down a key, the event continues to fire repeatedly.

keyup Fires when the user releases a key on the keyboard. The keydown and keypress events fire before a
character shows on screen, whereas keyup fires after it appears.

The three events that begin key... fire in this order: WHICH KEY WAS PRESSED?

1. keydown - user presses key down

2. keypress - user has pressed or is holding a key
that adds a character into the page

3. keyup - user releases key

EVENTS

When you use the keydown or keypress events, the
event object has a property called keyCode, which
can be used to tell which key was pressed. However,
it does not return the letter for that key (as you might
expect): it returns an ASCII code that represents the
lowercase character for that key. You can see a table
of the characters and their ASCII codes in an online
“extra on the website accompanying this book.

If you want to get the letter or number as it would
be displayed on the keyboard (rather than an ASCII
equivalent), the String object has a built-in method
called fromCharCode () which will do the conversion
for you: String. fromCharCode(event.keycode);

WHICH KEY WAS PRESSED

In this example, the <textarea>
element should only have 180
characters. When the user
enters text, the script will show
them how many characters they
have left available to use.

The event listener checks for

the keypress event on the
<textarea> element. Each time
it fires, the charCount () function
updates the character count and
shows the last character used.

The input event would work well
to update the count when the
user pastes in text or uses keys
like backspace, but it does not
tell you which key was the last to
be pressed.

JAVASCRIPT

c06/js/keypress.js

var el; // Declare variables
function charCount(e) { // Declare function
var textEntered, charDisplay, counter, lastKey; // Declare variables

textEntered = document.getElementById('message').value; // User's text
charDisplay = document.getElementById('charactersLeft'); // Counter element

counter = (180 - (textEntered.length)); // Num of chars left
charDisplay.textContent = counter; // Show chars left
lastkey = document.getElementById('lastkey'): // Get last key used

lastkey.textContent = 'Last key in ASCII code: ' + e.keyCode; // Create msg
}
el = document.getElementById('message');
el.addEventListener('keypress', charCount, false);

// Get msg element
// keypress event

MY PROFILE

| like cooking and|

162
Last key in ASCIl code: 68

EVENTS

FORM EVENTS

There are two events that are commonly used with forms.
In particular you are likely to see submit used in form validation.

EVENT TRIGGER

submit When a form is submitted, the submit
event fires on the node representing the
<form=> element. It is most commonly
used when checking the values a user has
entered into a form before sending it to the
server.

change Fires when the status of several form

elements change. For example, when:

® aselection is made from a drop-down
select box

® aradio button is selected

® acheckbox is selected or deselected

It is often better to use the change event
rather than the c1ick event because
clicking is not the only way users interact
with form elements (for example, they

might use the tab, arrow, or Enter keys).

input The input event, which you saw on the
previous page is commonly used with
<input> and <textarea> elements.

FOCUS AND BLUR

The focus and blur events (which you met on
p274) are often used with forms, but they can also
be used in conjunction with other elements, such as
links (so they are not specifically related to forms).

@ EVENTS

.

LISTKING

MEMBERSHIP

Select a package:

@ Wise choice!

@ Checktoagreeto terms & conditions

* Youmustagree to the terms.

NEXT

VALIDATION

Checking form values is known as validation.

If users miss required information or enter incorrect
information, checking it using JavaScript is faster
than sending the data to the server for it to be
checked. Validation is covered in Chapter 13.

USING FORM EVENTS

When a user interacts with
the drop-down select box, the

When the form is submitted, the
checkTerms () function is called.

If not, the script will prevent
the default behavior of the

This tests to see if the user has
checked the box that indicates
they agree to the terms and
conditions.

form element (and stop it from

submitting the form data to the
server) and it will show an error
message to the user.

change event will trigger the
packageHint () function. This
shows messages below the
select box that reflect the choice.

JAVASCRIPT

var elForm, elSelectPackage, elPackageHint, elTerms; // Declare variables
el Form document.getElementById('formSignup'); // Store elements
elSelectPackage = document.getElementById('package');

c06/js/form. js

n

elPackageHint = document.getElementById('packageHint');
elTerms = document.getElementById('terms');
elTermsHint = document.getElementByld('termsHint');

function packageHint() {
var package = this.options[this.selectedIndex].value; // Get selected option
if (package == 'monthly') ({ // 1f monthly package
elPackageHint.innerHTML = 'Save $10 if you pay for 1 year!'s;//Show this msg
} else { // Otherwise
elPackageHint.innerHTML = 'Wise choice!'; // Show this message
}
}

// Declare function

function checkTerms(event) { // Declare function
if (lelTerms.checked) { // 1f checkbox ticked
elTermsHint.innerHTML = 'You must agree to the terms.'; // Show message
event.preventDefault(); // Don't submit form
}
}

//Create event listeners: submit calls checkTerms(), change calls packageHint()
elForm.addEventListener('submit', checkTerms, false);
elSelectPackage.addEventListener('change', packageHint, false);

EVENTS

MUTATION EVENTS &

OBSERVERS

Whenever elements are added to or removed from the DOM, its
structure changes. This change triggers a mutation event.

When your script adds or removes content from a
page it is updating the DOM tree. There are many
reasons why you might want to respond to the DOM
tree being updated, for example, you might want to
tell the user that the page had changed.

Below are some events that are triggered when

the DOM changes. These mutation events were
introduced in Firefox 3, IE9, Safari 3, and all versions
of Chrome. But they are already scheduled to be
replaced by an alternative called mutation observers.

EVENT TRIGGER
DOMNodeInserted Fires when a node is inserted into the DOM tree.

e.g. using appendChild(), replaceChild(), or insertBefore().
DOMNodeRemoved Fires when a node is removed from the DOM tree.

e.g. using removeChild() or replaceChild().

DOMSubtreeModi fied

Fires when the DOM structure changes.

It fires after the two events listed above occur.

DOMNodeInsertedIntoDocument Fires when a node is inserted into the DOM tree as a descendant of another
node that is already in the document.

DOMNodeRemovedFromDocument Fires when a node is removed from the DOM tree as a descendant of another
node that is already in the document.

PROBLEMS WITH MUTATION EVENTS

If your script makes a lot of changes to a page, you
end up with a lot of mutation events firing. This can
make a page feel slow or unresponsive. They can
also trigger other event listeners as they propagate
through the DOM, which modify other parts of the
DOM, triggering more mutation events. Therefore
they are being replaced by mutation observers.

Browser support: Chrome, Firefox 3, [E9, Opera 9,
Safari 3

EVENTS

NEW MUTATION OBSERVERS

Mutation observers are designed to wait until a
script has finished its task before reacting, then
report the changes as a batch (rather than one at

a time). You can also specify the type of changes

to the DOM that you want them to react to. But at
the time of writing, the browser support was not
widespread enough to use them on public websites.

Browser support: |E 11, Firefox 14, Chrome 27
(or 18 with webkit prefix), Safari 6.1, Opera 15
On mobile: Android 4.4, Safari oniOS 7.

USING MUTATION EVENTS

In this example, two event listeners each trigger The second event listener waits for the DOM tree
their own function. The first is on the last but one within the element to change. When the
line, and it listens for when the user clicks the link to DOMNodeInserted event fires, it calls a function
add a new list item. It then uses DOM manipulation called updateCount (). This function counts how
events to add a new element (changing the DOM many items there are in the list, and then updates
structure and triggering mutation events). the list count at the top of the page accordingly.

JAVASCRIPT c06/js/mutation. js

var ellList, addLink, newEl, newText, counter, listItems; // Declare variables

ellist = document.getElementById('list’'); // Get Tist

addLink = document.querySelector('a'); // Get add item button

counter = document.getElementById('counter'); // Get item counter

function addItem(e) { // Declare function
e.preventDefault(); // Prevent link action
newEl = document.createElement('1i'); // New <1i> element
newText = document.createTextNode('New 1ist item'); // New text node
newE] .appendChild(newText); // Add text to
elList.appendChild(newEl); // Add <1i> to list

}

function updateCount() { // Declare function
listitems = list.getElementsByTagName('1i').length; // Get total of s
counter.innerHTML = Tistitems; // Update counter

}

addLink.addEventListener('click', addItem, false); // Click on button

elList.addEventListener('DOMNodeInserted', updateCount, false); // DOM updated

BUY GROCERIES ©

fresh figs

ADDLISTITEM

EVENTS @

HTMLS EVENTS

Here are three page-level events that have been
included in versions of the HTMLS5 spec that
have become popular very quickly.

EVENT TRIGGER BROWSER SUPPORT

DOMContentLoaded Event fires when the DOM tree is formed (images, CSS, and . Chrome 0.2, Firefox 1,
JavaScript might still be loading). Scripts start to run earlier than IE9, Safari 3.1, Opera 9
using the Toad event which waits for other resources such as
images and advertisements to load. This makes the page seem
faster to load. However, because it does not wait for scripts to
load, the DOM tree will not contain any HTML that would have
been generated by those scripts. It can be attached to the window
or document objects.

hashchange Event fires when the URL hash changes (without the entire IE8, Firefox 20, Safari
window refreshing). Hashes are used on links to specific parts 5.1, Chrome 26, and
(sometimes known as anchors) within a page and also on pages Operal12.
that use AJAX to load content. The hashchange event handler
works on the window object, and after firing, the event object will
have 01dURL and newURL properties that hold the url before and

after the hashchange.
beforeunload Event fires on the window object before the page is unloaded. It Chrome 1, Firefox 1,
should only be used to help the user (not to encourage them to IE4, Safari 3, Opera 12

stay on a website if they are trying to leave). For example, it can be
helpful to let a user know that changes on a form they completed
have not been saved. You can add a message to the dialog box
that is shown by the browser, but you do not have control over the
text shown before it or on the buttons the user can press (which
can vary slightly between browsers and operating systems).

There are also several other events that are being introduced to support more recent devices (such as phones
and tablets). They respond to events such as gestures and movements that are based upon an accelerometer
(which detects the angle at which a device is being held).

EVENTS

USING HTMLS EVENTS

In this example, as soon as the
DOM tree has been formed,
focus is given to the text input
with an id of username.

JAVASCRIPT

function setup() {
var textInput;

The DOMContentLoaded event
fires before the 1oad event
(because the latter waits for all

of the page's resources to load).

textInput = document.getElementById('message');

textInput.focus();
}

If users try to leave the page
before they press the submit
button, the beforeunload event
checks that they want to leave.

06/js/html5-events.js

window.addEventListener('DOMContentLoaded', setup, false);

window.addEventListener('beforeunload', function(event){
return 'You have changes that have not been saved...';

}, false);

PROFILE

JavaScript

Are you sure you want to leave this page?

You have changes that have not been saved...

| Stay on Page

On the left, you can see the
dialog box that is shown when
you try to navigate away from
the page.

The text before your message
and on the buttons may change
from browser to browser (you
have no control over this).

EVENTS @

EXAMPLE

EVENTS

This example shows an interface for a user to
record voice notes. The user can enter a name
which is displayed in the heading, and they can
press record (which changes the image that is
shown).

When the user starts typing a name into the text box, the keyup event
will trigger a function called writeLabel () which copies the text from
the form input and writes it into the main heading under the logo for List
King, replacing the words 'AUDIO NOTE',

The record / pause button is a bit more interesting. The button has an
attribute called data-state. When the page loads, its value is record.
When the user presses the button, the value of this attribute changes to
pause (this triggers a new CSS rule to indicate that it is now recording).

If you have not used HTML5's data- attributes, they allow you to store
custom data on any HTML element. (The name of the attribute can be
anything starting with data- as long as the name is lowercase.)

This demonstrates a new technique based upon event delegation.

The event listener is placed upon the containing element whose id

is buttons. The event object is used to determine the value of the id
attribute on the element that was used. The value from that id attribute
is then used in a switch statement to decide which function to call
(depending on whether the button is in record state or pause state).

This is a good way to handle many buttons because it reduces the
number of event listeners in your code.

The event listeners are written at the bottom of the page, and they have
fallbacks for users who are running IE8 or less (which has a different
event model).

7
EVENTS (28 9}'
\\._./

EXAMPLE

EVENTS

The script starts by defining the The player functions (shown The event listeners live inside
variables that it will need to use, on the right-hand page) would a conditional statement so that
and then collecting the element appear next, and at the bottom the attachEvent () method can
nodes that are needed. of this page you can see the be used for visitors who have IE8
event listeners. or less.
c06/js/example.js
var username, noteName, textEntered, target; // Declare variables

noteName = document.getElementById('noteName'); // Element that holds note

function writeLabel(e) { // Declare function

¥ ve) 4 // If event object not present
e = window.event; // Use 1E5-8 fallback

}
target = event.target || event.srcElement; // Get target of event
textEntered = e.target.value; // Value of that element
noteName.textContent = textEntered; // Update note text

}

// This is where the record / pause controls and functions go...
// See right hand page

if (document.addEventListener) { // 1f event listener supported
document.addEventListener('click', function(e){// For any click document
recorderControls(e); // Call recorderControls()

}, false); // Capture during bubble phase

// If input event fires on username input call writelLabel()
username.addEventListener('input', writelLabel, false);

} else { // Otherwise
document.attachEvent('onclick', function(e){ // IE fallback: any click
recorderControls(e); // Calls recorderControls()

})s

// 1f keyup event fires on username input call writelabel()
username.attachEvent('onkeyup', writeLabel, false);

@ EVENTS

The recorderControls() function is automatically
passed the event object. Not only does this offer
code to support older versions of |E, but also stops
the link from performing its default behavior (of
taking the user to a new page).

JAVASCRIPT

function recorderControls(e) {
if (le) {
e = window.event;

}

EXAMPLE

EVENIES

The switch statement is used to indicate which
function to run depending on whether the user

is trying to record or stop the audio note. This
technique of delegation is a good way to cope with
multiple buttons in the UL

c06/js/example.js

// Declare recorderControls()
// 1f event object not present
// Use IE5-8 fallback

target = event.target || event.srcElement;// Get the target element

if (event.preventDefault) {
e.preventDefault();

} else |
event.returnValue = false;

}

// If preventDefault() supported

// Stop default action

// Otherwise

// 1E fallback: stop default action

switch(target.getAttribute('data-state')) { // Get the data-state attribute

case 'record':
record(target);
break;
case 'stop':
stop(target);
break;
// More buttons could go here...
}
}s

function record(target) {

// If its value is record

// Call the record() function

// Exit function to where called
// If its value is stop

// €all the stop() function

// Exit function to where called

// Declare function

target.setAttribute('data-state', 'stop'); // Set data-state attr to stop

target.textContent = 'stop';
}

function stop(target) {

// Set text to 'stop'

target.setAttribute('data-state', 'record');//Set data-state attr to record

target.textContent = 'record';

// Set text to 'record’

EVENTS

SUMMARY

EVENTS

jQuery offers a simple way to achieve a variety of common
JavaScript tasks quickly and consistently, across all major
browsers and without any fallback code needed.

SELECT ELEMENTS PERFORM TASKS HANDLE EVENTS

It is simpler to access jQuery's methods let you jQuery includes methods
elements using jQuery's update the DOM tree, that allow you to attach
CSS-style selectors than it animate elements into event listeners to selected
is using DOM queries. The and out of view, and loop elements without having
selectors are also more through a set of elements, to write any fallback code
powerful and flexible. all in one line of code. to support older browsers.

This chapter assumes that you have read the book up to this point or are familiar with the
basics of JavaScript. As you will see, jQuery is powerful when combined with traditional
JavaScript techniques, but you need to understand JavaScript to make full use of jQuery.

el o iSRS T .

F S—

e e b

_—

-

B il i T i M e B e e

LISTKING

GROCERIES

JQUERY

WHAT IS JQUERY?

jQuery is a JavaScript file that you include in your web pages.
It lets you find elements using CSS-style selectors and then do
something with the elements using jQuery methods.

1: FIND ELEMENTS USING CSS-STYLE SELECTORS

A function called jQuery() lets you find one or more elements in the page.
It creates an object called jQuery which holds references to those elements.
$() is often used as a shorthand to save typing jQuery(), as shown here.

FUNCTION (CREATES JQUERY OBJECT)
1

!$(:11'.h0t:)]

SELECTOR

The jQuery() function has one parameter: a CSS-style selector.
This selector finds all of the <1i> elements with a class of hot.

SIMILARITIES TO DOM

® jQuery selectors perform a similar task to traditional DOM queries, but the syntax is much simpler.

® You can store the jQuery object in a variable, just as you can with DOM nodes.

® You can use jQuery methods and properties (like DOM methods and properties) to manipulate the DOM
nodes that you select.

JQUERY

The jQuery object has many methods that you can use to work with the
elements you select. The methods represent tasks that you commonly
need to perform with elements.

2: DO SOMETHING WITH THE ELEMENTS USING JQUERY METHODS

Here a jQuery object is created by the jQuery() You can then use the methods of the jQuery object

function. The object and the elements it contains is to update the elements that it contains. Here, the

referred to as a matched set or a jQuery selection. method adds a new value to the class attribute.
JQUERY OBJECT METHOD

| |

$('1i.hot').addClass('complete');
| ¢ l |

MEMBER OPERATOR PARAMETER(S)
The member operator indicates that the method on Each method has parameter(s) that provide details
the right should be used to update the elements in about how to update the elements. This parameter
the jQuery object on the left. specifies a value to add to the class attribute.

KEY DIFFERENCES FROM DOM

It's cross-browser, and there's no need to write fallback code.

Selecting elements is simpler (because it uses CSS-style syntax) and is more accurate.

Event handling is simpler as it uses one method that works in all major browsers.

Methods affect all the selected elements without the need to loop through each one (see p310).
Additional methods are provided for popular required tasks such as animation (see p332).
Once you have made a selection, you can apply multiple methods to it.

JQUERY

A BASIC JQUERY EXAMPLE

The examples in this chapter
revisit the list application used in
the previous two chapters, and
they will use jQuery to update
the content of the page.

c07/basic-example.html

<body>
<div id="page"

1. In order to use jQuery, the first
thing you need to do is include
the jQuery script in your page.
You can see that it is included
before the closing </body> tag.

<hl id="header">List</hl>

<h2>Buy groceries</h2>

<11 id="one" class="hot">fresh figs</1i>

<li id="two" class="hot">pine nuts</1i>
<1i id="three" class="hot">honey</1i>
<1i id="four">balsamic vinegar

c/u]>
</div>

(@ <script src="js/jquery-1.11.0.js"></script>
(@ <script src="js/basic-example.js"></script>

</body>

WHERE TO GET JQUERY AND WHICH VERSION TO USE

Above, jQuery is included before
the closing </body> tag just like
other scripts. (Another way to
include the script is shown on
p355.) A copy of jQuery is
included with the code for this
book, or you can download it
from http://jquery.org.

The version number of jQuery
should be kept in the file name.
Here, it is jquery-1.11.0.js,
but by the time you read this
book, there may be a newer
version. The examples should
still work with newer versions.

JQUERY

You often see websites use a
version of the jQuery file with
the file extension .min. js.

It means unnecessary spaces
and carriage returns have been
stripped from the file. e.g.,
jquery-1.11.0.js becomes
jquery-1.11.0.min.js.

It is done using a p}'ocess called
minification (hence min is used
in the file name). The result is a
much smaller file which makes it
faster to download. But minified
files are much harder to read.

2. Once jQuery has been added
to the page, a second JavaScript
file is included that uses jQuery
selectors and methods to update
the content of the HTML page.

If you want to look at the
jQuery file, you can open it
with a text editor - it is just
text like JavaScript, albeit very
complicated JavaScript.

Most people who use jQuery do
not try to understand how the
jQuery JavaScript file achieves
what it does. As long as you
know how to select elements
and how to use its methods and
properties, you can reap the
benefits of using jQuery without
looking under the hood.

Here, the JavaScript file uses the
$() shortcut for the jQuery()
function. It selects elements and
creates three jQuery objects that
hold references to the elements.

JAVASCRIPT

@ $(
@ $('1i:
$('1i').on('click’,
$(th1s).remove();

OF

1. The first line selects all of the
<hl1> - <h6> headings, and adds
a value of headline to their
class attributes.

halsamic vinegar

The methods of the jQuery
object fade the list items in, and
remove them when they are
clicked on. Don't worry if you
don't understand the code yet.

' header) .addClass('headline');
1t(3) ') .hide().fadeIn(1500);
function() {

2. The second line selects the
first three list items and does
two things:

® The elements are hidden (in

order to allow the next step).

@ The elements fade into view.

First, you will learn how to select
elements using jQuery selectors,
and then how to update those
elements using the methods and
properties of the jQuery object.

c07/js/basic-example.js

3. The last three lines of the
script set an event listener on
each of the <1i> elements. When
a user clicks on one, it triggers an
anonymous function to remove
that element from the page.

Here is a reminder of the colors
used to convey the priority and
status of each list item:

e

JQUERY

WHY USE JQUERY?

jQuery doesn't do anything you cannot achieve with pure JavaScript.
It is just a JavaScript file but estimates show it has been used on over a
quarter of the sites on the web, because it makes coding simpler.

1: SIMPLE SELECTORS

As you saw in Chapter 5, which introduced the

DOM, it is not always easy to select the elements

that you want to. For example:

@ Older browsers do not support the latest
methods for selecting elements.

® |E does not treat whitespace between elements
as text nodes, while other browsers do.

Such issues make it hard to select the right elements
on a page across all major browsers,

Rather than learn a new way to select elements,

jQuery uses a language that is already familiar to

front-end web developers: CSS selectors. They:

® Are much faster at selecting elements

@ Can be a lot more accurate about which elements
to select

@ Often require a lot less code than older DOM
methods

® Are already used by most front-end developers

jQuery even adds some extra CSS-style selectors
which offer additional functionality.

Since jQuery was created, modern browsers

have implemented the querySelector() and
querySelectorAll() methods to let developers
select elements using CSS syntax. However, these
methods are not supported in older browsers.

JQUERY

2: COMMON TASKS IN LESS CODE

There are some tasks that front-end developers
need to do regularly, such as loop through the
elements that have been selected.

jQuery has methods that offer web developers
simpler ways to perform common tasks, such as:
@ Loop through elements

Add / remove elements from the DOM tree
Handle events

Fade elements into / out of view

Handle Ajax requests

jQuery simplifies each of these tasks, and allows you
to write less code to achieve them.

jQuery also offers chaining of methods (a technique
which you will meet on p311). Once you have
selected some elements, this allows you to apply
multiple methods to the same selection.

jQuery's motto is "Write less, do more," because it allows you to achieve
the same goals but in fewer lines of code than you would need to write

with plain JavaScript.

3: CROSS-BROWSER COMPATIBILITY

jQuery automatically handles the inconsistent ways
in which browsers select elements and handle
events, so you do not need to write cross-browser
fallback code (such as that shown in the previous
two chapters).

To do this, jQuery uses feature detection to find

the best way to achieve a task. It involves the use

of many conditional statements: if the browser
supports the ideal way to achieve a task, it uses that
approach; otherwise, it tests to see if it supports the
next best option to achieve the same task.

This was the technique used in the last chapter to
determine whether or not the browser supported
event listeners. If event listeners were not supported,
an alternative approach was offered (aimed at users
of Internet Explorer 8 and older versions of IE).

Is

querySelector()
supported?

Test if browser supports Great! Use this feature
the next best option as it is the best option

Here, a conditional statement checks if the browser
supports querySelector(). If it does, that method
is used. If it doesn't, it checks to see if the next best
option is supported and uses that instead.

JQUERY 1.9.X+ OR 2.0.X+

As jQuery developed, it built up a lot of code to
support IE6, 7, and 8; which made the script bigger
and more complicated. As version 2.0 of jQuery
was approaching, the development team decided to
create a version that would drop support for older
browsers in order to create a smaller, faster script.

The jQuery team was, however, aware that many
people on the web still used these older browsers,
and that developers therefore needed to support
them. For this reason, they now maintain two
parallel versions of jQuery:

jQuery 1.9+: Encompasses the same features as
2.0.x but still offers support for I[E6, 7, and 8

jQuery 2.0+: Drops support for older browsers to
make the script smaller and faster to use

The functionality of both versions is not expected to
diverge significantly in the short term.

The jQuery file name should contain the version
number in it (e.g., jquery-1.11.0.js or
Jjquery-1.11.0.min.js). If you don't do this, a
user's browser might try to use a cached version of
the file that is either older or newer - which could
prevent other scripts from working correctly.

JQUERY

FINDING ELEMENTS

Using jQuery, you usually select elements
using CSS-style selectors. It also offers some
extra selectors, noted below with a 'jQ".

BASIC SELECTORS

*

element

#id

.class

selectorl, selector?

HIERARCHY

ancestor descendant
parent > child

previous *+ next

previous ~ siblings

BASIC FILTERS

:not(selector)
:first
:last
.even

;odd
:eq(index)
:gt (index)
: 1t (index)
sheader
:animated
:focus

JQUERY

iQ
iQ
iQ
iQ
iQ
iQ
iQ
iQ
iQ

Examples of using these
selectors are demonstrated
throughout the chapter. The
syntax will be familiar to those
who have used selectors in CSS.

All elements

All elements with that element name

Elements whose id attribute has the value specified

Elements whose class attribute has the value specified
Elements that match more than one selector (see also the .add()
method, which is more efficient when combining selections)

An element that is a descendant of another element (e.g., 11 a)

An element that is a direct child of another element (you can use * in
the place of the child to select all child elements of the specified parent)
Adjacent sibling selector only selects elements that are immediately
followed by the previous element

Sibling selector will select any elements that are a sibling of the
previous element

All elements except the one in the selector (e.g., div:not (' #summary'))
The first element from the selection

The last element from the selection

Elements with an even index number in the selection

Elements with an odd index number in the selection

Elements with an index number equal to the one in the parameter
Elements with an index number greater than the parameter
Elements with an index number less than the parameter

All <h1> - <h6> elements

Elements that are currently being animated

The element that currently has focus

CONTENT FILTERS

:contains('text') Elements that contain the specified text as a parameter

sempty All elements that have no children

:parent iQ All elements that have a child node (can be text or element)
thas(selector) iQ Elements that contain at least one element that matches the selector

(e.g., div:has(p) matches all div elements that contain a <p> element)

VISIBILITY FILTERS

:hidden iQ All elements that are hidden

:visible iQ All elements that consume space in the layout of the page
Not selected if: display: none; height / width: 0; ancestor is hidden
Selected if: visibility: hidden; opacity: 0 because they would
take up space in layout

CHILD FILTERS

:nth-child(expr) The value here is not zero-based e.g. ul 1i:nth-child(2)
:first-child First child from the current selection

:last-child Last child from the current selection

zonly-child When there is only one child of the element (div p:only-child)

ATTRIBUTE FILTERS

[ettribute] Elements that carry the specified attribute (with any value)
[attribute="value'] Elements that carry the specified attribute with the specified value
[ottribute!="value"'] iQ Elements that carry the specified attribute but not the specified value
[ettribute”="value"'] The value of the attribute begins with this value
[ottribute="value'] The value of the attribute ends with this value
[attribute*="value'] The value should appear somewhere in the attribute value
[attribute | ="yalue'] Equal to given string, or starting with string and followed by a hyphen
[attribute~="value'] The value should be one of the values in a space separated list
lattribute] [attributez] Elements that match all of the selectors

FORM

:input iQ All input elements

stext jQ All text inputs

:password iQ All password inputs

:radio iQ All radio buttons

:checkbox iQ All checkboxes

ssubmit iQ All submit buttons

:image jle} All elements

:reset o] All reset buttons

:hutton iQ All <button> elements

:file iQ All file inputs

:selected jQ All selected items from drop-down lists

:enabled All enabled form elements (the default for all form elements)
:disabled All disabled form elements (using the CSS disabled property)

:checked All checked radio buttons or checkboxes

JQUERY

DOING THINGS WITH

YOUR SELECTION

Once you have seen the basics
of how jQuery works, most of
this chapter is dedicated to
demonstrating these methods.

These two pages both offer an
overview to the jQuery methods
and will also help you find the
methods you are looking for
once you have read the chapter.

You often see jQuery method
names written starting with a
period (.) before the name.

This convention is used in this
book to help you easily identify
those methods as being jQuery
methods rather than built-in
JavaScript methods, or methods
of custom objects.

When you make a selection, the
JQuery object that is created
has a property called 1ength,
which will return the number of
elements in the object.

If the jQuery selection did not
find any matching elements, you
will not get an error by calling
any of these methods - they just
won't do or return anything.

There are also methods that are
specifically designed to work
with Ajax (which lets you refresh
part of the page rather than an
entire page) shown in Chapter 8.

CONTENT FILTERS

Get or change content of
elements, attributes, text nodes

GET/CHANGE CONTENT

.html () p316
.text() p316
.replaceWith() p316
.remove() p316
ELEMENTS

.before() p318
.after() p318
.prepend() p318
.append() p318
.remove() p346
.clone() p346
.unwrap() p346
.detach() p346
.empty() p346
.add() p338
ATTRIBUTES

.attr() p320
.removeAttr() p320
.addClass() p320
.removeClass() p320
.css() p322

FORM VALUES

.val() p343
.isNumeric() p343

FINDING ELEMENTS

Find and select elements to
work with & traverse the DOM

GENERAL

.find()
.closest()
.parent()
.parents()
.children()
.siblings()
.next()
.nextA11()
.prev()
.prevAll()

FILTER/TEST

filter()
.not()
.has()
Lis()

scontains()

ORDER IN SELECTION

.eq()
at0)
.gt()

p336
p336
p336
p336
p336
p336
p336
p336
p336
p336

p338
p338
p338
p338
p338

p340
p340
p340

Once you have selected the elements you want to work with (and they
are in a jQuery object), the jQuery methods listed on these two pages

perform tasks on those elements.

DIMENSION/POSITION

Get or update the dimensions or
position of a box

DIMENSION

Lheight() p348
.width() p348
.innerHeight () p348
.innerWidth() p348
.outerHeight() p348
.outerWidth() p348

$ (document) . height () p350
$(document) .width() p350
$ (window) .height() p350
$ (window) .width() p350

POSITION

.offset() p351
.position() p351
.scrollLeft() p350
.scrol1Top() p350

EFFECTS & ANIMATION

Add effects and animation to

parts of the page

BASIC

.show() p332
.hide() p332
.toggle() p332
FADING

.fadeIn() p332
.fadeOut () p332
.fadeTo() p332
.fadeToggle() p332
SLIDING

.slideDown() p332
.slidelp() p332
.slideToggle() p332
CUSTOM

.delay() p332
.stop() p332

.animate()

EVENTS

Create event listeners for each
element in the selection

DOCUMENT/FILE

.ready() p312
.Toad() p313

USER INTERACTION
.on() p326

There used to be methods for
individual types of event, so

you may see methods such as
.click(), .hover(), .submit().
However, these have been
dropped in favour of the .on()
method to handle events.

A MATCHED SET /
JQUERY SELECTION

When you select one or more elements, a jQuery object is returned.
It is also known as a matched set or a jquery selection.

SINGLE ELEMENT

If a selector returns one element, the jQuery object
contains a reference to just one element node.

$('ul')

This selector picks the element from the page.

So the jQuery object contains a reference to just
one node (the only element in the page):

Each element is given an index number.
Here there is just one element in the object.

INDEX ELEMENT NODE
0 ul

MULTIPLE ELEMENTS

If a selector returns several elements, the jQuery O
object contains references to each element.

§('147)

This selector picks all the <1i> elements. Here, the
JQuery object has references for each of the nodes
that was selected (each <1i> element):

The resulting jQuery object contains four list items.
Remember that index numbers start at zero.

INDEX ELEMENT NODE

0 li#one.hot
Ti#two.hot
li#three.hot
Ti#four

1
2
3

JQUERY METHODS THAT
GET AND SET DATA

Some jQuery methods both retrieve information from, and update the
contents of, elements. But they do not always apply to all elements.

GET INFORMATION

If a jQuery selection holds more than one element,
and a method is used to get information from the
selected elements, it will retrieve information from
only the first element in the matched set.

In the list example we have been using, the following
selector chooses the four <1i> elements from a list.

$(*1i")

When you use the .html () method (which will be
introduced on p316) to get information from an
element, it will return the content of the first
element in the matched set.

var content = $('1i"').html();

This will retrieve the content of the first list item,
and store it in the variable called content.

To get a different element, you can use methods to
traverse (p336) or filter (p338) the selection, or
write a more specific selector (p302).

To get the content of all of the elements, see the
.each() method (p324).

SET INFORMATION

If a jQuery selection holds more than one element,
and a method is used to update information on
the page, it will update all of the elements in the
matched set, not just the first one.

When you use the . html () method (which you meet
on p316) to update the element, it will replace the
contents of each element in the matched set. Here,
it updates the content of each item in the list.

$('19").html ('Updated');

This will update the content of all of the list items in
the matched set with the word Updated.

To update just one element, you can use methods to
traverse (p336) or filter (p338) the selection, or
write a more specific selector (p302).

souERY

JQUERY OBJECTS STORE
REFERENCES TO ELEMENTS

When you create a selection with jQuery, it stores a reference to the
corresponding nodes in the DOM tree. It does not create copies of them.

As you have seen, when HTML pages load, the When you create a jQuery selection, the jQuery
browser creates a model of the page in memory. object holds references to the elements in the DOM
Imagine your browser's memory is a set of tiles: - it does not create a copy of them.
B3 Nodes in the DOM take up a tile When programmers say that a variable or object is
Variables take up atile storing a reference to something, what it is doing
Complex JavaScript objects may take is storing the location a piece of information in the
several tiles because they hold more data browser's memory. Here, the jQuery object would
know that the list items are stored in A4, B4, and
In reality, the items in the browser's memory are C4. Again, this is purely for illustration purposes;
not spread out as they are in this diagram, but the the browser's memory is not quite as simple as
diagram helps explain the concept. a checkerboard with these locations.

1------
. 2 0
11
o

0 ‘

The jQuery object is an array-like object because it stores a list of the elements in the same order that they
appear in the HTML document (unlike other objects where the order of the properties is not usually preserved).

JQUERY

CACHING JQUERY
SELECTIONS IN VARIABLES

A jQuery object stores references to elements.
Caching a jQuery object stores a reference to it in a variable.

To create a jQuery object takes time, processing
resources, and memory. The interpreter must:

1. Find the matching nodes in the DOM tree
2. Create the jQuery object
3. Store references to the nodes in the jQuery object

So, if the code needs to use the same selection
more than once, it is better to use that same jQuery
object again rather than repeat the above process.
To do this, you store a reference to the jQuery
object in a variable.

Below, a jQuery object is created. It stores the
locations of the <1i>elements in the DOMtree.

$('1iY);

A reference to this object is in turn stored in a
variable called $1istItems. Note that whena
variable contains a jQuery object, it is often given
a name beginning with the $ symbol (to help
differentiate it from other variables in your script).

$listItems = $('1i');

Caching jQuery selections is similar to the idea of storing a reference to a DOM node once you have made a

DOM query (as you saw in Chapter 5).

JQUERY

LOOPING

In plain JavaScript, if you wanted With jQuery, when a selector In this code, the same value is

to do the same thing to several returns multiple elements, you added to the class attribute for
elements, you would need to can update all of them using the all of the elements that are found
write code to loop through all of one method. There is no need to using the selector. It doesn't

the elements you selected. use a loop. matter if there are one or many.

c07/js/1ooping. js JAVASCRIPT

$('11 em').addClass('seasonal');
$('11.hot').addClass('favorite');

In this example, the first selector
RESULT
applies only to one element and _

the class attribute's new value

triggers a CSS rule that adds a oy :
calendar icon to the left of it. ffESh flgS

The second selector applies to pine nuts
three elements. The new value
added to the class attribute for
each of these elements triggers honey
a CSS rule that adds a heart icon
on the right-hand side.

balsamic vinegar

The ability to update all of the
elements in the jQuery selection
is known as implicit iteration.

When you want to get
information from a series of
elements, you can use the
.each() method (which you
meet on p324) rather than
writing a loop.

JQUERY

CHAINING

If you want to use more than In this one statement, three The process of placing several
one jQuery method on the same methods act on the same methods in the same selector is
selection of elements, you can selection of elements: referred to as chaining. As you
list several methods at a time hide() hides the elements can see, it results in code that is
using dot notation to separate delay() creates a pause far more compact.

each one, as shown below. fadeIn() fades in the elements

JAVASCRIPT c07/js/chaining.js

$('1i[id!="one"]"').hide().delay(500).fadeIn(1400);

To make your code easier to
RESULT y

read, you can place each new
method on a new line:

fresh figs

$('1i[id!="one"]")

.hide()

pine nuts .delay(500)
.fadeIn(1400);

hUﬂBy Each line starts with the dot

notation, and the semicolon
at the end of the statement
indicates that you have finished
working with this selection.

balsamic vinegar

Most methods used to update
the jQuery selection can be
chained. However the methods
that retrieve information from
the DOM (or about the browser)
cannot be chained.

It is worth noting that if one

method in the chain does not
work, the rest will not run either.

JQUERY @

CHECKING A PAGE IS
READY TO WORK WITH

jQuery's .ready () method checks that the
page is ready for your code to work with.

When the page is ready, the

$ (document) creates a jQuery function inside the parentheses
object representing the page. of the .ready() method is run.
JQUERY OBJECT READY EVENT METHOD

$ (document) .ready(function() {
// Your script goes here

O F

As with plain JavaScript, if the If you place a script at the end of If you wrap your jQuery code
browser has not yet constructed the page (just before the closing in the method above, it will still
the DOM tree, jQuery will not be </body> tag), the elements will work when used elsewhere on
able to select elements from it. be loaded into the DOM tree. the page or even in another file.

A shorthand for this is shown on the right-hand page. It is more commonly used than this longer version.

@ JQUERY

THE load EVENT

jQuery had a .1oad() method. It
fired on the 1oad event, but has
been replaced by the .on().

As you saw on p272, the Toad
event fires after the page and all
of its resources (images, CSS,
and scripts) have loaded.

You should use this when your
script relies on assets to have
loaded, e.g., if it needs to know
the dimensions of an image.

It works in all browsers, and also
provides function-level scope
for the variables it contains.

THE .ready() METHOD

jQuery’s .ready () method
checks if the browser supports
the DOMContentLoaded event,
because it fires as soon as the
DOM has loaded (it does not
wait for other assets to finish
loading) and can make the page
VS appear asif it is loading faster.
If DOMContentLoaded is
supported, jQuery creates an
event listener that responds to
that event. But the event is only
supported in modern browsers.
In older browsers, jQuery will
wait for the Toad event to fire.

SHORTCUT FOR READY EVENT METHOD
ON DOCUMENT OBJECT

$(function() {
// Your script goes here

ks

Above, you can see

the shorthand that is
commonly used instead of
$ (document) .ready()

A positive side-effect of writing
jQuery code inside this method
is that it creates function-level
scope for its variables.

VS

PLACING SCRIPTS BEFORE
THE CLOSING </body> TAG

When you place your script at
the end of the page (before the
closing </body> tag), the HTML
will have loaded into the DOM
before the script runs.

You will, however, still see
people using the .ready()
method because scripts that
use it will still work if someone
moves the script tag elsewhere
inthe HTML page. (This is
particularly common when that
script is being made available
for other people to use.)

This function-level scope
prevents naming collisions with
other scripts that might use the
same variable names.

Any statements inside the method automatically run when the page has loaded.
This is the version that will be used in the examples in the rest of the chapter.

GETTING ELEMENT

CONTENT

The .htm1() and .text() methods both retrieve and update the content
of elements. This page will focus on how to retrieve element content. To
learn how to update element content, see p316.

html ()

When this method is used to retrieve information
from a jQuery selection, it retrieves only the HTML
inside the first element in the matched set, along
with any of its descendants.

Forexample, $('ul').html () ; will return this:
<li id="one">fresh figs</1i>

<li id="two">pine nuts</1i>

<li id="three">honey</1i>

<11 id="four">balsamic vinegar
Whereas $('1i') .htm1 () ; will return this:
fresh figs

Note how this returns only the content of the first

<1i>element.

If you want to retrieve the value of every element,
you can use the .each() method (see p324).

JQUERY

.text ()

When this method is used to retrieve the text from
a jQuery selection, it returns the content from every
element in the jQuery selection, along with the text
from any descendants.

For example, $('ul').text(); will return this:
fresh figs

pine nuts

honey

balsamic vinegar

Whereas $('1i"').text(); will return this:
fresh figspine nutshoneybalsamic vinegar
Note how this returns the text content of all <1i>
elements (including spaces between words), but

there are no spaces between the individual list items.

To get the content from <input> or <textarea>
elements, use the .val () method shown on p343,

GETTING AT CONTENT

On this page you can see variations on how the .htm1 () and .text() Please note: The .append()
methods are used on the same list (depending on whether or <1i> method (covered on p318) lets
elements are used in the selector). you add content to the page.

c07/is/get-html-fragment.js

var $1istHTML = $('ul"').htm1();
$('ul').append($1istHTML); pinenuts

freshifigs

The selector returns the element. The .html () method gets all the honey

HTML inside it (the four <11> elements). This is then appended to the
end of the selection, in this case after the existing <1i> elements.

c07/js/get-text-fragment.js pine nuts

var $listText = $('ul').text(); honey
$('ul').append('<p>' + $listText + '</p>');
balsamicvinegar

The selector returns the <u1> element. The .text () method gets the
text from all of the <ul=> element'’s children. This is then appended to the

end of the selection, in this case after the existing element.

cossjset-mni-noe. 35 [E—

var $1istItemHTML = $('1i').html1(); pine nuts e s
$('1i').append('<i>' + $listItemHTML + '</i>'); i
honey rressis

The selector returns the four <1i> elements, but the .html () method
returns only the contents of the first one. This is then appended to the

end of the selection, in this case after each existing <1i> element.

balsamic Vinegar sesh rigs

JAVASCRIPT c07/js/get-text-node.js freshigs restrepie

var $listItemText = $('1i').text(); RGNS ke bt
$('1i').append('<i>"' + $listItemText + '</i>'); ;

honey seshriz

The selector returns the four <1i> elements. The .text () method gets
the text from these. This is then appended to each of the <1i> elements
in the selection.

balsamic Vinegar weshrizspinenutstooe

JQUERY @

UPDATING ELEMENTS

Here are four methods that update the content
of all elements in a jQuery selection.

When the .html () and .text()
methods are used as setters (to
update content) they will replace
the content of each element in
the matched set (along with any
content and child elements).

The .replaceWith() and
.remove () methods replace and
remove the elements they match
(as well as their content and any
child elements).

The .htm1(), .text(), and
.replaceWith() methods can
take a string as a parameter.
The string can:

® Be storedin avariable

@ Contain markup

When you add markup to the
DOM, be sure to escape all
untrusted content properly on
the server. Both the .htm1 () and
.replaceWith() methods carry
the same security risks as using
the DOM's innerHTML property.
See p228 - p2310n XSS.

JQUERY

html ()

This method gives every element
in the matched set the same new
content. The new content may
include HTML.

.replaceWith()

This method replaces every
element in a matched set with
new content. It also returns the
replaced elements.

.text ()

This method gives every element
in the matched set the same new
text content. Any markup would
be shown as text.

.remove()

This method removes all of the
elements in the matched set.

USING A FUNCTION TO UPDATE CONTENT

If you want to use and amend the content of the current selection,
these methods can take a function as a parameter. The function can be
used to create new content. Here the text from each element is placed

inside tags.

$("1i.hot').html (function() |

return '' + $(this).text() + '';

Q@ ——g—— =

1. return indicates that content should be returned by the function.

2. tags are placed around the text content of the list item.

3. this refers to the current list item. $(this) places that element ina
new jQuery object so that you can use jQuery methods on it.

CHANGING CONTENT

JAVASCRIPT

$(function() {

In this example, you can see
three methods that allow you to
update the content of the page.

@ $('1i:contains("pine")').text('almonds');
$('1i.hot").html (function() {
return '' + $(this).text() + '';

1
® $('li#one').remove();
s

1. This line selects any list items
that contain the word pine. It
then changes the text of the
matching element to almonds
using the .text () method.

almonds

honey

balsamic vinegar

2. These lines select all list items
whose class attribute contains
the word hot, and uses the

.htm1 () method to update the
content of each of them.

When updating the content of
an element, you can use a string,
a variable, or a function.

¢07/js/changing-content. js

The .htm1 () method uses a
function to place the content

of each element inside an
element. (See the bottom of the
left-hand page for a closer look
at the syntax.)

3. This line selects the <1i>
element that has an id attribute
whose value is one, then uses
the remove () method to remove
it. (This does not require a
parameter.)

When specifying new content,
carefully choose when to use
single quotes and when to use
double quotes. If you append a
new element that has attributes,
use single quotes to surround
the content. Then use double
quotes for the attribute values
themselves.

JQUERY @

INSERTING ELEMENTS

Inserting new elements involves two steps:
1: Create the new elements in a jQuery object
2: Use a method to insert the content into the page

You can create new jQuery
objects to hold text and markup
that you then add to the DOM
tree using one of the methods
listed in step 2 on the right.

If you create a selection that
returns multiple elements, these
methods will add the same
content to each of the elements
in the matched set.

When adding content to the
DOM, make sure you have
escaped all untrusted content
properly on the server. (See
p228 - p231on XSS.)

.before() .after()
item</1i>
.prepend() .append()

JQUERY

1. CREATING NEW ELEMENTS IN A JQUERY OBJECT

The following statement creates a variable called $newFragment and
stores a jQuery object in it. The jQuery object is set to contain an empty
element: var $newFragment = §('<1i>');

The following statement creates a variable called $newltem and stores a
jQuery object in it. This jQuery object in turn contains an <1i> element
with a class attribute and some text:

var $newltem = $('<1i class="new">item</1i>');

2: ADDING THE NEW ELEMENTS TO THE PAGE

Once you have a variable holding the new content, you can use the
following methods to add the content to the DOM tree:

.before() .after()

This method inserts content This method inserts content
before the selected element(s). after the selected element(s).

.append()

This method inserts content
inside the selected element(s),
before the closing tag.

.prepend()

This method inserts content
inside the selected element(s),
after the opening tag.

There are also .prependTo() and .appendTo() methods. They work the
other way around from .prepend() and .append(). So:

a.prepend(b) addsbtoa
a.prependTo(b) addsatob

a.append(b) addsbtoa
a.appendTo(b) addsatob

ADDING NEW CONTENT

In this example, you can see The first adds a new notice
three jQuery selections are before the list, the second
made. Each selection uses a adds a + symbol before the hot
different method to amend the items, and the third adds a new
content of the list. element to the end of the list.

JAVASCRIPT c07/js/adding-new-content. js

$(function() {
@® $('ul').before('<p class="notice">Just updated</p>');
@ $('1i.hot').prepend('+ ');
var $newListItem = §('gluten-free soy sauce</1i>');
$('1i:Tast').after($newListItem);
1)z

1. The element is selected, 2. Selects all <1i> elements 3. A new <1i> element is created

and the .before() method is whose class attribute contains and stored in a variable. Then

used to insert a new paragraph a value of hot and uses the the last <1i>element is selected,

before the list. .prepend() method to add a and the new element is added
plus symbol (+) before the text. using the .after() method.

« freshfigs
+ pine nuts
+honey

balsamic vinegar

gluten-freesoy sauce

JQUERY

GETTING AND SETTING
ATTRIBUTE VALUES

You can create attributes, or access and update
their contents, using the following four methods.

You can work with any attribute
on any element using the attr()
and removeAttr() methods.

If you use the attr() method to
update an attribute that does not
exist, it will create the attribute
and give it the specified value.

The value of the class attribute
can hold more than one class
name (each separated by a
space). The addClass() and
removeClass() methods are
very powerful because they let
you add or remove an individual
class name within the value of
the class attribute (and they
do not affect any other class
names).

JQUERY

Jatirl)

This method can get or set a
specified attribute and its value.
To get the value of an attribute,
you specify the name of the
attribute in the parentheses.

$("1ifone').attr("id');

To update the value of an
attribute, you specify both the
attribute name and its new value.

$("1i#one’).attr('id', 'hot');

.addClass()

This method adds a new value
to the existing value of the class
attribute. It does not overwrite
existing values.

.removeAttr()

This method removes a specified
attribute (and its value). You just

specify the name of the attribute

that you want to remove from the
element in the parentheses,

$('1i#one') . .removeAttr('id');

.removeClass()

This method removes a value
from the class attribute, leaving
any other class names within
that attribute intact.

These two methods are another good example of how jQuery adds
helpful functionality commonly needed by web developers.

The statements in this example
use jQuery methods to change
the class and id attributes of
the specified HTML elements.

JAVASCRIPT

$(function() {

WORKING WITH
ATTRIBUTES

When the values of these
attributes change, new CSS rules
are applied to the elements,
changing how they look.

@ $('1i#three').removeClass('hot');
@ $('1i.hot').addClass('favorite');
® $('ul').attr('id', 'group');

})s

1. The first statement finds

the third list item (it has an id
attribute with a value of three)
and removes hot from the class
attribute on that element. This
is important to note because it
affects the next statement.

2. The second statement selects
all <1i> elements whose class
attribute has a value of hot. It
adds a new class name called
favorite. Because step 1 updated
the third list item, this statement
affects only the first two.

BUY GROCERIES

freshfigs

pine nuts

honey

balsamic vinegar

Using events to trigger changes
to attribute values that apply

new CSS rules is a popular way
to make a web page interactive.

c07/js/attributes.js

3. The third statement selects
the element and adds an

id attribute, giving it a value of
group (which triggers a CSS rule
that will add a margin and border
to the <ul1> element).

JQUERY @

GETTING & SETTING
CSS PROPERTIES

The .css () method lets you retrieve
and set the values of CSS properties.

To get the value of a C5S
property, you indicate which
property you want to retrieve in
parentheses. If the matched set
contains more than one element,
it will return the value from the
first element.

To set the values of a CSS
property, you specify the
property name as the first
argument in the parentheses,
then a comma, followed by its
value as the second argument.
This will update every element
in the matched set. You can also
specify multiple properties in the
same method using object literal
notation.

Note: In the method used to

set an individual property, the
property name and its value are
separated by a comma (because
all parameters in a method are
separated by a comma).

In the object literal notation,
properties and their values are
separated by a colon.

@ JQUERY

HOW TO GET A CSS PROPERTY

This will store the background color of the first list item in a variable
called backgroundColor. The color will be returned as an RGB value.

var backgroundColor = $('1i').css('background-color');

HOW TO SET A CSS PROPERTY

This will set the background color of all list items. Note how the CSS
property and its value are separated using a comma instead of a colon.

$('1i').css('background-color', '#272727');

When dealing with dimensions that are specified in pixels, you can
increase and decrease the values using the += and -= operators.

$('19').css('padding-left', '+=20');

SETTING MULTIPLE PROPERTIES

You can set multiple properties using object literal notation:

® Properties and values are placed in curly braces

@ A colonis used to separate property names from their values

® A comma separates each pair (but there is not one after the last pair)
This sets the background color and typeface for all list items.

$('14').css({
'background-color': '#272727',
‘font-family': 'Courier’

1s

CHANGING CSS RULES

This example demonstrates how
the .css() method can be used
to select and update the CSS
properties of elements.

The script checks what the
background color of the first list
item is when the page loads and
then writes it after the list.

Next, it updates several CSS
properties in all list items using
the same .css() method with
object literal notation.

JAVASCRIPT

$(function() {

(@ var backgroundColor = $('11').css('background-color');
@ $('ul').append('<p>Color was: ' + backgroundColor + '</p>');
- $0MTiY)0ess(

'background-color': '#c5a996',

'border': 'lpx solid #fff',
GH ‘color': '#000',
"font-family': 'Georgia’,
'padding-Teft': '+=75'

c07/js/css.is

L 1)
1

1. The backgroundColor variable
is created. The jQuery selection
contains all <1i> elements, and
the .css () method returns the
value of the background-color
property of the first list item.

2. The background color of

the first list item is written into
the page using the .appendT()
method (which you met on
p318). Here, it is used to add
content after the element.

Color was: rgh(215,102,107)

3. The selector picks all <1i>
elements, and then the .css()
method updates several
properties at the same time:

® The background color is
changed to brown

@ A white border is added

® The color of the text is
changed to black

® The typeface is changed to
Georgia

® Extra padding is added on
the left

Note: It is better to change the
value of a class attribute (to
trigger new CSS rules in the style
sheet) rather than to change
CSS properties from within the
JavaScript file itself.

JQUERY (:)

WORKING WITH EACH
ELEMENT IN A SELECTION

jQuery allows you to recreate the functionality
of a loop on a selection of elements, using the

.each() method.

You have already seen several
jQuery methods that update all
of the elements in a matched set
without the need for a loop.

There are, however, times when
you will want to loop through
each of the elements in the
selection. Often this will be to:

® Get information from each
element in the matched set.

@ Perform a series of actions on
each of the elements.

The .each() method is provided
for this purpose. The parameter
of the .each() methodis a
function. This could be an
anonymous function (as shown
here) or a named function,

JQUERY

.each()

Allows you to perform one or
more statements on each of
the items in the selection of
elements that is returned by a
selector - rather like a loop in
JavaScript.

It takes one parameter:

a function containing the
statements you want to run on
each element.

|—®—1r—®—1
$('11").each(function() {
var ids = this.id;

this or $(this)

As the .each() method goes
through the elementsina
selection, you can access the
current element using the this
keyword.

You also often see $(this),
which uses the this keyword to
create a new jQuery selection
containing the current element.
It allows you to use jQuery
methods on the current element.

$(this).append(' <em class="order">' + ids + '');

3

1. The jQuery selection contains all of the <1i> elements.
2. .each() applies the same code to each element in the selection.
3. An anonymous function is run for each of the items in the list.

Since this refers to the current
node, if you want to access a
property of that node, e.g,, that
element's id or class attributes,
it is better to use plain JavaScript
to access those attributes:

ids = this.id;

It is more efficient than writing
ids = $(this).attr('id');
because this would involve
the interpreter creating a new
jQuery object, and then using
a method to access info that is
available as a property.

This example creates a jQuery
object containing all of the list
items from the page.

JAVASCRIPT

$(function() {

@ $('1i').each(function() {

@ var ids = this.id;

® $(this).append(' '

}s
DR

1. The selector creates a jQuery
object containing all <1i>
elements. The .each() method
calls an anonymous function
for each of the list items in the
matched set.

fresh figs one
pine nuts two

honey three

USING .EACHQ)

The .each() method is then
used to loop through the list
items and run an anonymous
function for each of them.

2. The this keyword refers to
the current element node in the
loop. It is used to access the
value of the current element's
id attribute, which is stored in a
variable called ids.

balsamic vinegar four

The anonymous function takes
the value from the id attribute
on the <1i>element and adds it
to the text in the list item.

c07/js/each.js

+ ids + '');

3. $(this) is used to create a
jQuery object that contains the
current element in the loop.

Having the element in a jQuery
object enables you to use jQuery
methods on that element. In

this case the .append () method
is used to add a new
element to the current list item.

The content of that element
is the value of its id attribute,
which was obtained in step 2.

JQUERY @

EVENT METHODS

The .on() method is used to handle all events.
Behind the scenes, jQuery handles all of the
cross-browser issues you saw in the last chapter.

Using the .on() method is no
different than using any other
jQuery method; you:

@ Use aselector to create a
jQuery selection.

® Use .on() toindicate which

event you want to respond to.

It adds an event listener to

each element in the selection.

.on() was introduced inv 1.7
of jQuery. Prior to that, jQuery
used separate methods for
each event, e.g., .click()

and . focus (). You may come
across them in older code, but
you should only use the .on()
method now.

JQUERY

$('1i').on('click', function() {
$(this).addClass('complete'); %D
1)s

1. The jQuery selection contains all of the <11> elements.

2.The .on() method is used to handle events. It needs two parameters:
3. The first parameter is the event you want to respond to. Here it is the
click event.

4. The second parameter is the code you want to run when that event
occurs on any element in the matched set. This could be a named
function or an anonymous function. Above, it is an anonymous function
that adds a value of complete to the class attribute.

You will see more advanced options for this method on p330.

JQUERY EVENTS

Some of the most popular events that .on() deals with are listed below.
jQuery also added some extras to make life easier, such as ready, which
fires when the page is ready to be worked with. These are noted with a
pink asterisk: *

ul focus, blur, change

KEYBOARD input, keydown, keyup, keypress

MOUSE click, dblclick, mouseup, mousedown,
mouseover, mousemove, mouseout, hover*

FORM submit, select, change

DOCUMENT ready*, load, unload*

BROWSER error, resize, scroll

The same happens if the user
clicks on a list item (because

mouseover does not work on

touchscreen devices).

In this example, when the
mouse moves over a list item,
the content of its id attribute is
written into the list item.

JAVASCRIPT

$(function() {

var ids = ;
@ var $listItems = $('1i');

$1istItems.on('mouseover click', function() {

ids = this.id;
@ $listItems.children('span').remove();

L s
$1istItems.on('mouseout', function() {
©5 $(this).children('span').remove();

L)

1

1. The selector finds all list
items on the page. The resulting
jQuery object is used more than
once, so it is stored in a variable
called $1istItems.

pine nuts two

honey

balsamic vinegar

2. The .on() method creates an
event listener, which waits for
when the user moves a mouse
over a list item or clicks on it. It

triggers an anonymous function.

ENENTS

The mouseout event also
removes this extra information
from the page to prevent the
added content building up.

c07/js/events.js

$(this).append(' ' + ids + '');

Note how the two events are
specified in the same set of
quote marks, with a space
between them.

The anonymous function:

@ Gets the value of the id
attribute on that element.

® Removes elements
from all of the list items.

@ Adds the value of the id
attribute to the list item in
a new element.

3. The .mouseout () method
triggers the removal of any child
 elements to prevent
build-up of added values.

JQUERY @

THE EVENT OBJECT

Every event handling function receives an event object.
It has methods and properties related to the event that occurred.

Just like the JavaScript event
object, the jQuery event object
has properties and methods that
tell you more about the event
that took place.

If you look at the function that
is called when the event occurs,
the event object is named in
the parentheses. Like any other
parameter, this name is then
used within the function to refer
to the event object.

The example on the right uses
the letter e as shorthand for
the event object. However, as
noted in the previous chapter,
you should be aware that this
shorthand is also often used for
the error object.

@ JQUERY

®
$('1i").on('click" function(e) {
eventType = e.type;

1 @06

1. Give the event object a parameter name.

2. Use that name in the function to reference the event object.

3. Access the properties and methods of the object using the familiar
dot notation (the member operator).

PROPERTY DESCRIPTION

type Type of event, (e.g, click, mouseover)

which Button or key that was pressed

data An obiject literal containing extra information
passed to the function when the event fires
(See right-hand page for an example)

target DOM element that initiated the event

pageX Mouse position from left edge of viewport

pageY Mouse position from top of viewport

timeStamp Number of milliseconds from Jan 1st, 1970,
to when the event was triggered (this is known
as Unix Time). Does not work in Firefox.

METHOD DESCRIPTION

.preventDefault() Prevents the default (e.g., submitting a form)

.stopPropagation() Stopsthe event bubbling up to ancestors

In this example, when users click

on a list

event happened on is written
next to that item, along with the
type of event that triggered it.

item, the date that the

JAVASCRIPT

$(function() {

$('1i').on('click' function(e) {

H
Hs

1. Any elements that
already exist inside the <1i>
elements are removed.

$('11 span').remove();
var date = new Date();
date.setTime(e.timeStamp);

EVENIE

To achieve this, two properties of
the event object will be used:
timeStamp states when the
event occurred; type states the
kind of event that triggered it.

var clicked = date.toDateString();
$(this).append('' + clicked + "' '

freshfigs

pine nuts wed Apr 16 2014 click

honey

halsamic vinegar

2. A new Date object is created,
and its time is set to the time at
which the event was clicked.

CIBJECA

To prevent the list from
becoming cluttered with multiple
date entries, whenever a list item
is clicked, any elements
will be removed from the list.

c07/js/event-object.js

+ e.type + '');

3. The time the event was
clicked is then converted into a
date that can be read.

4. The date that the list item
was clicked is written into the
list item (along with the type of
event that was used).

Note that the timeStamp
property does not display in
Firefox.

JQUERY @

ADDITIONAL PARAMETERS
FOR EVENT HANDLERS

The .on() method has two optional properties that let you:
Filter the initial jQuery selection to respond to a subset of the elements;
Pass extra information into the event handler using object literal notation.

Here you can see two additional
properties that can be used with
the .on() method.

1. This is the event(s) that you
want to respond to. If you want
to respond to more than one
event, you can provide a space-
separated list of event names,
e.g., 'focus click' will work on
both focus and click.

When square brackets are used
inside a method, they signify that
the parameter is optional.

2. If you just want to respond
to the event happening on a
subset of the elements in the
initial jQuery selection, you can
provide a second selector that
will filter its descendants.

Leaving out a parameter written
in square brackets will not stop
the method working.

3. You can pass extra
information to the function
that is called when the event
is triggered. This information
is passed along with the event
object (e).

.on(events[, selector][, data], function(e));
|_®_4|—® 4 @)

4. This is the function that
should be run when the specified
events occur on one of the
elements in the matched set.

JQUERY

5. The function is automatically
passed the event object as a
parameter, as you saw on the
previous two pages. (Remember,
if you use it you must give it a
name in the parentheses.)

—@— @

Older jQuery scripts may use
the .delegate() method for
delegation. However, since
jQuery 1.7 .on() is the preferred
approach to delegation.

DELEGATING EVENTS

In this example, the event It writes out the content of the The information passed in the
handler will run when users click element the user interacted with, data property here uses object
or mouseover items in the list, a status message (using the data literal notation (so it could
except for the last list item. property), and the event type. handle multiple properties).

JAVASCRIPT c07/js/event-delegation.js

$(function() {
var listItem, itemStatus, eventType;

$('ul').on(
'click mouseover',
":not (#four) ',
{status: 'important'},

®
@
®
function(e) {
(:}{ listItem = 'Item: ' + e.target.textContent + '<hr />';
)i

itemStatus = 'Status: ' + e.data.status + '<bhr />';

eventType = 'Event: ' + e.type;

$('#notes') .html (TistItem + itemStatus + eventType);
}

1. The. event handler is triggered
by c1ick and mouseover events.

hnney 2. The selector parameter
filters out the element whose id
attribute has a value of four.

- balsamic vinegar

3. Additional data that will be
used by the event handler is
Item: honey passed in as an object literal.
Status:important
Event: mouseover 4, The event handler uses the
event object to display the
content of the element the user
interacts with, the information
There is an extra element in the HTML for this example to hold the data from the data that was passed
that appears under the list. into the function, and the event
type, under the list in a white box.

JQUERY @

EFFELTS

When you start using jQuery, the effects methods can enhance your web
page with transitions and movement.

Here you can see some of the
jQuery effects that show or hide
elements and their content. You
can animate them fading in and
out, or slide them up and down.

When an element that was
previously hidden is shown,
faded in, or slides into view, the
other elements on the page may
move to make space for it.

When an element is hidden, has
been faded out, or has slid out of
view, the other elements on the
page can move into the space
these elements took up.

Methods with toggle in their
name will look at the current
state of the element (whether
it is visible or hidden) and will
switch to the opposite state.

Increasingly it is possible to
create animations using CSS3.
They are often faster than their
jQuery counterparts, but they
only work in recent browsers.

BASIC EFFECTS

METHOD DESCRIPTION

.show() Displays selected elements

.hide() Hides selected elements

.toggle() Toggles between showing and hiding selected elements

FADING EFFECTS

METHOD DESCRIPTION

.fadeln() Fades in selected elements making them opaque

. fadeOut () Fades out selected elements making them transparent
.fadeTo() Changes opacity of selected elements

.fadeToggle() Hides or shows selected elements by changing their
opacity (the opposite of their current state)

SLIDING EFFECTS

METHOD DESCRIPTION
.s1ideUp() Shows selected elements with a sliding motion
.slideDown() Hides selected elements with a sliding motion

.s1ideToggle() Hidesor shows selected elements with a sliding
motion (in the opposite direction to its current state)

CUSTOM EFFECTS

METHOD DESCRIPTION

.delay() Delays execution of subsequent items in queue
.stop() Stops an animation if it is currently running
.animate() Creates custom animations (see p334)

BASIC EFFECTS

In this example, it appears as In fact, the items are loaded Once hidden, only then are they

if list items are faded into view normally along with the rest of faded into view. This is so they
when the page loads. Each item the page, but then immediately will still be visible in browsers that
is faded out when it is clicked on. hidden using JavaScript. do not have JavaScript enabled.

JAVASCRIPT c07/js/effects.js

$(function() {
@ $('h2').hide().s1ideDown();
var $1i = $('11');
$11.hide().each(function(index) {
@}[$(this).delay(700 * index).fadeIn(700);
1
$1i.on('click', function() {
©F $(this).fadeOut(700);
E¥s
b3

1. In the first statement, the 2. The second part causes the Inside the anonymous function,

selector picks the <h2> element list of items to appear one by the index property acts as a

and hides it so that it can be one. Again, before they can be counter indicating which <1i>

animated in. The chosen effect faded in, they must be hidden. element is the current one.

to show the heading is the Then the .each() method is

.s1ideDown() method. Note used to loop through each of The .delay() method creates

how the methods are chained; the <1i> elements in turn. You a pause before the list item

there is no need to make a new can see that this triggers an is shown. The delay is set,

selection for each of the tasks. anonymous function. multiplying the index number by

700 ms (otherwise all of the list

items would appear at the same

time). Then it is faded in using
the fadeIn() method.

freshfigs

3. The final part creates an event
listener that waits for the user to
pine nuts click on a list item. When they
do, it will fade that item out to
remove it from the list (the fade
will take 700 milliseconds).

JQUERY @

ANIMATING CSS
PROPERTIES

The .animate() method allows you to create
some of your own effects and animations by

changing CSS properties.

You can animate any CSS
property whose value can be
represented as a number, e.g.,
height, width, and font-size.
But not those whose value would
be a string, such as font-family
or text-transform.

The CSS properties are written
using camelCase notation, so the
first word is all lowercase and
each subsequent word starts

with an uppercase character, e.g.:

border-top-left-radius would
become horderTopLeftRadius.

.animate({

// Styles you want to change

The CSS properties are specified
using object literal notation (as
you can see on the right-hand
page). The method can also
take three optional parameters,
shown below.

Y[, speed] [, easing][, complete]);

J L fi\ J L

1. speed indicates the duration of
the animation in milliseconds. (It
can also take the keywords slow
and fast.)

&/

2. easing can have two values:
linear (the speed of animation
is uniform); or swing (speeds up
in the middle of the transition,
and is slower at start and end).

3. completeis used to call a
function that should run when
the animation has finished. This
is known as a callback function.

EXAMPLES OF JQUERY EQUIVALENTS OF CSS PROPERTY NAMES

bottom left right top
maxHeight minHeight

outlineWidth
fontSize TletterSpacing

borderBottomWidth

marginTop

JQUERY

backgroundPositionX

maxWidth
padding
wordSpacing

borderLeftWidth

minWidth
paddingBottom

margin

lineHeight
borderRightWidth

backgroundPositionY

marginBottom
paddinglLeft
textIndent

height width

marginLeft
paddingRight
borderRadius

marginRight
paddingTop
borderWidth

borderTopWidth borderSpacing

In this example, the .animate()
method is used to gradually
change the values of two CSS
properties. Both of them have
numerical values: opacity and
padding-left.

JAVASCRIPT

$ (function() {

When the user clicks on a list
item, it fades out and the text
content slides to the right.
(This takes 500ms.) Once
that is complete, a callback
function removes the element.

$('1i').on('click', function() {

$(this).animate({

}, 500, function() {

(:}[opacity: 0.0,
paddinglLeft: '+=80'

®

@

$(this).remove();
DR
i
1s

1. All list items are selected and,
when a user clicks on one of
them, an anonymous function
runs. Inside it, $ (this) creates
a new jQuery object holding
the element the user clicked on.
The .animate() method is then
called on that jQuery object.

pine nuts

balsamic vinegar

2. Inside the .animate()
method, the opacity and
paddingleft are changed.

The value of the paddingLeft
property is increased by 80
pixels, which makes it look like
the text is sliding to the right as it
fades out.

USING ANIMATION

You can increase or decrease
numeric values by a specific
amount. Here, +=80 is used to
increase the padding property
by 80 pixels. (To decrease it by
80 pixels, you would use -=80.)

c07/js/animate.js

3. The .animate() method has
two more parameters. The first
is the speed of the animation

in milliseconds (in this case,
500ms). The second is another
anonymous function indicating
what should happen when the
animation finishes.

4. When the animation has
finished, the callback function
removes that list item from
the page using the . remove()
method.

If you want to animate between
two colors, rather than using the
.animate() method, there is a
helpful jQuery color plugin here:

https://github.com/jquery/
jquery-color

JQUERY @

TRAVERSING THE DOM

When you have made a jQuery selection, you
can use these methods to access other element
nodes relative to the initial selection.

Each method finds elements

that have a different relationship
to those that are in the current
selection (e.g., parents or
children of the current selection).

The .find() and .closest()
methods both require a CSS-
style selector as an argument.

For the other methods, the CSS-
style selector is optional. But if

a selector is provided, both the
method and selector must match
in order for the element to be
added to the new selection.

For example, if you start with

a selection that contains one
list item, you could create a new
selection containing the other
items from the list using the
.siblings() method.

If you added a selector into the
method such as this:
.siblings('.important')
then it would find only siblings
with a class attribute whose
value included important.

JQUERY

SELECTOR REQUIRED

METHOD DESCRIPTION

.find() All elements within current selection that match selector

.closest() Nearest ancestor (not just parent) that matches selector

SELECTOR OPTIONAL

METHOD DESCRIPTION

.parent() Direct parent of current selection
.parents() All parents of current selection
.children() All children of current selection

.siblings() All siblings of current selection

.next() Next sibling of current element
.nextA11() All subsequent siblings of current element
.prev() Previous sibling of current element
.prevAll() All previous siblings of current element

If the original selection contains multiple elements, these methods will
work on all of the elements in the selection (which can result in quite an
odd selection of elements). You may need to narrow down your initial
selection before traversing the DOM.

Behind the scenes, jQuery will handle the cross-browser inconsistencies
involved in traversing the DOM (such as whitespace nodes being added
by some browsers).

When the page loads, the list is
hidden, and a link is added to the
heading that indicates the users
can display the list if they wish.

$(function() {
var $h2 = $('h2');
$('ul').hide();

TRAVERSING

The link is added inside the
heading and, if the user clicks
anywhere on the <h2> element,
the element is faded in.

$h2.append('<a>show');

$h2.next()
.fadeIn(500)

$h2.on('click', function() {

.children('.hot')
.addClass('complete');
$h2.find('a').fadeOut();

@O®O®EE

) 5
1)

1. A click event anywhere in
the <h2> element will trigger an
anonymous function.

2. The .next() method is used
to select the next sibling after
the <h2> element, which is the
 element.

3. The <ul=>is faded into view.
4, The .children() method
then selects any child elements
of the <u1> element, and the
selector indicates that it should
pick only those whose class
attribute has a value of hot.

@

LISTKING

BUY GROCERIES suow

Any child <11> elements that
have a class attribute whose
value is hot are also given an
extra value of complete.

c07/js/traversing.js

5. The .addClass() method

is then used on those <1i>
elements to add a class name of
complete. This shows how you
can chain methods and traverse
from one node to another.

6. In the last step, the . find()
method can be used to select
the <a> element that is a child
of the <h2> element and fade it
out because the list is now being
shown to the users.

JQUERY @

ADD & FILTER ELEMENTS
IN A SELECTION

Once you have a jQuery selection, you can add more elements to it,
or you can filter the selection to work with a subset of the elements.

The .add() method allows you
to add a new selection to an
existing one.

The second table on the right
shows you how to find a subset
of your original selection.

The methods take another
selector as a parameter and
return a filtered matched set.

The items in this table that
begin with a colon can be used
wherever you would use a CSS-
style selector.

The :not() and :has() selectors
take another CSS-style selector
as a parameter. There is also

a selector called :contains()
that lets you find elements that
contain specific text.

The .is() method lets you

use another selector to check
whether the current selection
matches a condition. If it does, it
will return true. This is helpful in
conditional statements.

JQUERY

ADDING ELEMENTS TO A SELECTION
METHOD DESCRIPTION

.add() Selects all elements that contain the text specified
(parameter is case sensitive)

FILTERING WITH A SECOND SELECTOR
METHOD / SELECTOR DESCRIPTION

.filter() Finds elements in matched that in turn match
a second selector
find() Finds descendants of elements in matched set

that match the selector

.not() / :not() Finds elements that do not match the selector

Finds elements from the matched set that
have a descendant that matches the selector

.has() / :has()

Selects all elements that contain the text
specified (parameter is case sensitive)

:contains()

The following two selectors are equivalent:
$('1i').not("'.hot').addClass('cool");
$('1i:not(.hot)').addClass('cool');

In browsers that support querySelector() / querySelectorAll(),
:not () is faster than .not () and :has() is faster than .has()

TESTING CONTENT

METHOD DESCRIPTION

.is() Checks whether current selection matches a condition
(returns Boolean)

ElETERS HN-USE

This example selects all list
items and then uses different
filters to select a subset of the
items from the list to work with.

The example uses both the
filtering methods as well as
the CSS-style pseudo-selector
:not ().

JAVASCRIPT

var $listItems = $('1i');
() $listltems.filter('.hot:last').removeClass('hot');
@ $('1i:not(.hot)').addClass('cool');
(3® $listitems.has('em').addClass('complete’);

$1istItems.each(function() {
var $this = $(this);
if ($this.is('.hot')) {
$this.prepend('Priority item: ');
}
1)i

® $('1i:contains("honey")').append(' (local)');

1. The .filter() method finds
the last list item with a class
attribute whose value is hot.

It then removes that value from
the class attribute.

2.The :not() selector is used
within the jQuery selector to find
<1i> elements without a value of
hot in their c1ass attribute and
adds a value of cool.

Priority ltem: freshfigs

Priority ltem: pine nuts

 honey (local)

 balsamic vinegar

Once the filters have selected
a subset of the list items, other
jQuery methods are used to
update them.

c07/is/filters.js

3. The .has() method finds the
<1i> element that has an
element within it and adds the
value complete to the class
attribute.

4. The .each() method loops
through the list items. The
current element is cached in

a jQuery object. The .is()
method looks to see if the <1i>
element has a class attribute
whose value is hot. If it does,
'Priority item: 'isaddedto
the start of the item.

5.The :contains selector
checks for <1i> elements that
contain the text "honey" and
appends the text" (local)" to
the end of those items.

JQUERY

FINDING ITEMS BY ORDER

Each item returned by a jQuery selector is given
an index number, which can be used to filter

the selection.

The jQuery object is sometimes
referred to as being an array-like
object because it assigns a
number to each of the elements
that is returned by a selector.
That number is an index number,
which means it starts at 0.

You can filter the selected
elements based on this number
using methods or these
additional CSS-style selectors
that jQuery has added.

Methods are applied to the
jQuery selection, whereas
selectors are used as part of the
CSS-style selector.

On the right, you can see a
selector which picks all of the
<1i> elements from the list
example used throughout this
chapter. The table shows each
list item and its corresponding
index number. The example

on the next page will use these
numbers to select list items and
update their class attributes.

JQUERY

FINDING ELEMENTS BY INDEX NUMBER
METHOD / SELECTOR DESCRIPTION

.eq() The element that matches the index number

:1t() Elements with an index less than the number
specified

:gt() Elements with an index greater than the

$('1i")

INDEX HTML

number specified

0 <li id="one" class="hot">fresh figs</1i>

1 <1i id="two" class="hot">pine nuts</1i>

2 <1i id="three" class="hot">honey</1i>

3 <11 id="four">balsamic vinegar</1i>

USING INDEX NUMBERS

This example demonstrates how
jQuery gives an index number
to each of the elements in the
jQuery selection.

JAVASCRIPT

$(function() {

The :1t() and :gt () selectors
and the .eq() method are used
to find elements based on their
index numbers.

@ $('19:1t(2)") .removeClass('hot');
@ $('1i').eq(0).addClass('complete');
® $('1i:gt(2)').addClass('cool');

})!

1. The :1t() selectoris used in
the selector to pick list items
with an index number less than
2. It removes the value hot from
their class attribute.

fresh figs

~ pine nuts

honey

~ balsamicvinegar

2. The .eq() method selects
the first item (using the number
0 because the index numbers
start at zero). It adds the value of
complete to the class attribute.

w

For each of the matching
elements, the value of the class
attributes are changed.

c07/js/index-numbers.js

3. The :gt () selector is used in
the jQuery selector to pick the
list items with an index number
higher than 2. It adds a value of
cool to their class attribute.

JQUERY @

SELECTING FORM
ELEMENTS

jQuery has selectors that are
designed specifically to work
with forms, however, they are
not always the quickest way to
select elements.

If you use one of these selectors
on its own, jQuery will examine
each element in the document to
find a match (using code in the
jQuery file, which is not as quick
as CSS selectors).

Therefore, you should narrow
down the part of the document
the script needs to look through
by placing an element name or
other jQuery selector before
using the selectors shown on
this page.

You can also access elements in
a form using the same selectors
used to pick any element in
jQuery. This will often be the
faster option.

It is also worth noting that,
because jQuery handles
inconsistencies in the way
browsers treat whitespace, it is
easier to traverse between form
elements using jQuery than

it is when you are using plain
JavaScript.

@ JQUERY

SELECTORS FOR FORM ELEMENTS

SELECTOR DESCRIPTION

:button <button> and <input> elements whose type attribute has
a value of button

:checkbox <input>elements whose type attribute has a value of
checkbox. Note that you get better performance with
$(' [type="checkbox"]")

:checked Checked elements from checkboxes and radio buttons
(see :selected for select boxes)

:disabled All elements that have been disabled

:enabled All elements that are enabled

: focus Element that currently has focus. Note that you get better
performance with $(document.activeElement)

:file All elements that are file inputs

:image All image inputs. Note that you get better performance
using [type="image"]

rinput All <button>, <input>, <select>, and <textarea>
elements. Note that you get better performance from
selecting elements, then using . fi1ter(":input")

:password All password inputs. Note that you get better performance
using $('input:password')

:radio All radio inputs. To select a group of radio buttons, you can
use $("input [name="gender"] :radio"')

:reset All inputs that are reset buttons

:selected All elements that are selected. Note that you get better
performance using a CSS selector inside the .filter()
method, e.g., .filter(":selected")

:submit <button> and <input> elements whose type attribute
has a value of submit. Note that you will get better
performance using [type="submit"]

:text Selects <input> elements with a type attribute whose

value is text, or whose type attribute is not present. You
will likely get better performance from ('input:text')

FORM METHODS
& EVENTS

RETRIEVE THE VALUE OF ELEMENTS

METHOD DESCRIPTION

.val() Primarily used with <input>, <select>, and <textarea>
elements. It can be used to get the value of the first element
in a matched set, or update the value of all of them.

OTHER METHQODS

METHOD DESCRIPTION

.filter() Used to filter a jQuery selection using a second
selector (especially form-specific filters)

Lis() Often used with filters to check whether a form input is
selected/checked

$.isNumeric() Checks whether the value represents a numeric value
and returns a Boolean. It returns true for the following:
$.isNumeric(1) $.isNumeric(-3)
$.isNumeric("2") $.isNumeric(4.4)
$.isNumeric(+2) $.1sNumeric(0xFF)

EVENTS ¥
METHOD DESCRIPTION

.on() Used to handle all events

EVENT DESCRIPTION

blur When an element loses focus

change When the value of an input changes

focus When an element gains focus

wilbek: When the option for a <select> element is changed
subnnt When ;form is submitted .

When submitting a form, there is also a helpful method called
.serialize() which you will learn about on p394-p395.

The .val () method gets the
value of the first <input>,
<select>, or <textarea>
element in a jQuery selection.
It can also be used to set the
value for all matching elements.

The .filter() and .is()
methods are commonly used
with form elements. You met
them on p338.

$.isNumeric() is a global
method. It is not used on a
jQuery selection; rather, the
value you want to test is passed
as an argument.

All of the event methods on the
left correspond to JavaScript
events that you might use

to trigger functions. As with
other jQuery code, they handle
the inconsistencies between
browsers behind the scenes.

jQuery also makes it easier to
work with a group of elements
(such as radio buttons,
checkboxes, and the options

in a select box), because, once
you have selected the elements,
you can simply apply individual
methods to each of them
without having to write a loop.

There is an example using forms
on the next page, and there are
more examples in Chapter 13.

JQUERY

WORKING WITH FORMS

In this example, a button and The form lets users add a new When the user presses the
form have been added under the item to the list with a single text submit button, the new item is
list. When the user clicks on the input and a submit button, added to the bottom of the list.
button to add a new item, the (The new item button is hidden (The form is also hidden and the
form will come into view. when the form is in view.) new item button is shown again.)
c07/form. html
<l-- list goes here -->...
<div id="newltemButton"><button href="#" id="showForm">new item</button></div>
<form id="newltemForm">
<input type="text" id="itemDescription" placeholder="Add description..." />
<input type="submit" id="addButton" value="add" />
</form>

. . .

LISTKING LISTKING LISTKING

BUY GROCERIES BUY GROCERIES BUY GROCERIES
freshfigs freshtigs freshfigs
pinenuts pinenuts pinenuts

honey honey honey

balsamicvinegar balsamicvinegar balsamicvinegar

NEW ITEM Add description... ADD il

NEWITEM

@ JQUERY

1. New jQuery objects are
created to hold the new item
button, the form to add new
items, and the add button.
These are cached in variables.

2. When the page loads, the
CSS hides the new item button
(and shows the form), so jQuery
methods show the new item
button and hide the form.

JAVASCRIPT

ol
of
°

$(function() {

var $newltemButton = §$('#newltemButton');
var $newItemForm = $('#newltemForm');
var $textInput = $('input:text');

$newItemButton.show();
$newltemForm.hide();

$("#showForm').on("'click', function(){
$newltemButton.hide();
$newItemForm.show();

s

$newItemForm.on('submit', function(e){
e.preventDefault(); :
var newText = $('input:text').val();
$('Ti:last').after('<1i>' + newText + '</1i>');
$newltemForm.hide();

$newItemButton.show();
$textInput.val('');
1s
3R

4, When the form is submitted,
an anonymous function is called.
It is passed the event object.

5. The .preventDefault()
method can stop the form being
submitted.

6. The :text selector picks the
<input> element whose type
attribute has a value of text,
and the .val () method gets the
value the user entered into it.
This value is stored in a variable
called newText.

3. If a user clicks on the new item
button (the <button> element
whose 1id attribute has a value of
showForm), the new item button is
hidden and the form is shown.

c07/js/form. js

7. A new item is added to

the end of the list using the
.after() method.

8. The form is hidden, the new
item button is shown again, and
the content of the text input is
emptied (so the user can add a
new entry if they want to).

JQUERY

CUTTING & COPYING
ELEMENTS

Once you have a jQuery selection, you can use
these methods to remove those elements or
make a copy of them.

The .remove() method deletes CuT
the matched elements and all

of their descendants from the
DOM tree. .remove() Removes matched elements from DOM tree (including any

descendants and text nodes)

METHOD DESCRIPTION

The .detach() method also .detach() Same as .remove() but keeps a copy of them in memory
removes the matched elements

and allof their descendants .empty() Bemoves child nodes and descendants from any elements
from the DOM tree; however, it inmatchedset

retains any event handlers (and .unwrap() Removes parents of matched set, leaving matched elements

any other associated jQuery
data) so they can be inserted

back into the page. CORY
METHOD DESCRIPTION
The .empty() and .unwrapF) .clone() Creates a copy of the matched set (including any
methods remove elements in descendants and text nodes)
relation to the current selection.
The .clone() method creates . PASTE
a copy of the matched set of You saw how to add elements into the DOM tree on p318.

elements (and any descendants).
If you use this method on HTML
that contains id attributes, the
value of the id attributes would
need updating otherwise they
would no longer be unique.

If you want to pass any event
handlers, you should add true
between the parentheses.

CUT, COPY, PASTE

In this example, you can see The HTML has an extra <p> In addition, the first list item
parts of the DOM tree being element after the list, which is detached from the list and
removed, duplicated, and placed contains a quote. It is moved to a moved to the end of it.
elsewhere on the page. new position under the heading.

JAVASCRIPT c07/3s/cut-copy-paste.js

$(function() {
var $p = $('p');
var $clonedQuote = $p.clone();
$p.remove();
$clonedQuote.insertAfter('h2');

var $moveltem = $('#one').detach();
$moveltem.appendTo('ul');

@0 GOEO

RESULT 1. A jQuery selection is made

containing the <p> element at
the end of the page, and this is
cached in a variable called $p.

2. That element is copied
LISTKING using the .clone() method
(along with its content and
child elements). It is stored in a

B U V G R 0 c E R I [3 variable called $c1onedQuote.

"Opportunity is missed by most people because 3. The paragraph is removed.

itisdressed in overalls and looks like work."
4. The cloned version of the

quote is inserted after the <h2>
element at the top of the page.

-Thomas Edison

L nuts 5. The first list item is detached
from the DOM tree and stored

honey in a variable called $moveltem
(effectively removing it from the
DOM tree).

6. That list item is then
appended to the end of the list.

JQUERY

BOX DIMENSIONS

These methods allow you to discover or update
the width and height of all boxes on the page.

CSS treats each element on a RETRIEVE OR SET BOX DIMENSIONS

web page as if it were in It.S own METHOD BESCRIPTION

box. A box can have padding, a

border, and a margin. If you set .height() Height of box (no margin, border, padding)
the width or height of the box .width() Width of box (no margin, border, padding) (1)

in CSS, it does not include any
padding, border, or margin - they

sré sdded 1o the diehelons. RETRIEVE BOX DIMENSIONS ONLY

METHOD DESCRIPTION
The methods shown here allow .innerHeight () Height of box plus padding
you to retrieve the width and
height of the first element in -innerlidth() Width of box plus padding (2)
the matched set. The first two .outerHeight () Height of box plus padding and border
also allow you to update the z .
dimensions of all boxes in the -outerlidth() Width of box plus padding and border (3)
L .outerHeight(true) Height of box plus padding, border, and margin
The remaining methods give .outerWidth(true) Width of box plus padding, border, and margin (4)

different measurements
depending on whether you

want to include padding, _
border, and a margin. Note 4 @ width()
how the .outerHeight() and
.outerWidth() methods take a ¢ @ .innerWidth()
parameter of true if you want X @ _outerWidth()
the margin included. o _
4 {4) .outeriidth(true)
When retrieving dimensions,]
these methods return a number
in pixels. PADDING @ BORDER MARGIN

JQUERY

CHANGING DIMENSIONS

JAVASCRIPT

$(function() {

This example demonstrates how
the .height() and .width()
methods can be used to retrieve
and update box dimensions.

var TistHeight = $('#page').height();

The page displays the height of
the container. It then changes
the width of the list items using
percentages and pixels.

c07/js/dimensions.js

@ $('ul').append('<p>Height: ' + listHeight + 'px</p>');
@ $('1i').width('50%');
@_|i $('1i#one') . .width(125);

$('1i#two') .width('75%"');

1

1. A variable called TistHeight
is created to store the height of
the page container. It is obtained
using the .height () method.

2. The height of the page is
written at the end of the list
using the .append() method and
may vary between browsers.

3. The selector picks all the <1i>
elements and sets their width to
50% of their current width using
the .width() method.

4. These two statements set
the width of the first list item to
125 pixels and the width of the
second list item to be 75% of
the width it was when the page
loaded.

freshfigs

Measurements in percentages or
ems should be given as a string,
with the suffix % or em. Pixels do
not require a suffix and are not
enclosed in quotes.

pine nuts

honey

Height: 432px

JQUERY

WINDOW & PAGE
DIMENSIONS

The .height() and .width() methods can be used to determine the
dimensions of both the browser window and the HTML document.
There are also methods to get and set the position of the scroll bars.

On p348, you saw that you can METHOD DESCRIPTION

get and set the height or width of .height() Height of the jQuery selection
a box using the .height() and

.width() methods. width() Width of the jQuery selection

.scrollleft() Gets the horizontal position of the scroll bar for the first
element in the jQuery selection, or sets the horizontal
scroll bar position for matched nodes

These can also be used on a
jQuery selection containing the
window or document objects.

.scrol1Top() Gets the vertical position of the scroll bar for the first
The browser can display scroll element in the jQuery selection, or sets the vertical
bars if the height or width of: scroll bar position for matched nodes

® A box's content is larger than
its allocated space.

® The current page represented
by the document object is
larger than the dimensions
of the browser window's
viewable area (viewport).

The .scrollLeft() and
.scrol1Top() methods allow
you to get and set the position of
the scroll bars.

$(window) .height();

This method will often

When retrieving dimensions, return the incorrect

these methods return a number value unless a DOCTYPE
in pixels. v declaration is specified

for the HTML page.

$(document) .height ()

JQUERY

POSITION OF ELEMENTS
ON THE PAGE

METHOD DESCRIPTION

The .offset() and .position() methods can
be used to determine the position of elements

on the page.

.offset()

Gets or sets coordinates of the element relative to the top

.position() Gets or sets coordinates of the element relative to any
ancestor that has been taken out of normal flow (using
CSS box offsets). If no ancestor is out of normal flow, it
will return the same as .offset() (2)

. l .offset()
s

»
.position() Cz-

To get the offset or position, store the object that is returned by these

methods in a variable. Then use the Teft or right properties of the object

to retrieve their position.

var offset = §('div').offset();

var text = 'Left: ' + offset.left + ' Right: ' + offset.right;

The two methods on the left help

you to determine the position of

an element:

@ Within the page.

@ |nrelation to an ancestor that
is offset from normal flow.

Each of them returns an object
that has two properties:

top - the position from the top
of the document or containing
element.

left - the position from the left
of the document or containing
element.

As with other jQuery methods,
when used to retrieve
information, they return the
co-ordinates of the first element
in the matched set.

If they are used to set the
position of elements, they

will update the position of all
elements in the matched set
(putting them in the same spot).

JQUERY @

DETERMINING POSITION
OF ITEMS ON THE PAGE

In this example, as the user
scrolls down the page, a box
slides into view if they get within
500 pixels of the footer.

We will call this part of the page
the end zone, and you need to
work out the height at which the
endZone starts.

Every time the user scrolls, you
then check the position of the
scroll bar from the top of the
page.

If the scroll bar is further down
the page than the start of the
end zone, the box is animated
into the page. If not, then the box
is hidden.

The HTML for this example
contains an extra <div> element
at the end of the page containing
the advert. A lot of items have
been added to the list to create a
long page that scrolls.

@ JQUERY

c07/position.html

...quinoa</1i>
4Xu}>

<p id="footer">© ListKing</p>

<div id="slideAd">

Buy ListKing Pro for only $1.99

</div>
</div>

<script src="js/jquery-1.9.1.min.js"></script>
<script src="js/position.js"></script>

sourdough bread

almond milk

kale

gluten-free soy sauce

quinoa

© ListKing

BUY LISTKING PRO
FORONLY $1.99

1. Cache the window and advert.

2. The height of the end zone
is calculated, and stored in a
variable called endZone.

3. The scroll event triggers an
anonymous function every time
the user scrolls up or down.

JAVASCRIPT

$ (function() {
var $window = $(window);

4. A conditional statement
checks if the user's position is
further from the top of the page
than the start of the end zone.

5. If the condition returns true,
the box slides in from the right-
hand edge of the page. This
takes 250 milliseconds.

var $slideAd = $('#slideAd');

$window.on('scroll', function() {

if ((endZone) < $window.scrol1Top()) {
$s1ideAd.animate({ 'right': 'Opx' }, 250);

} else {

6. If the condition is false or the
box is in the middle of animating,
it is stopped using the .stop()
method. The advert then slides
off the right-hand edge of the
page. Again, this animation will
take 250 milliseconds.

c07/js/position.js

o

@ var endZone = $('#footer').offset().top - $window.height() - 500;
®

@

®

®

$slideAd.stop(true).animate({ 'right': '-360px' }, 250);

CALCULATING THE END ZONE

Calculate the height at which the
box should come into view by:

a) Getting the height from the
top of the page to the top of the
footer (the gray bar) in pixels.

b) Subtracting the height of the
viewport from this result.

c) Subtracting a further 500px
for the area where the box will
come into view (shown in pink).

You can tell how far the user has

scrolled down the page using:
$(window).scrol1Top();

If the distance extends down
further than the height at which
the end zone should show, the
box should be made visible.

If not, then the box should move
off the page.

JQUERY @

WAYS TO INCLUDE

JQUERY IN YOUR PAGE

In addition to hosting the jQuery file with the

rest of your website, you can also use a version

that is hosted by other companies. However,
you should still include a fallback version.

At the time of writing, the main
CDNs to offer jQuery are jQuery
CDN (powered by Max CDN),
Google, and Microsoft.

@ ORIGIN @ CDN @ USER

A Content Delivery Network
(or CDN) is a series of servers
spread out around the world.
They are designed to serve
static files (such as HTML, CSS,
JavaScript, images, audio, and
video files) very quickly.

The CDN tries to find a server
near you, then sends files from
that server so the data does not
travel as far. With jQuery, users
might have already downloaded
and cached the file from a CDN
when visiting another site.

When including jQuery in your
pages, you can try to load it
from one of these CDNs. Then
you check if it loaded, and if not,
you can include a version that is
stored on your own servers (this
is known as a fallback).

When a page loads jQuery from
a CDN, you will often see a
syntax like the one shown below.
It starts with a <script> tag that
tries to load the jQuery file from
the CDN. But note that the URL
for the script starts with two
forward slashes (not http:).

LOADING JQUERY
FROM A CDN

This is known as a protocol
relative URL. If the user is
looking at the current page
through https, then they will not
see an error that tells them there
are unsecure items on the page.
Note: This does not work locally
with the file:// protocol.

This is often followed by a
second <script> tag that
contains a logical operator,
which checks to see if jQuery
has loaded. If it has not loaded,
the browser tries to load the
jQuery script from the same
server as the rest of the website.

<script src="//ajax.googleapis.com/ajax/1ibs/jquery/1.10.2/jquery.min.js">

</script>

<script>

window. jQuery || document.write('<script src="js/jquery-1.10.2.js"><\/script>"')

</script>

The logical operator looks for
the jQuery object that the
jQuery script makes available.

If it exists, then a truthy value is
returned and the logical operator
short circuits (see p157).

If jQuery has not loaded, then
the document.write() method
is used to add a new <script>
tag into the page. This will load a
version of jQuery from the same
server as the rest of the website.

The fallback option is important
because the CDN may be
unavailable, the file may have
moved, and some countries ban
some domain names (such as
Google).

JQUERY @

WHERE TO PLACE YOUR

SCRIPTS

The position of <script> elements can affect

how quickly a web page seems to load.

SPEED

In the early days of the web, developers were told to
place the <script> tags in the <head> of the page
as you do with style sheets. However, this can make
pages seem slower to load.

Your web page may use files from several different
locations (e.g., images or CSS files might be loaded
from one CDN, jQuery could be loaded from the
jQuery or Google CDNs, and fonts might be loaded
from another third party).

Usually a browser will collect up to two files at a time
from each different server. However, when a browser
starts to download a JavaScript file, it stops all other
downloads and pauses laying out the page until the
script has finished loading and been processed.

Therefore, if you place the script at the end of the
page before the closing </body> tag, it will not affect
the rendering of the rest of the page.

HTML LOADED INTO THE DOM TREE

Whenever a script is accessing the HTML within a
web page, it also needs to have loaded that HTML
into the DOM tree before the script can work. (This
is often referred to as the DOM having loaded.)

You can use the 1oad event to trigger a function so
that you know the HTML has loaded. However, it
fires only when the page and all of its resources load.
You can also use the HTML5 DOMContentLoaded
event, but it does not work in older browsers.

LOADED
® NOT YET

T T A LOADED
T
If the script tries to access an element before it has
loaded, it causes an error. In the diagram above, the

script could access the first two <1i> elements, but
not the third or fourth,

“ul

Where possible, do consider
using alternatives to scripts. For
example, use CSS for animations
or HTML5's autofocus attribute
rather than using the 1oad event
to bring focus to an element.

JQUERY

If your page is slow to load and
you only want to include a small
amount of code before the rest
of the page has loaded, you can
place a <script>tag within the
body of the page.

At the time of writing, this
technique was commonly used
by Google for speed advantages,
but it is acknowledged that it
makes code much harder to
maintain.

R

<IDOCTYPE html>
<html>
<head>
<title>Sample Page</title>
<link rel="stylesheet" href="sample.css" />
<script src="js/sample.js"></script>
<head>
<body>
<hl>Sample Page</hl>
<div id="page">Main content here...</div>
</body>
</html>

<!DOCTYPE html>
<html>
<head>
<title>Sample Page</title>

<head>
<body>
<hl>Sample Page</hl>
<script src="js/sample.js"></script>
<div id="page">Main content here...</div>
</body>
</html>

(: <link rel="stylesheet" href="sample.css" />
)

<!DOCTYPE html>
<html>
<head>
<title>Sample Page</title>

<head>
<body>
<hl>Sample Page</hl>
<div id="page">Main content here...</div>
<script src="js/sample.js"></script>
</body>
</htm1>

(:: <link rel="stylesheet" href="sample.css" />
v)

IN THE HEAD

This location is best avoided as:
1. Pages seem slower to load.

2. DOM content is not loaded,
when the script is executed so
you have to wait for an event like
Toad or DOMContentLoaded to
trigger your functions.

If you must use a <script>
element within the head of the
page, it should be just before the
closing </head> tag.

IN THE PAGE

As with scripts in the <head>,
those in the middle of the page
will slow the rest of the page
down when it is loading.

If you use document .write(),
the <script> element has to

be placed where you want that
content to appear. This is one of
several good reasons to avoid
using document .write().

BEFORE THE CLOSING
</body> TAG

This is an ideal location as:

1. The script is not blocking
other things from downloading.
2. The DOM has already
loaded by the time the script is
executed.

JQUERY @

JQUERY

DOCUMENTATION

For an exhaustive list of the functionality
provided in jQuery, visit http://api.jquery.com

It is not possible to teach you everything about
jQuery in one (albeit long) chapter. But you have
seen many of the most popular features, and

you should now know enough about jQuery to
understand how it works and how to make use of it
in your scripts.

Throughout the remaining chapters of this book, you
will see many more examples that use jQuery.

HOW THE DOCUMENTATION WORKS

On the left-hand side of the page, you will see the
different types of functionality that you can explore.

When you click on any of the methods in the main
column, you will see a list of the parameters that it
can take. When parameters are optional, they are

shown in square brackets.

You will also find deprecated methods. This

means that you are no longer advised to use this
markup because it is likely to be removed from
future versions of jQuery (if it has not already been
removed).

JQUERY

What you have learned should also give you enough
experience to work with the comprehensive jQuery
documentation available online at:
http://api.jquery.com

This site lists each method and property available to
you, along with new functionality added in the latest
versions, and notes that indicate which features are
scheduled to be dropped.

s i i 0 i

ot}

e it gy e o e Bt 4 e e

st el
g e = b i et e B

s

e 1 ot i s e o e 0 8 B

et

e

datand

EXTENDING JQUERY

WITH PLUGINS

Plugins are scripts that extend the functionality of the jQuery library.
Hundreds have been written and are available for you to use.

Plugins offer functionality that is not included

in the jQuery library. They usually deal with a
particular task such as creating slideshows or video
players, performing animations, transforming data,
enhancing forms, and displaying new data from a
remote server.

To get an idea of the number and range of plugins
available, see http://plugins.jquery.com.

All of these are free for you to download and use on
your own sites. You may also find other sites listing
jQuery plugins for sale (such as codecanyon.net).

v -

& jQuery

Tahde Files

e ot o g e
o -

Fpuery Elsanest Dift
R - .

dnanferes coris tn e s

Plugins are written so that new methods extend

the jQuery object and can, therefore, be used on a
jQuery selection. As long as you know how to do the
following with jQuery:

® Make a selection of elements
® Call a method and use parameters

You can use a lot of the functionality of these plugins
without having to write the code yourself. In Chapter
11, you will see an example of how to create a basic
jQuery plugin.

HOW TO CHOOSE A PLUGIN

When you are choosing a plugin to work with, it can
be worth checking that it is still being maintained or
whether other people have experienced problems
using it. Finding out the following can help:

® When was the plugin last updated?
® How many people are watching the plugin?
® What do the bug reports say?

If you ask a question or find a bug in a script, bear in
mind that their authors may have a day job and only
maintain these plugins in their spare time to help
others and to give back to the community.

JQUERY

JAVASCRIPT LIBRARIES

jQuery is an example of what programmers call a JavaScript library.
It is a JavaScript file that you include in your page, which then lets you
use the functions, objects, methods, and properties it contains.

The concept of a library is that it
allows you to borrow code from
one file and use its functions,
objects, methods, and properties
in another script.

Once you have included

the script in your page, its
functionality is available to use.
The documentation for the
library will tell you how to use it.

DOM & EVENTS
Zepto.js

YUI

Dojo.js

MooTools.js

TEMPLATING

Mustache.js
Handlebars.js
jQuery Mabile

JQUERY

jQuery is the most widely used
library on the web, but when
you have learned it, you might
like to explore some of the other
libraries listed below.

Popular libraries have the
advantage that they will be well-
tested, and some have a whole
team of developers who work on
them in their spare time.

USER INTERFACE
jQuery Ul

jQuery Mobile

Twitter Bootstrap

YUl

WEB APPLICATIONS

Angular.js
Backbone.js
Ember.js

One of the main drawbacks with
a library is that they will usually
contain functionality that you
will not need to use. This means
users have to download code
that will not be needed (which
can slow your site down). You
may find that you can strip out
the subset of the library you
need or indeed write your own
script to do that job.

GRAPHICS & CHARTS
Chart.js

D3.js

Processing.js

Raphael.js

COMPATIBILITY
Modernizr.js
YepNope.js
Require.js

PREVENTING CONFLICTS
WITH OTHER LIBRARIES

Earlier in the chapter, you saw that $ () was shorthand for jQuery ().
The $ symbol is used by other libraries such as prototype.js, MooTools,
and YUI. To avoid conflicts with those scripts, use these techniques.

INCLUDING JQUERY
AFTER OTHER LIBRARIES

Here, jQuery's meaning of $ takes precedence:

<script src="other.js"></script>
<script src="jquery.js"></script>

You can use the .noConflict () method at the start
of your script, to tell jQuery to release the $ shortcut
so that other scripts can use it. Then you can use the
full name rather than the shortcut:

jQuery.noConflict();
jQuery(function() {

jQuery('div').hide();
1)

You can wrap your script in an |IFE and still use $:

jQuery.noConflict();
(function($) {

$('div').hide();
}) (iQuery);

Or you can specify your own alias instead, e.g., $j:

var $j = jQuery.noConflict();

$j (document) .ready(function() {
$3('div').hide();

s

INCLUDING JQUERY
BEFORE OTHER LIBRARIES

Here, the other scripts' use of § takes precedence:

<script src="jquery.js"></script>
<script src="other.js"></script>

$ will have the meaning defined in the other library.
There is no need to use the .noConflict() method
because it will have no effect. But you can continue
to use the full name jQuery:

jQuery(document) .ready(function() |
jQuery('div').hide();
1

You can pass $ as an argument to the anonymous

function called by the .ready() method like so:

jQuery(document) . ready(function($) {
$('div').hide();

13

This is equivalent to the code shown above:

jQuery(function($){
$('div').hide();
D

JQUERY

LISTKING

BUY GROCERIES ©

@ JQUERY

EXAMPLE

JQUERY

This example brings together a number of the
techniques you have seen in this chapter to
create a list that users can add items to and
remove items from.

® Users can add new list items.

® They can also click to indicate that an item is complete (at which
point it is moved to the bottom of the list and marked as complete).

® Once anitem is marked as complete, a second click on the item will
remove it from the list.

An updated count of the number of items there are in the list will be
shown in the heading.

As you will see, the code using jQuery is more compact than it would
be if you were writing this example in plain JavaScript, and it will work
across browsers even though there is no explicit fallback code.

Because new items can be added to the list, the events are handled using
event delegation. When the user clicks anywhere on the element,
the .on() event method handles the event. Inside the event handler,
there is a conditional statement to check whether the list item is:

® Not complete - in which case, the click is used to change the item to
complete, move it to the bottom of the list, and update the counter.

® Complete - in which case, the second click on the item fades it out
and removes it from the list altogether,

The use of conditional statements and custom functions (used for the
counter) illustrate how jQuery techniques are used in combination with
traditional JavaScript that you have been learning throughout the book.

The appearance and removal of the elements is also animated, and

these animations demonstrate how methods can be chained together to
create complex interactions based on the same selection of elements.

JQUERY

(363
S

EXAMPLE

JQUERY

c07/js/example.js

JAVASCRIPT

$(function() {

// SETUP
var $1ist, $newltemForm, $newltemButton;
var item = ''; // item is an empty string

$list = §('ul');
$newItemForm = $('#newltemForm');
$newltemButton = $('#newltemButton');

// Cache the unordered list
// Cache form to add new items
// Cache button to show form

$('11") .hide().each(function(index) {
$(this).delay(450 * index).fadeIn(1600);
1

// ITEM COUNTER

function updateCount() {
var items = $('1i[class!=complete]').length;
$('#counter').text(items);

}
updateCount();

// Hide list items
// Then fade them in

// Declare function
// Number of items in list
// Added into counter circle

// Call the function

// SETUP FORM FOR NEW ITEMS
$newItemButton.show();
$newltemForm.hide();
$('#showForm').on('click', function() {
$newItemButton.hide();
$newItemForm.show();

1)

// Show the button

// Hide the form

// When new item clicked
// Hide the button

// Show the form

The entire script will wait until The updateCounter() function The form to add new items is

the DOM is ready before running,
because it is inside the shorthand

for the document . ready () method.

Variables are created that will be
used in the script, including jQuery
selections that need to be cached.

JQUERY

checks how many items are in the
list and writes it into the heading. It
is called straight away to calculate
how many list items are on the
page when it loads, and then write
that number next to the heading.

hidden when the page loads, and
is shown when the user clicks on
the add button. When the user
clicks on the add button a new
item is added to the form and the
updateCounter() is called.

JAVASCRIPT

// ADDING A NEW LIST ITEM

$newltemForm.on('submit', function(e) {
e.preventDefault();
var text = $('input:text').val();
$list.append('' + text + '</1i>');
$('input:text').val('');
updateCount();

}hs

EXAMPLE

JQUERY

c07/js/example.js

// When a new item is submitted
// Prevent form being submitted
// Get value of text input

// Add item to end of the list
// Empty the text input

// Update the count

// CLICK HANDLING - USES DELEGATION ON ELEMENT

$list.on('click', '1i', function() {
var $this = §(this);

// Cache the element in a jQuery object

var complete = §$this.hasClass('complete'); // Is item complete

if (complete === true) {
$this.animate ({
opacity: 0.0,
paddinglLeft: '+=180'
}, 500, 'swing', function() {
$this.remove();
13
} else {
item = $this.text();
$this.remove();

// Check if item is complete
// 1f so, animate opacity + padding

// Use callback when animation completes
// Then completely remove this item

// Otherwise indicate it is complete
// Get the text from the 1ist item
// Remove the Tist item

$list // Add back to end of list as complete
.append('<1i class=\"complete\">' + item + '</1i>")

.hide().fadeIn(300);

// Hide it so it can be faded in

updateCount(); // Update the counter
} // End of else option
})s // End of event handler

The .on() event method listens
for the user clicking anywhere on

Next, the code checks if that
element has a class name of

When it is added to the end of the
list, its class attribute is given a

the list because this script uses
event delegation. When they do,
the element that was clicked on
is stored in a jQuery object and
cached in a variable called $this.

complete. If it does, then the list
item is animated out of view and
removed. If it was not already
complete, then it is moved to the
end of the list.

value of complete,
Finally, updateCount () is called to

update the number of items left to
do on the list.

JQUERY

SUMMARY

JQUERY

Ajax is a technigue for loading data into part of a page
without having to refresh the entire page. The data is often
sent in a format called JavaScript Object Notation (or JSSON).

The ability to load new content into part of a page improves the user experience because
the user does not have to wait for an entire page to load if only part of it is being updated.
This has led to a rise in so-called single page web applications (web-based tools that feel
more like software applications, even though they run in the browser). This chapter covers:

WHAT AJAX IS DATA FORMATS JQUERY & AJAX
Ajax allows you to request Servers typically send jQuery makes it easier
data from a server and back HTML, XML, or to create Ajax requests
load it without having to JSON, so you will learn and process the data the
refresh the entire page. about these formats. server returns.

(369
AJAX & JSON (369
e

WHAT IS AJAX?

You may have seen Ajax used on many websites,
even if you were not aware that it was being used.

P —— e Moog Music Inc. @moogmusicinc
: Born today in 1896: Leon Theremin,
multimoog ias ;
. physicist, spy & inventor of one of the
multimoog for sale i | : i
moltinedal earliest electronic musical instruments.
pic.twitter.com/theremin
Live search (or autocomplete) commonly uses Ajax. Websites with user-generated content (such
You may have seen it used on the Google website. as Twitter and Flickr) may allow you to display b
When you type into the search bar on the home your information (such as your latest tweets or
page, sometimes you will see results coming up photographs) on your own website. This involves
before you have finished typing. collecting data frem their servers.

Choose your username

®

1item added to cart
view cart

minimoog “

This username is taken. Try another?
Available: minimoog70

If you are registering for a website, a script may
check whether your username is available before
you have completed the rest of the form.

Sometimes when you are shopping online and add
items to your shopping cart, it is updated without
you leaving the page. At the same time, the site may
display a message confirming the item was added.

Sites may also use Ajax to load data behind the scenes so that they can use or show that data later on.

AJAX & JSON

WHY USE AJAX?

Ajax uses an asynchronous processing model. This means the user can
do other things while the web browser is waiting for the data to load,

speeding up the user experience.

USING AJAX WHILE
PAGES ARE LOADING

When a browser comes across a <script>tag, it will
typically stop processing the rest of the page until it
has loaded and processed that script. This is known
as a synchronous processing model.

When a page is loading, if a script needs to collect
data from a server (e.g., if it collects financial
exchange rates or status updates), then the browser
would not just wait for the script to be loaded and
processed; it would also have to wait for a server to
send the data that the script is going to display.

With Ajax, the browser can request some data from
a server and - once that data has been requested -
continue to load the rest of the page and process the
user’s interactions with the page. It is known as an
asynchronous (or non-blocking) processing model.

The browser does not wait for the third party data in
order to show the page. When the server responds
with the data, an event is fired (like the Toad event
that fires when a page has loaded). This event can
then call a function that processes the data.

USING AJAX WHEN
PAGES HAVE LOADED

Once a page has loaded, if you want to update what
the user sees in the browser window, typically you
would refresh the entire page. This means that the
user has to wait for a whole new page to download
and be rendered by the browser.

With Ajax, if you only want to update a part of

the page, you can just update the content of one
element. This is done by intercepting an event (such
as the user clicking on a link or submitting a form)
and requesting the new content from the server
using an asynchronous request.

While that data is loading, the user can continue

to interact with the rest of the page. Then, once

the server has responded, a special Ajax event will
trigger another part of the script that reads the new
data from the server and updates just that one part
of the page.

Because you do not have to refresh the whole page,
the data will load faster and the user can still use the
rest of the page while they are waiting.

Historically, AJAX was an acronym for the technologies used in asynchronous requests like this. It stood for
Asynchronous JavaScript And XML. Since then, technologies have moved on and the term Ajax is now used to
refer to a group of technologies that offer asynchronous functionality in the browser.

AJAX & JSON @

HOW AJAX WORKS

When using Ajax, the browser requests information from a web server.
It then processes the server's response and shows it within the page.

] 2

THE REQUEST ON THE SERVER THE RESPONSE
The browser requests The server responds with data The browser processes the
information from the server. (usually HTML, XML, or JSON). content and adds it to the page.

- m—

3 =y oyl =k

| |
== e
== l
I |

The browser requests data from What happens on the server is When the server has finished
the server. The request may not part of what is called Ajax. responding to the request, the
include information that the browser will fire an event (just
server needs - just like a form Server-side technologies such like it can fire an event when a
might send data to a server. as ASP.net, PHP, NodelsS, or page has finished loading).
Ruby can generate web pages
Browsers implement an object for each user. When there is an This event can be used to
called XMLHttpRequest to Ajax request, the server might trigger a JavaScript function
handle Ajax requests. Once a send back HTML, or it might that will process the data and
request has been made, the send data in a different format incorporate it into one part of
browser does not wait for a such as JSON or XML (which the the page (without affecting the
response from the server. browser turns into HTML). rest of the page).

@ AJAX & JSON

HANDLING AJAX
REQUESTS & RESPONSES

To create an Ajax request, browsers use the XMLHttpRequest object.
When the server responds to the browser's request, the same
XMLHttpRequest object will process the result.

THE REQUEST

(1) var xhr = new XMLHttpRequest();
@) xhr.open('GET', 'data/test.json', true);
(®) xhr.send('search=arduino');

1. An instance of the 2. The XMLHttpRequest object's 3. The send() method is the one
XMLHttpRequest object is open () method prepares the that sends the prepared request
created using object constructor request. It has three parameters to the server. Extra information
notation (which you met on (which you meet on p379): can be passed to the server in
p106). It uses the new keyword i) The HTTP method the parentheses. If no extra

and stores the object in a i) The url of the page that will information is sent, you may see
variable. The variable name xhr handle your request the keyword nul1 used (although
is short for XMLHttpRequest (the iii) A Boolean indicating if it it is not strictly needed):

name of the object). should be asynchronous xhr.send(null).

THE RESPONSE

@xhr.on]oad = function() {
(@ if (xhr.status === 200) {
// Code to process the results from the server

: !

1. When the browser has 2. The function checks the Note that IE9 was the first
received and loaded a response status property of the object. version of |E to support this way
from the server, the onload This is used to make sure the of dealing with Ajax responses.
event will fire. This will trigger server's response was okay. To support older browsers, you
a function (here, it is an (If this property is blank, check can use jQuery (see p388).
anonymous function). the setup of the server.)

AJAX & JSON @

DATA FORMATS

The response to an Ajax request usually comes in one of three formats:
HTML, XML, or JSON. Below is a comparison of these formats.
XML and JSON are introduced over the next three pages.

HTML

You are probably most familiar
with HTML, and, when you want
to update a section of a web
page, it is the simplest way to
get data into a page.

BENEFITS

® |tis easy to write, request,
and display.

® The data sent from the server
goes straight into the page.
There's no need for the
browser to process it (as with
the other two methods).

DRAWBACKS

@ The server must produce
the HTML in a format that is
ready for use on your page.

@ |t is not well-suited for use in
applications other than web
browsers. It does not have
good data portability.

® The request must come from
the same domain* (see below).

XML

XML looks similar to HTML,
but the tag names are different
because they describe the data
that they contain. The syntax is
also more strict than HTML.

BENEFITS

@ |tis a flexible data format
and can represent complex
structures.

@ |t works well with different
platforms and applications.

® |tis processed using the same
DOM methods as HTML.

DRAWBACKS

@® |tisconsidered a verbose
language because the tags
add a lot of extra characters
to the data being sent.

® The request must come from
the same domain as the rest
of the page~ (see below).

@ |t can require a lot of code to
process the result.

JSON

JavaScript Object Notation
(JSON) uses a similar syntax
to object literal notation (which
you met on p102) in order to
represent data.

BENEFITS

@ |t can be called from any
domain (see JSON-P/CORS).

® |tis more concise (less
verbose) than HTML/XML.

® Itis commonly used with
JavaScript (and is gaining wider
use across web applications).

DRAWBACKS

® The syntax is not forgiving.
A missed guote, comma, or
colon can break the file.

® Because it is JavaScript, it can
contain malicious content
(see XSS on p228).
Therefore, you should only
use JSON that has been
produced by trusted sources.

* Browsers only let Ajax load HTML and XML from the same domain name as the rest of the page
(e.g., if the page is on www.example.com, the Ajax request must return data from www.example.com).

AJAX & JSON

AML: EXTENSIBLE
MARKUP LANGUAGE

XML looks a lot like HTML, but the tags contain different words.
The purpose of the tags is to describe the kind of data that they hold.

<?xml version="1.0" encoding="utf-8" ?>
<events>
<event>
<location>San Francisco, CA</location>
<date>May 1</date>
<map>img/map-ca.png</map>
</event>
<event>
<location>Austin, TX</location>
<date>May 15</date>
<map>img/map-tx.png</map>
</event>
<event>
<location>New York, NY</location>
<date>May 30</date>
<map>img/map-ny.png</map>
</event>
</events>

You can process an XML file using the same DOM methods as HTML.

Because different browsers deal with whitespace in HTML/XML
documents in different ways, it is easier to process XML using jQuery
rather than plain JavaScript (just as it can be with HTML):

In the same way that HTML is

a markup language that can be
used to describe the structure
and semantics of a web page,
XML can be used to create
markup languages for other
types of data - anything from
stock reports to medical records.

The tags in an XML file should
describe the data they contain.
As a result, even if you have
never seen the code to the

left, you can see that the data
describes information about
several events. The <events>
element contains several
individual events. Each individual
event is represented in its own
<event> element,

XML works on any platform and
gained wide popularity in the
early 2000s because it made it
easy to transfer data between
different types of applications.
It is also a very flexible data
format because it is capable

of representing complex data
structures.

AJAX & JSON (:::)

JSON: JAVASCRIPT
OBJECT NOTATION

Data can be formatted using JSON (pronounced "Jason").
It looks very similar to object literal syntax, but it is not an object.

JSON data looks like the object The distinction may sound small You cannot transfer the actual
literal notation which you met on but remember that HTML is objects over a network. Rather,
p102; however, it is just plain just plain text, and the browser you send text which is converted
text data (not an object). converts it into DOM objects. into objects by the browser.

"location": "San Francisco, CA",
"capacity": 270,
"booking": true

}

KEY VALUE

(in double quotes)

KEYS VALUES
In JSON, the key should be The value can be any of the following data types (some of these are
placed in double quotes (not demonstrated above; others are shown on the right-hand page):
single quotes). DATA TYPE DESCRIPTION

3 stri Ti i i t
The key (or name) is separated ... 1 ng St iiust bewrlttenln quotes)
from its value by a colon. number Number

Boolean Either true or false

Each key/value pair is separated
by a comma. However, note that array Array of values - this can also be an array of objects
there is no comma after the last
key/value pair.

object JavaScript object - this can contain child objects or arrays

null This is when the value is empty or missing

AJAX & JSON

WORKING WITH
JSON DATA

JavaScript's JSON object can turn JSON data into a JavaScript object.

It can also convert a JavaScript object into a string.

{
"events": [
{
"location": "San Francisco, CA",
"date“: "May 1!4’
"map": "img/map-ca.png"
}s
{
"location": "Austin, TX",
"date": "May 15",
"map": "img/map-tx.png"
ts
{
"location": "New York, NY",
"date": "May 30",
"map": "img/map-ny.png"
}
]
}

@® OBJECT @ ARRAY

An object can also be written on one line, as you can see here;

{

"events": [

The object on the left represents
a series of three events, stored in
an array called events. The array
uses square bracket notation,
and it holds three objects (one
for each event).

JSON.stringify() converts
JavaScript objects into a string,
formatted using JSON. This
allows you to send JavaScript
objects from the browser to
another application.

JSON.parse() processes a
string containing JSON data. It
converts the JSON data into a
JavaScript objects ready for the
browser to use.

Browser support: Chrome 3,
Firefox 3.1, IE8, and Safari 4

{ "location": "San Francisco, CA", "date": "May 1", "map": "img/map-ca.png" },

{ "location": "Austin, TX", "date": "May 15", “"map":

"img/map-tx.png" },

{ "location": "New York, NY", "date": "May 30", "map": "img/map-ny.png" }

AJAX & JSON @

LOADING HTML
WITH AJAX

HTML is the easiest type of data to add into a page using Ajax.

The browser renders it just like any other HTML.

The CSS rules for the rest of the page are applied to the new content.

Below, the example loads data The page users open does not
about three events using Ajax. hold the event data (highlighted
(The result will look the same for in pink). Ajax is used to load it
the next four examples.) into the page from another file.

/AN

THE MAKER BUS

The bus stops here.

Austin, TX
May 1 May15

HIGHLIGHTED AREA LOADED USING AJAX

When a server responds to any request, it should send back a status
message, to indicate if it completed the request. The values can be:
200 The server has responded and all is ok

304 Not modified

404 Page not found

500 Internal error on the server

If you run the code locally, you will not get a server status property, so

this check must be commented out, and return true for the condition.
If a server fails to return a status property, check the server setup.

AJAX & JSON

Browsers will only let you use
this technique to load HTML that
comes from the same domain
name as the rest of the page.

Whether HTML, XML, or JSON
is being returned from the
server, the process of setting up
the Ajax request and checking
whether the file is ready to be
worked with is the same. What
changes is how you deal with the
data that is returned.

In the example on the right-hand
page, the code to display the
new HTML is placed inside a
conditional statement.

Please note: These examples do
not work locally in Chrome.
They should work locally in
Firefox and Safari. IE support is
mixed until IES.

Later in the chapter, you will see
that jQuery offers better cross-
browser support for Ajax.

1. An XMLHttpRequest object is
stored in a variable called xhr.

2. The XMLHttpRequest object’s
open() method prepares the
request. It has three parameters:
i) Either HTTP GET or POST to
specify how to send the request
ii) The path to the page that will
handle the request

iii) Whether or not the request is
asynchronous (this is a Boolean)

JAVASCRIPT

(M var xhr = new XMLHttpRequest();

@0 ®

}
£

@

(® xhr.send(null);

xhr.onload = function() {

// The following conditional check will not work locally - only on a server
if(xhr.status === 200) {
document.getElementByld('content').innerHTML = xhr.responseText; // Update

xhr.open('GET', ‘data/data.html', true);

3. Up to this point, the browser
has not yet contacted the server
to request the new HTML.

This does not happen until

the script gets to the last line
that calls the XMLHttpRequest
object's send () method. The
send() method requires an
argument to be passed. If there
is no data to send, you can just
usenull.

4. The object's onload event will
fire when the server responds. It
triggers an anonymous function.

5. Inside the function, a
conditional statement checks

if the status property of the
abject is 200, indicating the
server responded successfully.
If the example is run locally,
there will be no response so you
cannot perform this check.

c08/js/data-html.js

// Create XMLHttpRequest object

// When response has loaded

// If server status was ok

// Prepare the request

// Send the request

6. Finally, the page is updated: document.getElementById('content').innerHTML = xhr.responseText;

A) The element that will contain
the new HTML is selected.
(Here it is an element whose id
attribute has a value of content.)

® el

C) The new HTML is retrieved

B) The innerHTML property
replaces the content of that

element with the new HTML that

has been sent from the server.

1_._©_..|

from the XMLHt tpRequest

object's responseText property.

Remember that innerHTML should only be used when you know that the server will not return malicious content.
All content that has been created by users or third parties should be escaped on the server (see p228).

AJAX & JSON

LOADING XML
WITH AJAX

Requesting XML data is very similar to requesting HTML. However,
processing the data that is returned is more complicated because the
XML must be converted into HTML to be shown on the page.

On the right-hand page, you can
see that the code to request an
XML file is almost identical to
the code to request an HTML
file shown on the previous page.
What changes is the part inside
the conditional statement that
processes the response (points
1-4 on the right-hand page). The

XML must be turned into HTML.

The structure of the HTML for
each event is shown below.

1. When a server responds with
XML, it can be obtained using
the responseXML property of the
XMLHttpRequest object. Here,
the XML returned is stored in a
variable called response.

2. This is followed by the
declaration of a new variable
called events, which holds all of
the <event> elements from the
XML document. (You saw the
XML file on p375.)

3. The XML file is then
processed using the DOM
methods you learned about

in Chapter 5. First, the for

loop goes through each of the
<event> elements, collecting

the data stored in their child
elements, and placing it into new
HTML elements.

Each of those HTML elements is
then added into the page.

4. |nside the for loop, you

will see the getNodeValue()
function is called several times.
Its purpose is to get the contents
from each of the XML elements.
It takes two parameters:

i) obj is an XML fragment.

ii) tag is the name of the tag you
want to collect the information
from.

The function looks for the
matching tag within the XML
fragment (using the DOM's
getElementsByTagName ()
method). It then gets the text
from the first matching element
within that fragment.

The XML for each event is being transformed into the following HTML structure:

<div class="event">

<p>Location
Event date</p>

</div>

AJAX & JSON

JAVASCRIPT c08/js/data-xml . js

var xhr = new XMLHttpRequest(); // Create XMLHttpRequest object
xhr.onload = function() { // When response has loaded
// The following conditional check will not work Tocally - only on a server
if (xhr.status === 200) { // 1f server status was ok

// THIS PART IS DIFFERENT BECAUSE IT IS PROCESSING XML NOT HTML
(@) var response = xhr.responseXML; // Get XML from the server
(@ var events = response.getElementsByTagName('event'); // Find <event> elements

[for (var i = 0; i < events.length; i++) { // Loop through them
var container, image, location, city, newline; // Declare variables
container = document.createElement('div'); // Create <div> container
container.className = 'event'; // Add class attribute
image = document.createElement('img'); // Add map image

image.setAttribute('src', getNodeValue(events[i], 'map'));
image.appendChild(document.createTextNode(getNodeValue(events[i], 'map')));
container.appendChild(image);

(@H Tlocation = document.createElement('p'); // Add location data

city = document.createElement('b');

newline = document.createElement('br');
city.appendChild(document.createTextNode(getNodeValue(events[i], 'Tocation')));
Tocation.appendChild(newline);

location.insertBefore(city, newline);
Tocation.appendChild(document.createTextNode(getNodeValue(events[i], 'date')));
container.appendChild(Tocation);

document .getElementById('content').appendChild(container);

)

[function getNodeValue(obj, tag) { // Gets content from XML
@A return obj.getElementsByTagName(tag) [0].firstChild.nodeValue;
L}
// THE FINAL PART IS THE SAME AS THE HTML EXAMPLE BUT IT REQUESTS AN XML FILE
}
}s
xhr.open('GET', 'data/data.xml', true); // Prepare the request
xhr.send(null); : // Send the request

AJAX & JSON GID

LOADING JSON
WITH AJAX

The request for JSON data uses the same syntax you saw in the requests
for HTML and XML data. When the server responds, the JSON will be

converted into HTML.

When JSON data is sent from
a server to a web browser, it is
transmitted as a string.

When it reaches the browser,
your script must then convert
the string into a JavaScript
object. This is known as
deserializing an object.

This is done using the parse()
method of a built-in object called
JSON. This is a global object, so
you can use it without creating
an instance of it first.

Once the string has been parsed,
your script can access the data
in the object and create HTML
that can be shown in the page.

The HTML is added to the page
using the innerHTML property.
Therefore, it should only be used
when you are confident that it
will not contain malicious code
(see XSS on p228).

This example will look the same -

as the last two examples when
you view it in a web browser.

Here you can see the JSON data that is being processed again (it was
introduced on p377). Note how it is saved with the . json file extension.

c08/data/data.json

{

“events": [

{ "Tocation": "San Francisco, CA", "date": "May 1", "map":

The JSON object also has a
method called stringify(),
which converts objects into a
string using JSON notation so
it can be sent from the browser
back to a server. This is also
known as serializing an object.

This method can be used when
the user has interacted with the
page in a way that has updated
the data held in the JavaScript
object (e.g., filling in a form),

so that it can then update the
information stored on the server.

JAVASCRIPT

"img/map-ca.png" },

{ "location": "Austin, TX", "date": "May 15", "map": "img/map-tx.png" },

{ ‘I]Ocation": “New Yﬂr'k, NY“, "date“: "May 30", "map":

]
}

AJAX & JSON

"img/map-ny.png"}

1. The JSON data from the server
is stored in a variable called
responseObject. It is made
available by the XMLHttpRequest
object's responseText property

When it comes from the server,
the JSON data is a string, so it
is converted into a JavaScript
object using the JSON object's
parse() method.

JAVASCRIPT

var xhr = new XMLHttpRequest();

xhr.onload = function() {
if(xhr.status === 200) {

2. The newContent variable is
created to hold the new HTML
data. It is set to an empty string
outside the loop so that the code
in the loop can add to the string.

3. Loop through the objects that

represent each event using a for
loop. The data in the objects are

accessed using dot notation, just
like you access other objects.

Inside the loop, the contents

of the object are added to the
newContent variable, along
with their corresponding HTML
markup.

4. When the loop has finished
running through the event
objects in responseObject, the
new HTML is added to the page
using the innerHTML property.

c08/js/data-json.js

// Create XMLHttpRegquest object

// When readystate changes
/] 1f server status was ok

(@) responseObject = JSON.parse(xhr.responseText);

// BUILD UP STRING WITH NEW CONTENT (could also use DOM manipulation)

@ var newContent = '';

for (var i = 0; i < responseObject.events.length; i++) {//Loop through object
newContent += '<div class="event">';
newContent += '<img src="' + responseObject.events[i].map + '" ';

G newContent += 'alt="' + responseObject.events[i].location + '" />';

L, 4

// Update the page with the new content
@ document.getElementById('content').innerHTML = newContent;

}
33

xhr.open('GET', 'data/data.json', true);

xhr.send(null);

newContent += '<p>' + responseObject.events[i].location + '
';
newContent += responseObject.events[i].date + '</p>';
newContent += '</div>';

// Prepare the request

// Send the request

AJAX & JSON

WORKING WITH DATA
FROM OTHER SERVERS

Ajax works smoothly with data from your own server but - for security
reasons - browsers do not load Ajax responses from other domains
(known as cross-domain requests). There are three common workarounds.

A PROXY FILE ON THE
WEB SERVER

The first way to load data from
a remote server is to create a
file on your server that collects
the data from the remote server
(using a server-side language
such as ASP.net, PHP, Node)JS, or
Ruby). The other pages on your
site then request the data from
the file on your server (which

in turn gets it from the remote
server). This is called a proxy,
because it acts on behalf of the
other page.

Because this relies upon creating
pages in server-side languages, it
is beyond the scope of this book.

AJAX & JSON

JSONP (JSON WITH
PADDING)

JSONP (sometimes written
JSON-P) involves adding a
<script> element into the page,
which loads the JSON data

from another server. This works
because there are no restrictions
on the source of scriptin a
<script>element.

The script contains a call to

a function, and the JSON-
formatted data is provided as an
argument to that function. The
function that is called is defined
in the page that requests the
data, and is used to process and
display the data. See next page.

ALTERNATIVES
Many people use jQuery when

making requests for remote data,

as it simplifies the process and
handles backward compatibility
for older browsers. As you can
see in the next column, support
for new approaches is an issue.

CROSS-ORIGIN
RESOURCE SHARING

Every time a browser and

server communicate, they

send information to each other
using HTTP headers. Cross-
Origin Resource Sharing or
CORS involves adding extra
information to the HT TP headers
to let the browser and server
know that they should be
communicating with each other.

CORS is a W3C specification,
but is only supported by the
most recent browsers and -
because it requires setting up of
HTTP headers on the server - is
beyond the scope of this book.

CORS SUPPORT

Standard support is as follows:
Chrome 4, FF 3.5, IE10, Safari 4
Android 2.1, 105 3.2

IE8+9 used a non-standard
XDomainRequest object to
handle cross-origin requests.

HOW JSONP WORKS

First, the page must include a
function to process the JSON data.
It then requests the data from the
server using a <script> element.

BROWSER
The HTML page will use two pieces of JavaScript:

1. A function that will process the JSON data that the
server sends. In the example on the next page, the
function is called showEvents ().

2. A <script> element whose src attribute will
request the JISON data from the remote server.

<script>
function showEvents(data) {

// Code to process data and

// display it in the page here
}

</script>

<script src="http://example.org/jsonp">
</script>

The server returns a file that calls
the function that processes the
data. The JSON data is provided
as an argument to that function.

SERVER

When the server responds, the script contains a

call to the named function that will process the data
(that function was defined in step 1). This function
call is the "padding” in JSONP. The JSON-formatted
data is sent as an argument to this function.

So, in this case, the JSON data sits inside the call to
the showEvents () function.

showEvents({
"events": [
{-
“Jocation": "San Francisco, CA",
"date": "May 1",
“map": "img/map-ca.png"

}s

It is important to note that there is no need to use the JSON object's parse() or stringify() methods when
working with JSONP. Because the data is being sent as a script file (not as a string), it will be treated as an object.

The file on the server is often written so that you can specify the name of the function that will process the data
that is returned. The name of the function is usually given in the query string of a URL:
http://example.org/upcomingEvents.php?callback=showEvents

AJAX & JSON GIE,

USING JSONP

This example looks the same as
the JSON example, but the event
details come from a remote
server. Therefore, the HTML
uses two <script> elements.

c08/data-jsonp.html

The first <script> element loads
a JavaScript file that contains the
the showEvents () function. This
will be used to display the deals
information,

<script src="js/data-jsonp.js"></script>
<script src="http://deciphered.com/js/jsonp.js?callback=showEvents"></script>

</body>
</html>

c08/js/data-jsonp.js

function showEvents(data) {

var newContent = '';

The second <script> element
loads the information from a
remote server. The name of the
function that processes the data
is given in the query string

JAVASCRIPT

// Callback when JSON loads
// Variable to hold HTML

// BUILD UP STRING WITH NEW CONTENT (could also use DOM manipulation)

r

}

for (var i = 0; i < data.events.length; i++) |{
newContent += '<div class="event">';
newContent += '<img src="' + data.events[i].map + '"';
newContent += ' alt="' + data.events[i].location + '" />';
@ newContent += '<p>' + data.events[i].location + '
';
newContent += data.events[i].date + '</p>';
newContent += '</div>';

// Update the page with the new content
document.getElementById('content').innerHTML = newContent; }

1. The code in the for loop
(which is used to process the
JSON data and create the
HTML) and the line that writes it
into the page are the same as the
code that processed the JSON
data from the same server.

@ AJAX & JSON

There are three key differences:
i) It is wrapped in a function
called showEvents ().

ii) The JSON data comes in as an
argument of the function call.

iii) The data does not need to be
parsed with JSON.parse(). In
the for loop, it is just referred to
by the parameter name data.

// Loop through data

Instead of using a second
<script>element in the HTML
pages, you can use JavaScript

to write that <script> element
into the page (just like you would
add any other element into the
page). That would place all the
functionality for the external
data in the one JavaScript file.

JSONP loads JavaScript, and
any JavaScript data may contain
malicious code. For this reason,
you should load data only from
trusted sources.

JAVASCRIPT

showEvents ({
"events": [

{

Since JSONP is loading data from You will see more about handling
a different server, you might add errors in Chapter 10, and there is
timer to check if the server has an example of a timer in Chapter
replied within a fixed time (and, 11 (where you create a content

if not, show an error message). slider).

http://htmlandcssbook.com/js/jsonp.js

"location": "San Francisco, CA",

"date"; "May 1",
map": "img/map-ca.png"

"location": "Austin, TX",
"date": "May 15",

The file that is returned from
the server wraps the JSON-

formatted data inside the call

map": "img/map-tx.png"
bs
{
“location”: "New York, NY",
"date": "May 30",
"map": "img/map-ny.png"
}
]
I
The bus stops here.

San Francisco, CA
May 1

to the showEvents () function.
So the showEvents () function
is only called when the browser
has loaded this remote data.

New York, NY
May 15 May 30

AJAX & JSON

JQUERY & AJAX:
REQUESTS

jQuery provides several methods that handle Ajax requests.
Just like other examples in this chapter, the process involves two steps:
making a request and handling the response.

Here you can see the six ways
jQuery lets you make Ajax
requests. The first five are all
shortcuts for the $.ajax()
method, which you meet last.

The .1oad() method operates
on a jQuery selection (like most
jQuery methods). It loads new
HTML content into the selected
element(s).

You can see that the other five
methods are written differently.
They are methods of the global
jQuery object, which is why
they start with $. They only
request data from a server; they
do not automatically use that
data to update the elements of
a matched set, which is why the
$ symbol is not followed by a
selector.

When the server returns data,

the script needs to indicate what

to do with it.

AJAX & JSON

METHOD / SYNTAX DESCRIPTION

.load() Loads HTML fragments into an element
It is the simplest method for retrlevmg data
$.get() Loads data using the HTTP GET method
Used to request data from the server
$.post() Loads data using the HTTP POST method

Used to send data that updates data on server

$.getJSON()

Loads JSON data using a GET request
Used for JSON data

$.getScript()

Loads and executes JavaScript data using GET
Used for JavaScript (e.g., JSONP) data

$.ajax()

This method is used to perform all requests
The above methods all use this under the hood

JQUERY & AJAX:
RESPONSES

When using the .1oad () method, the HTML returned from the server is
inserted into a jQuery selection. For the other methods, you specify what
should be done when the data that is returned using the jgXHR object.

JOGXHR PROPERTIES DESCRIPTION

responseText Text-based data returned

responsexm x MLdatarEtumed ..
status Status code

statusText Status &;;cription (typlcaliyusedtodlspiay

JGXHR METHODS

information about an error if one occurs)

DESCRIPTION

.done()

Code to run if request was successful

fail() Code to run if request was unsuccessful
.always() Code to run if request succeeded or failed
abort() Halt the communication

RELATIVE URLS

If the content you load via Ajax
contains relative URLs (e.g.,
images and links) those URLs
get treated as if they are relative
to the original page that was
loaded.

If the new HTML is in a different
folder from the original page, the
relative paths could be broken.

1. This HTML file uses Ajax to
load content from a page in the
folder shown in step 2.

2. The page in the this folder has
an image whose path is a relative
link to the second folder:

3. The HTML file cannot find the
image as the path is no longer
correct - it is not in a child folder.

jQuery has an object called
JgXHR, which makes it easier to
handle the data that is returned
from the server. You will see its
properties and methods (shown
in the tables on the left) used
over the next few pages.

Because jQuery lets you

chain methods, you can use

the .done(), .fail(), and
.always () methods to run
different code depending on the
outcome of loading the data.

AJAX & JSON

LOADING HTML INTO A
PAGE WITH JQUERY

The .Toad() method is the simplest of the jQuery Ajax methods.
It can only be used to load HTML from the server, but when the server
responds, the HTML is then loaded into the jQuery Selection for you.

JQUERY SELECTOR

You start by selecting the
element that you want the
HTML code to appear inside.

URL OF THE PAGE

Then you use the .1oad()
method to specify the URL of the
HTML page to load.

SELECTOR

You can specify that you want to
load only part of the page (rather
than the whole page).

$('#content').load('jg-ajax3.html #content');

l_._®—J

1. This creates a jQuery object
with the element whose id
attribute has a value of content.

Here, links in the top right corner
take the user to other pages. If
the user has JavaScript enabled,
when they click on a link, code
inside the .on() event method
stops it from loading a whole
new page. Instead, the .1oad()
method will replace the area
highlighted in pink (whose id
attribute has a value of content)
with the equivalent area from
the page that the user just
requested. Only the pink area is
refreshed - not the whole page.

AJAX & JSON

1¥® E

2. This is the URL of the page
you want to load the HTML from.
There must be a space between
the URL and the selector in step 3.

—

3. This is the fragment of the
HTML page to show. Again, itis
the section whose id attribute
has a value of content.

ﬁ’\\ WM RO 0N
THE MAKER BUS
Fifteen tons of fun! ‘' |
W RO 0TS
THE MAKER BUS
T wnee| Tinker, maker, solder, fly.

- e s,

When users click on any of the
links in the <nav> element, one
of two things will occur:

If they have JavaScript enabled,
a click event will trigger an
anonymous function that loads
new content into the page.

If they do not have JavaScript
enabled, they will move from
page to page as normal.

Inside the anonymous function,
five things happen:

1. e.preventDefault() stops
the link taking users to a new
page.

2. A variable called url holds the
URL of the page to load. This is
collected from the href attribute
of the link the user clicked on. It
indicates which page to load.

LOADING CONTENT

3. The class attributes on the
links are updated to indicate
which page is the current page.

4. The element holding the
content is removed.

5. The container element is
selected and .1oad () fetches
new the new content. It is hidden
straight away using .hide() so
that fadeIn() can fade it in.

JAVASCRIPT

$('nav a').on('click', function(e) {
e.preventDefault();
var url = this.href;

c08/js/iq-1oad.js

// User clicks nav Tlink
// Stop loading new link
// Get value of href

$('nav a.current').removeClass('current');
$(this).addClass('current');

// Clear current indicator
// New current indicator

$('#container').remove(); // Remove old content
$('#content').load(url + ' #content').hide().fadeIn('slow'); // New content
s

@® © ©0

<nav=
Home
Route
Toys
</nav>
<section id="content">
<div id="container">
<l-- Page content lives here -->
</div>
</section>

c08/jg-1oad.htm]

The links still work if JavaScript is not enabled. If JavaScript is enabled, jQuery will load content into the <div>
whose id has a value of content from the target URL. The rest of the page does not need to be reloaded.

AJAX & JSON

JQUERY'S AJAX
SHORTHAND METHODS

jQuery provides four shorthand methods to
handle specific types of Ajax requests.

The methods below are all
shorthand methods. If you
looked at the source code for
jQuery, you would see that they
all use the $.ajax() method.

You will meet each one over the
next few pages because they
introduce key aspects of the
$.ajax() method.

METHOD / SYNTAX

These methods do not work on

a selection like other jQuery
methods, which is why you prefix
them with only the $§ symbol
rather than a jQuery selection.
They are usually triggered by an
event, such as the page having
loaded or the user interacting
with the page (e.g., clicking on a
link, or submitting a form).

DESCRIPTION

With an Ajax request, you will
often want to send data to the
server, which will in turn affect
what the server sends back to
the browser.

As with HTML forms (and the
Ajax requests you met earlier in
the chapter), you can send the
data using HTTP GET or POST.

$.get(url[, data][, callback][, type]l) HTTPGET request for data”

$.getJSON(url[, datal[, callback]) Loads JSON data using a GET request

$.getScript(url[, callback]) Loads and executes JavaScript (e.g., JSONP) using a GET request

The parameters in square brackets are optional.

$ shows that this is a method of the jQuery object.

url specifies where the data is fetched from.

data provides any extra information to send to the server.

callback indicates that the function should be called when data is returned (can be named or anonymous).
type shows the type of data to expect from the server.

Note: The examples in this section only work on a web server (and not on local file systems). Server-side

languages and server setup are beyond the scope of this book, but you can try out the examples on our website.
PHP files have been included with the download code, but they are for demonstration purposes only.

AJAX & JSON

REQUESTING DATA

Here, users vote for their favorite 4, The $.get () method is called When the server responds, the
t-shirt without leaving the page. using three parameters: anonymous callback function

1. If users click on a t-shirt an i) The page that will handle the handles the data. In this case,
anonymous function is triggered. request (on the same server), the code in that function selects
2. e.PreventDefault() stops ii) The data being sent to the the element that the held the
the link opening a new page. server (here it is a query string, t-shirts and replaces it with the
3. The user's choice is the value but it could be JSON). HTML sent back from the server.
of the id attribute on the image. iii) The function that handles This is done using jQuery's

It is stored in a variable called the result the server sends back; .htm1 () method.

queryString in the format of a in this case it is an anonymous

query string, e.g., vote=gray function.

coB/53/ et 5

(@ $('#selector a').on('click', function(e) {
e.preventDefault();
@ var queryString = 'vote=' + event.target.id;
@ $.get('votes.php', queryString, function(data) {
® $('#selector').html (data);
DR
1)s

HTML (This HTML is created by code inside the JS file.)

<div class="third">

</div>
<div class="third">

</div>
<div class="third">

</div>

The t-shirt links are created

in the JavaScript file to ensure
they only show if the browser
supports JavaScript (the
resulting HTML structure is
shown above). When the server
responds, it does not have to
send back HTML; it can return
any kind of data that the browser
can process and use,

AJAX & JSON

SENDING FORMS

USING AJAX

To send data to the server, you are likely to use the .post () method.
jQuery also provides the .serialize() method to collect form data.

SENDING FORM DATA

The HTTP POST method is often used when sending
form data to a server and it has a corresponding
function, the .post () method. It takes the same
three parameters as the .get () method:

i) The name of the file on the (same) server that will
process the data from the form

ii) The form data that you are sending

iii) The callback function that will handle the
response from the server

On the right-hand page you can see the §.post()
method used with a method called .serialize(),
which is very helpful when working with forms.
Together they send the form data to the server.

SERVER-SIDE

When a server-side page handles a form, you might

want the same page to work whether:

® |t was a normal request for a web page (in which
case you would send the whole page); or

® |t was an Ajax request (where you might respond
with just a fragment of the page)

AJAX & JSON

COLLECTING FORM DATA

jQuery's .serialize() method:

#® Selects all of the information from the form

@ Puts it into a string ready to send to the server

® Encodes characters that cannot be used ina
query string

Typically it will be used on a selection containing
a <form=> element (although it can be used on
individual elements or a subsection of a form).

It will only send successful form controls, which
means it will not send:

@ Controls that have been disabled

® Controls where no option has been selected
® The submit button

On the server, you can check whether a page is
being requested by an Ajax call using the
X-Requested-With header.

If it is set and has a value of XMLHttpRequest, you
know that the request was an Ajax request.

SUBMITTING FORMS

1. When users submit the form, 4, The $.post () method is 5. When the server responds,

an anonymous function runs. called using all three parameters: the content of the element
whose id attribute has a value

2. e.PreventDefault() stops i) The url of the page that the of register is overwritten with

the form from submitting. data is being sent to new HTML sent from the server.

ii) The data that was just

3. The form data is collected by collected from the form

the .serialize() method and iii) A callback function that will

stored in the details variable. display the results to the user

JAVASCRIPT c08/js/iq-post.is

(@) $('#register').on('submit', function(e) { // When form is submitted
@ e.preventDefault(); // Prevent it being sent
® var details = $('#register').serialize(); // Serialize form data

@ $.post('register.php', details, function(data) { // Use $.post() to send it
® $('#register').html (data); // Where to display result

1)s
1)s

c08/jq-post.html

<form id="register" action="register.php" method="post">
<h2>Register</h2> .
<label for="name">Username</label><input type="text" id="name" name="name" />
<label for="pwd">Password</label><input type="password" id="pwd" name="pwd" />
<label for="email">Email</label><input type="email" id="email" name="email" />
<input type="submit" value="Join" />

</form>

This example needs to be run
RESULT p

on a web server. The server-side
page will return a confirmation
Register message (but it does not
validate the data submitted nor
send a confirmation email).

AJAX & JSON

LOADING JSON &
HANDLING AJAX ERRORS

You can load JSON data using the $.getJSON() method.
There are also methods that help you deal with the response if it fails.

LOADING JSON

If you want to load JSON data, there is a method
called $.getJSON() which will retrieve JSON from
the same server that the page is from. To use JSSONP
you should use the method called $.getScript().

AJAX AND ERRORS

Occasionally a request for a web page will fail

and Ajax requests are no exception. Therefore,
jQuery provides two methods that can trigger code
depending on whether the request was successful or
unsuccessful, along with a third method that will be
triggered in both cases (successful or not).

Below is an example that will demonstrate these
concepts. It loads fictional exchange rates.

SUCCESS / FAILURE

There are three methods you can chain after
$.get(),$.post(), $.getISON(), and $.ajax() to
handle success / failure. These methods are:

.done() - an event method that fires when the
request has successfully completed

.fail() - an event method that fires when the
request did not complete successfully

.always () - an event method that fires when the
request has completed (whether it was successful or
not)

Older scripts may use the .success(), .error(),
and .complete() methods instead of these methods.
They do the same thing, but these newer methods
have been the preferred option since jQuery 1.8.

‘ Exchange Rates ‘

& UK: 20,00
= US: 35,99
@ AU: 39.99

|
!
Last update: 15:34 l

s
L=

‘ Exchange Rates

Sorry, we cannot load rates.

e |
L=

AJAX & JSON

JSON & ERRORS

1. In this example, JSON data 4, Inside ToadRates(), the
representing currency exchange $.getJSON method tries to load
rates is loaded into the page by a some JSON data. There are
function called ToadRates(). three methods chained after this

method. They do not all run.

2. On the first line of the script

contains an anonymous function

an element is added to the page 5. .done() only runs if the

to hold the exchange rate data. data is retrieved successfully. It
3. The function is called on the that shows exchange rates and
last line of the script. the time they were displayed.

JAVASCRIPT

6. .fail() only runs if the server
cannot return the data. Its job is
to display an error message to
the user.

7. .always () will run whether
or not the answer was returned.
It adds a refresh button to

the page, along with an event
handler that triggers the
loadRates() function again.

c08/js/jq-getJSON. js

@ $('#exchangerates').append('<div id="rates"></div><div id="reload"></div>"');

(@ function loadRates() {
@ $.9etJSON('data/rates.json')
(® .done(function(data) {
var d = new Date();
var hrs = d.getHours();
var mins = d.getMinutes();
var msg = '<h2>Exchange Rates</h2>';
$.each(data, function(key, val) {

// SERVER RETURNS DATA
// Create date object
// Get hours

// Get mins

// Start message

// Add each rate

msg += '<div class=""' + key + '"">' + key +7': ' + val + '</div>';

i

msg += '
Last update: ' + hrs + ':' + mins + '
'; // Show update time

$("#rates') .html (msg);
® }).fail(function() {

$('aside').append('Sorry, we cannot load rates.');

}).always(function() {

var reload = '";

// Add rates to page

// THERE IS AN ERROR

// Show error message
// ALWAYS RUNS

// Add refresh 1link

reload += '';

$('#reload').html (reload);

$("#refresh').on('click', function(e) {

e.preventDefault():
loadRates();

D
Hs

}

(@ loadRates();

// Add refresh Tink
// Add click handler
// Stop Tlink

// Call ToadRates()

// Call loadRates()

AJAX & JSON

AJAX REQUESTS WITH
FINE-GRAINED CONTROL

The $.ajax () method gives you greater control over Ajax requests.
Behind the scenes, this method is used by all of jQuery's Ajax
shorthand methods.

Inside the jQuery file, the $.ajax() method is used The example on the right-hand page looks and works
by the other Ajax helper methods that you have seen like the one that demonstrated the .Toad() method
so far (which are offered as a simpler way of making on p390. But it uses the $.ajax() method instead.

Ajax requests).
® The settings can appear in any order, as long as

This method offers greater control over the entire they use valid JavaScript literal notation.

process, with over 30 different settings that you @® The settings that take a function can use a named
can use to control the Ajax request. You can see a function or an anonymous function written inline.
selection of these settings in the table below. These ® $.ajax() does not let you load just one part of
settings are provided using object literal notation the page so the jQuery . find() method is used
(the object is referred to as the settings object). to select the required part of the page.

SETTING DESCRIPTION

type Can take values GET or POST depending on whether the request is made using HTTP GET or POST
ur'l ‘‘‘‘‘‘‘‘‘ The page the request is bemgsentto
data The data that is being sent tothe server with the:.;e";uest

success A fum.:"t'l.;r; that runs if the Ajax request completes successfully (similar to the .done () method)
error A function that runs if there is an error with the Ajax request (similar to the . faﬂ () method)

beforeSend A function (anonymous or named) that is run before the Ajax request starts
In the example on the right, this is used to trigger a loading icon

complete Runs after success/error events
In the example on the right, this removes a loading icon

timeout The number of milliseconds to wait before the event should fail

@ AJAX & JSON

CONTROLLING AJAX

When the user clicks on a link in
the <nav> element, new content

This example sets seven settings
for the $.ajax () method.

is loaded into the page. This is
very similar to the example on
p390 for the .1oad() method,
but that shorthand method only
required one line.

The first three are properties,
the final four are anonymous
functions triggered at different
points in the Ajax request.

2. This example sets the timeout
property to wait two seconds for
the Ajax response.

1. Here the click event handler
triggers the $.ajax() method.

JAVASCRIPT

(@ $('nav a').on('click', function(e) {
e.preventDefault();
var url = this.href;
var $content = $('#content');

$('nav a.current').removeClass('current');
$(this).addClass('current');
$('#container').remove();

$.ajax({
type: "POST",
urlzs url,
timeout: 2000,
beforeSend: function() {
$content.append('<div id="Toad">Loading</div>');
}!
complete: function() {
$('#loading').remove();
}’

success: function(data) {

=

3. The code also adds elements
into the page to show that data
is loading. You may not see them
appear if the request is handled
quickly, but you will see them if
the page is slower to load.

4, If the Ajax request fails, then
an error message will be shown
to the user.

c08/js/jg-ajax.js

// URL to load
// Cache selection

// Update links

// Remove content

// GET or POST
// Path to file
// Waiting time
// Before Ajax
// Load message

// Once finished
// Clear message

// Show content

$content.html($(data).find('#container')).hide().fadeIn(400);

},

// Show error msg

fail: function() {
$('#panel').html ('<div class="Toading">Please try again soon.</div>');

}
)i

13

AJAX & JSON

e e i) G

Roll up! Roll up! It's the maker bus...

SAN FRANCISCO,CA

g 'l"

<
/:.r

[

AJAX & JSON

Fames Centur
ames Coentury
Zames Ceniur
sames Century
sames Centur
weurnane Stmees Century

Zames Centur
seiames Century
e mies Ceniur
res Centur)

EXAMPLE

AJAX & JSON

This example shows information about three
events. The data used comes from three
different sources.

1) When the page loads, event locations are coded
into the HTML. Users click on an event in the left-hand
column; it updates the timetable in the middle column.

In the left column, the links have an id attribute whose value is a two-
letter identifier for the state the event is in:
... Austin, TX

2) The timetables are stored in a JSON object, in an
external file collected when the DOM has loaded.
When users click on a session in the middle column, its
description is shown in the right-hand column.

In the middle column showing timetables, the title of each session is
used inside a link that will show the description for the session.

Circuit Hacking

3) Descriptions of all sessions are stored in one HTML
file. Individual descriptions are selected using jQuery's
.1oad() method (and the # selector shown on p390).

In the right column, the session description is taken from an HTML file.
Each session is stored in an element whose 1d attribute contains the title
of the session (with spaces replaced by dashes).
<div id="Intro-to-3D-Modeling">

<h3>Intro to 3D Modeling</h3>

<p>Come learn how to create 3D models of ...</p>
</div>

Because links are added and removed, event delegation is used.

AJAX & JSON

EXAMPLE

AJAX & JSON

This example uses data from three separate
sources to demonstrate Ajax techniques.

In the left-hand column you can
see three locations for an event.
These are written into the HTML
for the timetable page. Each one
is a link.

I\

THE MAKER BUS

1. Clicking on an event loads the
session times for that event.
They are stored in a file called
example.json, which is collected
when the DOM has loaded.

2. Clicking on a session will load
its description. They are stored
indescriptions.html, which is
loaded when a user clickson a

session title.

Roll up! Roll up! It's the maker bus...

t AUSTIN, TX

@ AJAX & JSON

®
9:00 Arduino Antics
10:00 Brain Hacking
11:30 Introto 3D Modeling

1:00 ThePrinted Lunch

2:00 DroningOn
| 300 CircuitHacking
4:30

Make The Future

@
Arduino Antics

Learn how to program and use an
Arduino! This easy-to-learn open source
microcontroller board takes all sorts of
sensor inputs, follows user-generated
programs, and outputs data and power.
Arduinos are commonly used in

| robotics, mechatronics, and all manners

of electronics projects around the world.

Taught by Elsie Denney, professional
software developer with a long previous
career as a technical artist in the video
game industry, electronics enthusiast
and instructor.

HOME ROUTE TOYS TIMETABLE

EXAMPLE

AJAX & JSON
c08/example.html

<body=>
<header>
<h1>THE MAKER BUS</hl>
<nav>
HOME
ROUTE
TOYS
TIMETABLE
</nav>
</header>

<gection id="content">
<div id="container">
<div class="third">
<div id="event">

San Francisco, CA

Austin, TX

New York, NY
</div>
</div>
<div class="third">
<div id="sessions">Select an event from the left</div>
</div>
<div class="third">
<div id="details>Details</div>
</div>
</div><!-- #container -->
</section><!-- #content -->

<script src="js/jquery-1.11.0.min.js"></script>
<script src="js/example.js"></script>

</body>
Here you can see the HTML page. It has a header, Left column: list of the events
followed by three columns. Two scripts appear Middle column: timetable of the sessions

before the closing </body> tag. Right column: description of the sessions

AJAX & JSON

EXAMPLE

AJAX & JSON

cNN/data/example. json JAVASCRIPT
{

AR [
{
"time": "09.00",
"title": "Intro to 3D Modeling"
}’
{
“time": "10.00",
"title": "Circuit Hacking"
}l
{

"time": "11.30",
"title": "Arduino Antics"

c08/descriptions.html

<div id="Intro-to-3D-Modeling">

<h3>Intro to 3D Modeling</h3>

<p>Come Tearn how to create 3D models of parts you can then make...</p>
</div>
<div id="Circuit-Hacking">

<h3>Circuit Hacking</h3>

<p>Head to the Electro-Tent for a free introductory soldering...</p>
</div>
<div id="Arduino-Antics">

<h3>Arduino Antics</h3>

<p>Learn how to program and use an Arduino! This easy-to-Tearn...</p>
</div>

When the seript is run, the 1oadTimetable() function Events are identified by a two-letter code for the

loads the timetables for all three events from a file state. You can see a sample of the JSON-formatted
formatted using JSON, stored in example. json. data above and a sample of the HTML that will be
The data is cached in a variable called times. created using that data.

@) $(function() {

@ var times;
$.ajax({
beforeSend: function(xhr){

EXAMPLE

AJAX & JSON

c08/js/example.js
// When the DOM is ready

// Declare global variable
// Setup request

// Before requesting data
// If supported

if (xhr.overrideMimeType) {
xhr.overrideMimeType("application/json"); // set MIME to prevent errors

}
}
133

// FUNCTION THAT COLLECTS DATA FROM THE JSON FILE

(@ function ToadTimetable() {
$.getJSON('data/example.json')
(:}{ .done(function(data){

times = data;

// Declare function

// Try to collect JSON data
// 1f successful

// Store it in a variable

// 1If a problem: show message

(:}{ }).fail(function() {
$('#event').html ('Sorry! We could not load the timetable at the moment');

1)s
}

@ TloadTimetable();

1. The script that does all the work is in example. js.
It runs when the DOM has loaded.

2. The times variable will be used to store the
session timetables for all of the events.

3. Before the browser requests the JSON data,

the script checks if the browser supports the
overrideMimeType() method. This is used to
indicate that the response from the server should be
treated as JSON data. This method can be used in
case the server is accidentally set up to indicate that
the data being returned is in any other format.

// Call the function

4, Next you can see a function called
loadTimetable(), which is used to load the
timetable data from a file called example. json.

5. If the data loads successfully, the data for the
timetables will be stored in a variable called times.

6. If it fails to load, an error message will be shown
to the users.

7. The ToadTimetable() function is then called to
load the data.

AJAX & JSON

EXAMPLE

AJAX & JSON

c08/js/example.js

JAVASCRIPT

// CLICK ON THE EVENT TO LOAD A TIMETABLE

e.preventDefault();
var loc = this.id.toUpperCase();

var newContent = '';

@O0® ® @O O

}

$(this).addClass('current');

©@ ® ©

$('#details').text('"');
s

1. A jQuery event helper method waits for users
to click on the name of an event. It will load the
timetable for that event into the middle column.

2. The preventDefault() method prevents the link
from opening a page (because it is will show the
AJAX data instead).

3. A variable called 1oc is created to hold the name
of the event location. It is collected from the id

attribute of the link that was clicked.

4, The HTML for the timetables will be stored in a

variable called newContent. It is set to a blank string.

5. Each session is stored inside an <11i> element,
which starts by displaying the time of the session.

@ AJAX & JSON

for (var i = 0; i < times[loc].length; i++) {
newContent += '' + times[loc][i].time + '';
newContent += '<a href="descriptions.html#';
newContent += times[loc][i].title.replace(/ /g, '-') + '">';
newContent += times[loc][i].title + '</1i>";

$('#event a.current').removeClass('current');

$('#content').on('click', '#event a', function(e) { // User clicks on place

// Prevent Toading page
// Get value of id attr

// To build up timetable
// loop through sessions

$('#sessions').html ('' + newContent + ''); // Display time

// Update selected 1ink

// Clear third column

6. A link is added to the timetable, which will be
used to load the description. The link points to the
descriptions.html file. It is followed by a # symbol
so it links to the correct part of the page.

7. The session title is added after the # symbol.

The .replace() method replaces spaces in the title
with a dash to match the value of the id attribute in
the descriptions.html file for each session.

8. Inside the link you can see the title of the session.

9. The new content is added into the middle column.

10. The class attributes on the event links are
updated to shows which event is the current event.

11. The third column is emptied if it had content.

JAVASCRIPT

EXAMPLE

AJAX & JSON

c08/js/example.js

// CLICK ON A SESSION TO LOAD THE DESCRIPTION

(@ $('#content').on('click', '#sessions 1i a', function(e) { // Click on session
@) e.preventDefault(); // Prevent loading
® var fragment = this.href; // Title is in href
@ fragment = fragment.replace('#', ' #'); // Add space after#
® §('#details').load(fragment); // To load info
@_’ $('#sessions a.current').removeClass('current'); // Update selected
L $(this).addClass('current');
D
// CLICK ON PRIMARY NAVIGATION
$('nav a').on('click', function(e) { // Click on nav
e.preventDefault(); // Prevent loading
var url = this.href; // Get URL to load
@A $('nav a.current').removeClass('current'); // Update nav
$(this).addClass('current');
$('#container').remove(); // Remove old
$('#content').Toad(url + ' #container').hide().fadeIn('slow'); // Add new
L 1)s f

1)s

1. Another jQuery event helper method is set up
to respond when a user clicks on a session in the
middle column. It loads a description of the session.

2. preventDefaul t () stops the link opening.

3. A variable called fragment is created to hold the
link to the session. This is collected from the href
attribute of the link that was clicked.

4. A space is added before the # symbol so that it is
the correct format for the jQuery Toad() method to
collect part (not all) of the HTML page, e.g.,
description.html #Arduino-Antics

5. A jQuery selector is used to find the element
whose id attribute has a value of details in the third
column. The .1oad() method is then used to load
the session description into that element.

6. The links are updated so that they highlight the
appropriate session in the middle column.

7. The main navigation is set up as shown on p391.

AJAX & JSON

SUMMARY

AJAX & JSON

@ AJAX & JSON

@ APIS

User interfaces allow humans to interact with programs.
Application Programming Interfaces (APIs) let programs
(including scripts) talk to each other.

Browsers, scripts, websites, and other applications frequently open up some of their
functionality so that programmers can interact with them. For example:

BROWSERS

The DOM is an API. It allows
scripts to access and update
the contents of a web page
while loaded in the browser.
In this chapter you will meet
some HTMLS JavaScript
APls that provide access to
other browser features,

SCRIPTS

jQuery is a JavaScript file
with an API. It allows you to
select elements, then use

its methods to work with
those elements. It is just one
of many scripts that let you
to perform powerful tasks
using their code.

PLATFORMS

Sites such as Facebook,
Google, and Twitter open up
their platforms so that you .
can access and update data
they store (via websites and
apps). In this chapter you
see how Google lets you to
add their maps to your sites.

You do not need to know how the other script or program achieves its task; you only need
to know what it does, how to ask it to do something, and how to understand its replies.
Therefore, this chapter will familiarize you with the form in which APls are described.

.

i MY il s

i

o s el

1
1
|
|
-
\

SSRGS SSEESSORET A

e g

PLAYING NICELY
WITH OTHERS

You do not always need to know how a script or program works, as long
you know how to ask it to do something, and how to process its response.
The questions you can ask and the format of the answers form the API.

WHAT THE API CAN DO

If there is a script or program
that offers functionality you
need, consider using it rather
than writing something from
scratch.

Because each script, program, or
platform has different features,
the first thing you need to do is
understand what the APl allows
you to do. For example:

® The DOM and jQuery APls
allow you to access and
update a web page that is
loaded in the browser and
respond to events.

@ Facebook, Google+, and
Twitter APls let you to access
and update profiles and
create status updates on their
platforms.

When you know what the API
allows you to do, you can decide
if it is the right tool for the job.

APIS

HOW TO ACCESS IT

Next you need to know how to
access the functionality of the
APl in order to use it.

The DOM's functionality is built
into the JavaScript interpreter in
the browser.

With jQuery you need to include
the jQuery script from your
server or a CDN in your pages.

Facebook, Google+, Twitter, and
other sites provide various ways
to access the functionality of
their platforms using APls.

THE SYNTAX

Finally, you need to learn how to
ask the API to do something and
the format in which you should
expect any replies.

As long as you know how to

call a function, create an object,
and access the properties and
methods of an object, you will be
able to use any JavaScript API.

This chapter introduces you to
a range of APIs so you gain the
confidence to learn more about
them and other APls.

HTMLS JAVASCRIPT APIS

First, we will look at some of the new HTMLS5 APIs.
Along with the markup in the HTMLS5 specification, a set of APIs define

that describe how to interact with features of web browsers.

WHY HTML5 HAS APIS

As technologies evolve, so does
the browsing experience. For
example, smartphones may
have smaller screens and less
power than the latest desktop
computers; but they include
features that are rarely found
on desktop machines such as
accelerometers and GPS.

The HTML5 specification has
not only added new markup,

but also includes a new set of
JavaScript APIs that standardize
how you can make use of these
new features in any device that
implements them.

WHAT THEY COVER

Each of the HTMLS5 APIs focuses
on one or more objects that
browsers implement to deliver
specific functionality.

For example, the geolocation API
describes a geolocation object
that lets you ask users for their
location and two objects that
handle the browsers response.

There are also APIs that offer
improvements over existing
functionality. For example, the
web storage API lets you store
information within the browser
without relying on cookies.

WHAT YOU'LL LEARN

There is not space for an
exhaustive reference of each of
the HTML5 APIs (there have
been whole books dedicated to
these new HTMLS features).

But you will meet three of the
APIs and see examples of how to
work with them,

This should get you used to using
the HTML5 APIs so that you can
then go on and learn more about
them as you need them. You will
also learn how you can test to
see whether or not a browser
supports the functionality in any
of the APIs.

API DESCRIPTION

geolocation How to tell where the user is located p418
localStorage Store mformatlon in the browser (even wher;"t'xser dosestabasindony p420
sessionStorage Store information in the browser while a tab/window is open

history How to access items from the browser's history p424

APIS @

FEATURE DETECTION

When you write code that uses the HTML5 APIs (or any other new
feature in a web browser), you may need to check if the browser supports
that feature before your code tries to use it.

The HTML5 APIs describe objects that browsers use
to implement new functionality. For example, you
are about to meet an object called the geolocation
object that is used to determine a user's location.
However, this object is only supported in modern
browsers, so you need to check whether a browser
supports this it before trying to use the object.

Is

navigator.geolocation
supported?

Run statements that do Run statements that
not use geolocation use geolocation

You may not be surprised to hear that there are
some cross-browser issues with feature detection.

For example, in the case of the code above, there
was a bug in 1E9 which could result in a memory leak
when you check for the geolocation object. This
could slow down your pages.

APIS

It is possible to check whether a browser supports
an object using a conditional statement.

If the browser supports the object, then the
condition will return a truthy value and the first set
of statements are run. If it is not implemented, the
second set of statements is run.

if (navigator.geolocation) {
// Returas truthy so it is supported
// Run statements in this code block
} else {
// Not supported / turned off
// Or user rejected request

}

Luckily, there is a library called Modernizr, which
takes away the hassles of cross-browser issues (like
jQuery for feature detection). It is a better way to
check if the browser supports recent features,

The script is regularly updated and refined to deal
with cross-browser issues as they are discovered, so
they are less likely to affect you.

MODERNIZR

Modernizr is a script you can use in your pages to tell whether the
browser supports features of HTML, CSS, and JavaScript.
It will be used in the coming HTML5 APl examples.

HOW TO GET MODERNIZR

First, you need to download the script from the
Modernizr.com website, where you will see:

® A development version of the script.
It is uncompressed and features every check that
the script is capable of performing.

® A tool (see screenshot below) that lets you select
which features you want to test for.
You can then download a custom version of the
script that only contains the checks you need.
On a live site, you should not test for features that
you do not use as it would slow your site down.

In our examples, Modernizr is used near the end

of the page just before the script that uses it. But
you may see Modernizr included in the <head> of
an HTML page (if the content of the page is uses
features that you are testing for),

“An indispensable ol
~ Bietice Bow i, or. rohact manager, Edge Took & Services

Download Modernizr 2.7.1

HTMLS

HOW MODERNIZR WORKS

When you include the Modernizr script in your page,
it adds an object called Modernizr, which tests
whether the browser supports the features that you
specified that it should test for. Each feature you
want it to test becomes a property of the Modernizr
object. Their values are a Boolean (true or false)
that tell you if a feature is supported.

You can use Modernizr as a condition like this:
If Modernizr's geolocation property returns true
run the code in the curly braces:

if (Modernizr.geolocation) {
// Geolocation is supported
}

MODERNIZR PROPERTIES

In the screenshot on the left, you can see some of
the features that Modernizr can check for. To see a
full list of Modernizr's properties, visit:
modernizr.github.io/Modernizr/test/index.html

APIS

GEOLOCATION API:
FINDING USERS'

LOCATIONS

An increasing number of sites offer extra functionality to users who
disclose their location. The users' location can be requested using the

geolocation API.

WHAT THE GEOLOCATION API DOES

Browsers that implement the geolocation API

let users share their location with websites. The
location data is provided in the form of longitude
and latitude points. There are several ways for
the browser to determine its location, including
using data from its IP address, wireless network
connection, cell towers, or GPS hardware.

In some devices, the geolocation API can give you
more data along with longitude and latitude. But, we
focus on these features because they have the most
support. Having seen how to use them, if you need
to work with the other features, you will be able to.

CHROME ON MAC

HOW TO ACCESS GEOLOCATION

The geolocation APl is available by default in any
browser that supports it (just like the DOM is).

It was first supported in IES, Firefox 3.5, Safari 5,
Chrome 5, Opera 10.6, i0S3, and Android 2.

Browsers that support geolocation allow users to
turn the feature on and off. If it is on, the browser
will ask users if they want to share data for each
individual web site that requests that information.

The way in which the browser asks the user if they
will share location data differs from one browser to
the next and one device to the next.

@ Jjavascriptbook.com wants to use your computer's location. Learn more

(Deny | (Allow] =

“http://javascriptbook.com”
Would Like To Use Your
Current Location

Don’t Allow OK

105 ON IPHONE

APIS

Would you like to share your location with
javascriptbook.com?

Learn More...

|Sh|l¢l.ocltiml'

FIREFOX ON PC

REQUESTING A USER'S LOCATION

o

Is
navigator.geolocation
supported?

e | | ©

Run statements that do Call method:
not use geolocation navigator.geolocation
.getCurrentPosition()

N

The geolocation APl relies on an object called
geolocation. If you want to try and make use of the
user's location, first you need to check if the browser
supports this object. This example will use the
Modernizr script is used to perform this check.

1. A conditional statement is used to check whether
the browser supports geolocation.

2. If geolocation is supported, the browser returns a
truthy value and the first set of statements run. They
request the user's location using the geolocation
object's getCurrentPosition()method.

3. If geolocation is not supported, then a second set
of statements is run.

if (Modernizr.geolocation) {
// Returns truthy so it is supported
// Run statements in this code block
} else |
// Not supported / turned off
// Or user rejected request

}

PROCESSING THE RESPONSE

~¥» When the browser responds,

there are two possible outcomes:

getCurrentPosition() getCurrentPosition()
did not get a location got a location
8 4 +

i i
Call function: Call function:
fail() success()
Returns object: Returns objects:
PositionError Position and
Position.coords

Once you call the getCurrentPosition() method,
the code continues onto the next line because it is
an asynchronous request (like the Ajax calls in the
last chapter). The request is asynchronous because
the browser will take a while to determine the user's
location (and you do not want the rest of the page to
stop loading while the browser works out where the
user is). Therefore, the method has two parameters:
getCurrentPosition(success, fail)

success is the name of a function to call if the
longitude and latitude are successfully returned. This
method will automatically be passed an object called
position, which holds the user's location.

fail is the name of a function called if the details
cannot be obtained. This method will automatically
be passed an object called PositionError
containing details about the error.

Soin all, there are three new objects you need
to use in order to work with the geolocation API:
geolocation, position, and PositionError.
Their syntax is shown on the next page.

THE GEOLOCATION API

There are three objects involved in adding geolocation to your web page.
The tables demonstrate how APl documentation typically describes the
objects, properties, and the methods you can use.

geolocation OBJECT

The geolocation object is used to request location data. It is a child of the navigator object.

METHOD RETURNS

getCurrentPosition(success, foil) Requests the position of the user and, if the user permits, returns the
user's latitude / longitude plus other location information
success is the name of a function to call if coordinates are retrieved
fail is the name of a function to call if coordinates are not returned

Position OBJECT

If a user's location is found, a Position object is sent to the callback function. It has a child object called coords
whose properties hold the user's location. If a device supports geolocation, it must provide a minimum amount
of data (see the required column); other properties are optional (they may depend on the device's capabilities).

PROPERTY RETURNS REQUIRED
Position.coords.latitude Latitude in decimal degrees Yes
Position.coords.longitude Longitude in decimal degrees Yes
Position.coords.accuracy Accuracy of latitude and I;;'zgitude inmeters Yes
Position.coords.alti ;ude f\.f.i.t.aters above sea level Yes (value can be null)
Position.coords.altitudeAccuracy Accuracy of altitude in meters Yes (value can be null)
Position.coords.heading Degrees clockwise from north No (up to device)
Position.coords.speed mg.;.);"e-;traveiing in meters per second No (up to device)
Position.coords.timestamp Time since created (formatted as Date object) No (up to device)

PositionError OBJECT
If location is not determined, the callback function is passed the PositionError object.

PROPERTY RETURNS REQUIRED

PositionError.code An error number with the following values: Yes
1 Permission denied 2 Unavailable 3 Timeout

PositionError.message A message (not intended for the end user) Yes

APIS

WORKING WITH LOCATION

j A

supported by the browser and enabled by the user.

25
W
3.
lo

In this example, Modernizr checks if geolocation is 4. If it is not supported, then the user will see a

ill be asked for permission to share their location.

message that shows their location could not be
When getCurrentPosition() is called, the user found.

5. If the location is not gained (for any reason), again

If the location is gained, the user's latitude and the message will say that a location cannot be found.

ngitude are written into the page.

JAVASCRIPT

®
@

®

var elMap = document.getElementById('loc');

var msg = 'Sorry, we were unable to get your location.';

if (Modernizr.geolocation) {

navigator.geolocation.getCurrentPosition(success, fail);

elMap.textContent = 'Checking location...';
} else {

elMap.textContent = msg;
}

[function success(position) {
msg = '<h3>Longitude:
';
msg += position.coords.latitude + '</h3>';

(3H msg += '<h3>Latitude:
';

msg += position.coords.longitude + '</h3>';
elMap.innerHTML = msg;
B

[function fail(msg) {

C)' elMap.textContent = msg;

console.log(msg.code);

L}

<script src="js/geolocation.js"></script>

/1
/!

//
//
//
//
//

//
/1
/1
//
//
/1

//
/!

The error code is logged to the browser console.

c09/js/geolocation.js

HTML element
No Tocation msg

Is geo supported
Ask for location
Say checking...
Not supported
Add manual entry

Got Tocation
Create message
Add Tatitude
Create message
Add Tongitude
Show location

Not got location
Show text input
Log the error

c09/geclocation.html

If you are unable to see a result on a desktop browser, try the example on a smart phone.
You can try all examples directly from the website for the book, http: //www.javascriptbook. com/.

To support older browsers, search for a script called geoPosition.js

APIS

WEB STORAGE API:
STORING DATA IN

BROWSERS

Web storage (or HTML5 storage) lets you store data in the browser.
There are two different types of storage: local and session storage.

HOW TO ACCESS THE STORAGE API

Before HTML5, cookies were the main mechanism
for storing information in the browser. But cookies
have several limitations, most notably they are:

® Not able to hold much data.

® Sent to the server every time you request a page
from that domain.

® Not considered secure.

Therefore, HTMLS introduced a storage object.
There are two different flavors of the storage object,
localStorage and sessionStorage. Both use the
same methods and properties. The differences are
how long the data is stored for and whether all tabs
can access the data that is being stored.

STORAGE LOCAL SESSION
Is the data stored when you

close a window/tab? o Q
Can all open windows/tabs & Ix)

access the data?

Commonly, browsers store 5SMB of data per domain
in a storage object. If a site tries to store more than
5mb of data, the browser will usually ask the user
whether they want to allow this site to store more
information (never rely on users agreeing to give a
site more space).

APIS

The data is stored as properties of the storage
objects (using in key/value pairs). The value in the
pair is always a string. To protect the information that
a website stores in these storage objects, browsers
employ a same origin policy, which means data can
only be accessed by other pages in the same domain.

http://www.google.com:80

-0 —06—®

These four parts of the URL must match:

1. Protocol: The protocol must be a match. If data
was stored by a page that starts http, the storage
object cannot be accessed via https.

2. Subdomain: The subdomain name must match.
For example, maps.google.com cannot access
data stored by www.google.com.

3. Domain: The domain name must match.

For example, google.com cannot access local
storage from facebook.com.

4. Port: The port number must match. Web servers
can have many ports. Usually a port number is not
specified in a URL, and the site uses port 80 for
web pages, but the port number can be changed.

The storage objects are just one of the new HTML5
APIs for storing data. Others include access to the
file system (through the FileSystem API) and client
side databases such as the Web SQL database.

HOW TO ACCESS THE STORAGE API

Both of these objects are implemented on the
window object, so you do not need to prefix the
method names with any other object name.

To save an item into the storage object, you use the
setItem() method, which takes two parameters: the
name of the key and the value associated with it.

To retrieve a value from the storage object you use
the getItem() method, passing it the key.

// Store information
localStorage.setItem('age', '12');
localStorage.setItem('color', 'blue');

// Access information and store in variable
var age = localStorage.getItem('age');
var color = localStorage.getItem('color');
// Number of items stored

var items = localStorage.length;

Data for the storage objects is stored and accessed
in a synchronous manner: all other processing
stops while the script accesses or saves the data.
Therefore, if a lot of data is regularly accessed or
stored, the site can appear slower to use.

METHOD DESCRIPTION

You can also set and retrieve keys and values of the
storage objects as you might with other objects
using dot notation.

The storage objects are commonly used to store

JSON-formatted data. The JSON object's:

® parse() method is used to turn the JSSON-
formatted data into a JavaScript object

® stringify() method is used to transform
objects into JSON-formatted strings

// Store information (object notation)
localStorage.age = 12;
localStorage.color = 'blue';

// Access information (object notation)
var age = localStorage.age;

var color = localStorage.color;

// Number of items stored

var items = localStorage.length;

Below, you can see a table that shows the methods
and property of the storage objects. This table is
very similar to the one you saw for the geolocation
API and is indicative of the types of tables you see in
documentation for APlIs.

setltem(key, value)

Creates a new key/value pair

getItem(key) Gets the value for the specified key
removeltem(key) Removes the key/value pair for the specified key
clear() Clears all information from that storage object
PROPERTY DESCRIPTION

Tength Number of keys

APIS

LOCAL STORAGE

The examples on this page and the right-hand page
store what the user enters into text boxes, but both
examples store it for different lengths of time.

1. A conditional statement is used to check if the
browser supports the relevant storage API.

2. References to the inputs for the username and
answer are stored in variables.

c09/js/1ocal -storage. js

(@) if (window.localstorage) {

3. The script checks to see if the storage object

has a value for either of these elements using

the getItem() method. If so, it is written into the

appropriate input by updating its value property. »
4. Each time an input event fires on one of

the inputs, the form will save the data to the
localStorage or sessionStorage object. It wil

automatically be shown if you refresh the page.

JAVASCRIPT

@_" var txtUsername = document.getElementByld('username');// Get form elements
var txtAnswer = document.getElementById('answer');

6N txtUsername.value = localStorage.getItem('username'); // Elements populated

}, false);

}, false);

txtAnswer.value = TocalStorage.getItem('answer'); // by localStorage data
txtUsername.addEventListener('input', function () { // Data saved -

localStorage.setItem('username', txtUsername.value);

txtAnswer.addEventListener('input', function () { // Data saved
localStorage.setItem('answer', txtAnswer.value);

c09/1ocal-storage.html (The only difference in session-storage.html is the link to the script.)

<div class="two-thirds">

<form id="application" action="apply.php">

<label for="username">Name</1abel>

<input type="text" id="username" name="username" />

<label for="answer">Answer</label>

<textarea id="answer" name="answer"></textarea>

<input type="submit" />
</form>
</div>

<script src="js/local-storage.js"></script>

APIS

SESSION STORAGE

sessionStorage is more suited to information that:

® Changes frequently (each time the user visits
the site - such as whether they are logged in or
location data).

@ |s personal and should not be viewed by other
users of the device.

JAVASCRIPT

(@) if (window.sessionstorage) {

}, false);

}, false);

txtUsername.addEventListener('input', function () {
sessionStorage.setItem('username', txtUsername.value);

txtAnswer.addEventListener('input', function () {
sessionStorage.setItem('answer', txtAnswer.value);

localStorage is best suited to information that:

® Only changes at set intervals (such as timetables
/ price lists), which can be helpful to store offline.

@® The user might want to come back and use again
(such as saving preferences / settings).

c09/js/session-storage.js

oA var txtUsername = document.getElementById('username'); // Get form elements
var txtAnswer = document.getElementById('answer');

) txtUsername.value = sessionStorage.getItem('username'); // Elements populated
txtAnswer.value = sessionStorage.getItem('answer');

// by sessionStorage

// Save data

// Save data

What would you like to make?

Name

Answer

APIS @

HISTORY API
& PUSHSTATE

If you move from one page to another, the browser's history remembers
which pages you visited. But Ajax applications do not load new pages,
so they can use the history APl to update the location bar and history.

WHAT THE HISTORY API DOES

Each tab or window in the browser keeps its own HTMLS's history API can help fix this problem. It lets
history of pages you have viewed. When you visit a you interact with the browser's history object:
new page in that tab or window, the URL is added to
the list of pages you have visited in the history. ® You can update the browser history stack using
the pushState() and replaceState() methods.
Because of this, you can use the back and forward @ Extrainformation can be stored with each item.
buttons in a browser to move between pages you
have visited in that tab or window. However, on sites As you will see, information can be added to the
that use Ajax to load information, the URL is not history object when an Ajax request is made, and
automatically updated (and the back button might the user can be shown the right content when they
not show the last thing that the user was viewing). press back or forward buttons.
FIRST LINK: SECOND LINK: THIRD LINK: BACK BUTTON:
one.html two.html three.html (© twontmi
OMNE TWO THREE ONE TWO THREE ONE TWO THREE ONE TWO THREE

The first page you visitis Click a link: that page goes Click a link: that page goes Pressing back takes you

added to history stack to the top of history stack to the top of history stack down the history stack
one.html two.html three.html three.htm]
one.htm] two.html two.html J'
one.html one.html
Browsing pages: Pressing back: takes you back down the stack
As you browse, the URL in your web browser's Pressing forward: takes you up the stack (where possible)
address bar updates. The page is also added to the New page: if you request a new page, it will replace
top of something called the history stack. anything above the current page in the stack

APIS

State refers to the condition that something is in at a particular time. The browser history is like a pile (or stack)
of states, one on top of the other. The three methods on this page allow you to manipulate the state in browsers.

ADDING INFORMATION TO THE HISTORY OBJECT

pushState() adds an entry to the history object. Because the history object is a child of the window
replaceState() updates the current entry. object, you can use its name directly in the script;
Both take the same three parameters (below), each you can write history.pushState(), you do not

of which updates the history object. need to write window.history.pushState().

history.pushState(state, tit
@t b

le, url);

@ '@

1. The history object can store 2. Currently unused by most 3. The URL that you want the
information with each itemin browsers, the title parameter browser to show for this page.
the history. This is provided in is intended to change the title It must be on the same origin as
the state parameter and can be of the page. (You can specify a the current URL and it should
retrieved when you go back to string for this value, ready for show the correct content if the
that page. when browsers support it.) user goes back to that URL.

GETTING INFORMATION FROM THE HISTCjRY OBJECT

Adding content to the browser history is only The Tocation object:

part of the solution; the other half is loading the If the user presses back or forward, the address bar
right content when the user presses the back or will update itself, so you can get the URL for the page
forward buttons. To help show the right content, the that should be loaded using Tocation.pathname
onpopstate event fires whenever the user requests (the Tocation object is a child of the window object

a new page. and its pathname property is the current URL). This

works well when you are updating an entire page.
This onpopstate event is used to trigger a function

that will load the appropriate content into the page. The state:
There are two ways to determine what content Because the first parameter of the pushState()
should be loaded into the page: method stores data with the history object for
that page, you can use it to store JSON-formatted
@ The location object (which represents the data. That data can then be loaded directly into the
browser's location bar) page. (This is used when the new content loads data
® The state information in the history object rather than a traditional web page.)

APIS

THE HISTORY OBJECT

The HTMLS5 history APl describes the functionality of the history object
in modern web browsers. It lets you access and update the browser
history (but only for pages the user visited on your site).

Even if the visitor is not taken to a new page in the browser window (for example, when only a part of the page
is updated using Ajax), you can modify the history object to ensure that the back and forward buttons work as
the user would expect them to on non-Ajax pages.

Again, the table below is indicative of the kind you might see in APl documentation. As you become comfortable
using the methods, properties, and events of an object you will find it easier to work with all kinds of APls,

history OBJECT

METHOD

DESCRIPTION

history.back()

Takes you back in the history, like the browser's back button

history.forward()

Takes you forward in the history, like the browser's forward button

history.go()

Takes you to a specific page in the history. It is an index number, starting at 0.
.go(1) is like clicking the forward button and .go(-1) is like clicking back

history.pushState()

Adds an item to the history stack
(Clicking on a relative link in a page usually triggers a hashchange event, rather than
load, but no event fires if you use pushState() and the url contains a hash)

history.replaceState()

Does the same as pushState() except it modifies the current history entry

PROPERTY DESCRIPTION
length Tells you how many items are in the history object
EVENT DESCRIPTION

window.onpopstate

APIS

Used to handle the user moving backwards or forwards

WORKING WITH HISTORY

1. The ToadContent () function uses jQuery's .Toad()
method (see p390) to load content into the page.

2. If alink is clicked on, an anonymous function runs.
3. The page to load is held in a variable called href.

JAVASCRIPT

$(function() {
function loadContent(url){

i

$('nav a').on('click', function(e) {
e.preventDefault();
var href = this.href;
var $this = $(this);
$('a').removeClass('current');
$this.addClass('current');
loadContent (href);

Hs

window.onpopstate = function() {
var path = Tocation.pathname;
ToadContent(path);

®@ PO 0080 © 6 _Q

$('a').removeClass('current');

4. The current links are updated.

5. The ToadContent () function is called (see step 1).
6. The pushState() method of the history object
updates the history stack.

c09/js/history.js

// DOM has loaded
// Load new content into page

$('#content').load(url + ' #container').hide().fadeIn('slow');

// Click handler

// Stop link loading new page
// Get href attribute of link
// Store link in jQuery object
// Remove current from 1inks

// Update current link

// Call function: loads content

history.pushState('', $this.text, href); // Update history

// Handle back/forward buttons
// Get the file path
7/ Call function to load page

var page = path.substring(location.pathname.lastIndex0f("/") + 1);

// Remove current from links

$('[href="" + page + '"]').addClass('current'); // Update current link

et

—

e ——
-

RESULT

18T 2ND 3RD

First prize is the Djl Phantom - a small, all-in one
quadcopter designed for aerial photography enthusiasts. It
comes fully configured and ready to fly. Both compact and
stylish, the highly integrated design means that it's easy to
carry wherever you go, ready at a moment’'s notice.

7. When the user clicks backwards or forwards,
the onpopstate event fires. This is used to trigger
an anonymous function.

8. The browser's location bar will display the
corresponding page from the history stack, so
Tocation.pathname is used to obtain the path for
the page that needs to be loaded.

9. The ToadContent () function (in step 1) is called
again, to retrieve the specified page.

10. The file name is retrieved so that the current
link can be updated.

APIS

SCRIPTS WITH APIS

There are hundreds of scripts available for free on the web.
Many have an API you need to use to get them to work for you.

SCRIPT APIS

Lots of developers share their
scripts through a range of
websites. Some are relatively
simple scripts with a single
purpose (such as sliders,
lightboxes, and table sorters).
Others are far more complicated
and can be used for a range of
purposes (such as jQuery).

In this section, you will meet two
different types of scripts whose
code you can make use of when
you have learned their API:

® A setof jQuery plugins
known as jQuery Ul.

® A script that makes it easier
to create web apps called
AngularJS.

JQUERY PLUGINS

Many developers have
written code that adds extra
functionality to jQuery. These
scripts add methods to extend
the jQuery object, which are
known as jQuery plugins.

When you use these plugins,
first you include the jQuery
script, followed by the plugin
script. Then, when you select
elements (as you do with
standard in jQuery methods),
the plugin allows you to apply
new methods that it has defined
to that selection, offering new
functionality that was not in the
original jQuery script.

ANGULAR

Angular.js is another JavaScript
library, but it is very different
from jQuery. Its purpose is to
make it easier to develop web
applications.

One of the most striking things
is that it allows you to access
and update the contents of a
page without writing code to
handle events, select elements,
or update the content of an
element. We only have space to
provide a very basic introduction
to Angular in this chapter, but

it does help demonstrate the
variety of scripts available.

THIRD-PARTY SCRIPTS

Before writing your own script
it can pay to check if someone
else has already done the hard
work for you (there is no point
reinventing the wheel).

APIS

It is always a good idea to check:

® Whether it has been updated
fairly recently

® That the JavaScript is
separate from the HTML

@ Reviews of the script if they
are available

This helps to ensure that the
script uses modern practices
and is still being updated.

It is also worth noting that the
instructions for using a script are
not always called an AP!.

JQUERY Ul

The jQuery foundation maintain its own set of jQuery plugins called
jQuery UL. They help create user interfaces.

WHAT JQUERY Ul DOES

jQuery Ul is a suite of jQuery
plugins that extends jQuery with
a set of methods to create:

® Widgets (such as accordions
and tabs)

@ Effects (that make elements
appear and disappear)

@ |nteractions (such as drag
and drop functionality)

iQuery Ul not only provides
JavaScript you can use, but it
also comes with a set of themes
that help control how the plugins
look on the page.

If you want fine-grained control
over how the jQuery plugins look
in the browser, you can also use

the theme roller, which gives you

more precise control over the
appearance of the elements.

HOW TO ACCESS IT

To use jQuery Ul, first you must
include jQuery in your page; then
you must include the jQuery Ul
script (after the jQuery file).

Versions of jQuery Ul are
available on the same CDNs as
the main jQuery file. But, if you
only need part of the jQuery

Ul functionality, you can just
download the relevant parts
from the jqueryui.com website.
This creates a smaller JavaScript
file, which in turn makes the
script faster to download.

- 5 a

© jQuery

usar interfoce

SYNTAX

Once you have included the
jQuery and jQuery Ul scripts

in the page, the syntax is very
similar to using other jQuery
methods. You create a jQuery
selection and then call a method
that will be defined in the plugin.

As you will see, the jQuery Ul
documentation not only has to
explain the JavaScript methods
and properties it uses, but also
how to structure your HTML

if you want to use many of its
widgets and interactions.

e

JQUERY Ul ACCORDION

Creating an accordion with
jQuery Ul is very simple. You
only need to know:

c09/jqui-accordion.html

<body>
<div id="prizes">
® How to structure your HTML ‘chablst Pr‘.i Ze‘:/h3>

S Vinaiementis)ahanlibe <div><p>First prize is the DJI...</p></div>
used in the jQuery selector <h3>2nd Prize</h3>

® The jQuery Ul method to call

OO

<div><p>Second prize is the...</p></div>
<h3>3rd Prize</h3>

1. In this example, the HTML for <div><p>Third prize is a...</p></div>
an accordion is contained within </div>

a <div> element (its id attribute [<script src="js/jquery-1.9.1.js"></script>

has 8 alue GOAE 12RA, Whic: Wil <script src="js/1.10.3/jquery-ui.js"></script>

be used in the script). Each panel

; <script>
of the accordion has: ® $ (function() {
$('#prizes').accordion();
2. An <h3> element for the © 1)s (*#p) 0
clickable heading </5c:"i pEs
3. A <div> element for the </body>

content of that panel

4. Before the closing </body> tag

the jQuery and jQuery Ul scripts
are both included in the page.

* 1st Prize
5. Finally, you can see a third First prize is your very own DJI Phantom - a small, all-in-one
<script>element containing an m&ﬁmﬁ?
anonymous function that runs o s e ol
when the page has loaded.

+ 2nd Prize
6. Inside that function, a s 3rd Prize
standard jQuery selector
picks the containing <div>
element that contains the You do not need to know how Note: On a live site, the
accordion (using the value of the jQuery plugin achieves this, JavaScript should be kept in
its id attribute). The accordion as long as you know how to: an external file to maintain a
functionality is triggered by ® Structure your HTML separation of concerns. It is
calling the .accordion() ® Create the jQuery selection shown here for convenience and
method on that selection, @ Call the new method defined to show how little work needs to

in the jQuery plugin - be done to achieve this effect.

APIS

<div id="prizes"=>

JQUERY Ul TABS

c09/jqui-tabs.htm]

3rd Prize</1i>

@)
<ul=
1st Prize</1i>
2nd Prize</1i>
cfu])
®

<div id="tab-1"><p>First prize is...</p></div>
<div id="tab-2"><p>Second prize is...</p></div>
<div id="tab-3"><p>Third prize is...</p></div>

</div=>

<script src="js/jquery-1.9.1.js"></script>
<script src="js/jquery-ui.js"></script>

<script>
$(function() {

@ $('#prizes').tabs();

o i)

</script>

1st Prize 2nd Prize

3rd Prize

First prize is the DJI Phantom - a small, all-in-one quadcopter designed
for aerial photography enthusiasts. It comes fully configured and ready
to fly. Both compact and stylish, the highly integrated design means
that it's easy to carry wherever you go, ready at a moment’s notice.

This structure is common in

most jQuery plugins:

1. jQuery is loaded.

2. The plugin is loaded.

3. An anonymous function runs
when the page is ready.

The anonymous function will
create a jQuery selection and
applies the method defined

in the jQuery plugin to that
selection. Some methods will
also require parameters in order
to do their job. -

The tabs are a similar concept to
the accordion.

1. They are kept in a containing
<djv> element that will be used
in the jQuery selector. The
content, however, is slightly
different.

2. The tabs are created using an
unordered list. The link inside
each list item points to a <div>
element lower down the page
that holds content for that tab.

3. Note that the id attributes on
the <div> elements must match
the value of the href attribute on
the tabs.

Once you have included jQuery
and jQuery Ul in the page, there
is a third script tag with an
anonymous function that runs
when the DOM has loaded.

4, A jQuery selector picks the
element whose id attribute has
avalue of prizes (this is the
containing element for the tabs).
Then it calls the .tabs() method
is called on that selection.

On a live site, the JavaScript
should be kept in an external

file to maintain a separation of
concerns, but it is shown here for
convenience and to show how
little work needs to be done to
achieve this effect.

APIS

JQUERY Ul FORM

jQuery Ul introduces several
form controls that make it
easier for people to enter
data into forms. This example
demonstrates two of them:

Slider input: This allows people
to select a numeric value using
a draggable slider. This slider
has two handles that allow the
user to set a range between two
numbers. As you can see on the
right, the HTML for the slider is
made up of two components:

1. A normal label and text input
that would allow users to enter a
number.

2. An extra <div> element used
to hold the slider that you see on
the page.

Date picker: This allows people
to pick a date from a pop-up
calendar, which helps ensure
that users provide the date in the
correct format that you need.

3. ltis just a text input, and does
not need any additional markup.

Before the closing </body> tag,
you can see that there are three
<script>elements: the first is
the jQuery script, the second is
jQuery Ul, and the third contains
the instructions to setup these
two form controls (see right-
hand page). If JavaScript is not
enabled, these controls look like
normal form controls without the
jQuery's enhancements.

APIS

c09/jqui-form.html

<body> ...

<h2>Find Accommodation</h2> ...

<p id="price">

of

<label for="amount">Price range:</label>
<input type="text" id="amount" />

c/p>
@ <div id="price-range"></div>
<p>
<label for="arrival">Arrival date:</label>
® <input type="text" id="arrival" />
¢/p>

<input type="submit" value="Find a hotel"/>

<script src="js/jquery-1.

9.1.js"></script>

<script src="js/jquery-ui.js"></script>
<script src="js/form-init.js"></script>

</body>

Price range:
5175 - 5300

Arrival date:
05/30/2015
° My 2018

RESULT

U MO TU WE TH FR SA

1 2

1 4 B &7 30
WM o 15
(LA TR LTI T)
OB T BN W

Most jQuery scripts live within
the .ready() function or its
shortcut (used on the next
page). As you saw in Chapter 7,
this ensures that the script only
runs when the DOM has loaded.

If you include more than one
jQuery plugin, each of which
uses the .ready() method, you
do not repeat the function - you
combine the code from inside
both functions into the one.

1. The JavaScript is contained
within the shortcut for the
jQuery .ready() method. It
contains the setup instructions
for both of the form controls.

@ $(function() {

2. To turn a text input into a

3. Cache the inputs for price.

date picker, all you need to do

is select the text input and then
call the datepicker() method
on that selection.

@ $('#arrival’).datepicker();

® var Samount = $('#amount');
var $range = $('#price-range');

range: true,

min: 0,

max: 400,

@ values: [175, 300],

$('#price-range').slider({

slide: function(event, ui) {

4, The slider uses an object
literal to set the properties of the
.slider() method (see below).

c09/js/form-init.js

// Turn input to JQUI datepicker

// Cache the price input
// Cache the <div> for the price range

// Turn price-range input into a slider
// 1f it is a range it gets two handles
// Minimum value

// Maximum value

// Values to use when the page loads

// When slider used update amount element

$amount.val('$' + ui.values[0] + ' - §' + ui.values[1]);
}
L })s
[$amount // Set initial values of amount element
GH .val('$' + $range.slider('values', 0) // A $ sign then lower range
+ ' - §' + $range.slider('values', 1)); // A'$ sign then higher range
b

5. When the form loads, the text
input that shows the amount as
text needs to know the initial
range for the slider. The value of
that input is made up of:

a) A dollar sign: $ followed by
the lower range value.,

b) A dash and dollar sign: - $
followed by the higher range
value.

The script is called form-init.
Jjs. Programmers often use init
as a shorthand for initialize; and
this script is used to set an initial
state for the form.

When a jQuery plugin has settings that vary each time it is used, it is
common to pass the settings in an object literal. You can see this with
the .s1ider() method; it is passed several parameters and a method:

PROPERTY DESCRIPTION

range A Boolean to give the slider two handles
(not just a single value)

min The minimum value for the slider

max The maximum value for the slider

values An array containing two values to specify an initial range
in the slider when the page first loads

METHOD DESCRIPTION

slider() Updates the text input which shows the text values for the

slider (the documentation shows examples for this)

APIS

[}

ANGULARJS

Angular)S is a framework that makes it easier to create web apps.
In particular, it assists in creating apps that write, read, update,
and delete data in a database on a server.

Angular is based on a software The point of MVC is that it separates out parts of a web application,
development approach called in the same way that front-end developers should separate content
model view controller or MVC. (HTML), presentation (CSS), and behavior (JavaScript).

(It is actually variant on MVC,

not strict MVC). To use Angular, We do not have space to go into Angular in detail, but it introduces

first you include the angular. js another example of a very different script with an API, as well as

script in your page, and then it concepts such as the MVC approach, templating, and data binding. You
makes a set of tools available to can download Angular and view the full APl at http://angularjs.org.

you (just like jQuery does).

G
-'é!t"n'w i \
VIEW . ViewModel | MODEL
—\ J—O0—

*-\-.% &
The View is what the user sees. This ViewModel (or controller) In a web app, the Model is
In a web app, it is the HTML will update the view if there are usually stored in the database,
page. Angular lets you create changes to the model, and will and managed by server-side
templates with spaces for update the model if there are code that can access and update
particular types of content. If the changes in the view. The task the model.
user changes values in the view, of keeping data synchronized
commands (1) are sent to up the between the two is known as When the model has been
chain to update the model. data binding (2). updated, change notifications
There can be different views of For example, if a form in the (3) are sent to the ViewModel.
the same data, e.g., users and view is updated, it reflects the This info can be passed onto the
administrators. changes and updates the server. View to keep it updated.

APIS

USING ANGULAR

c09/angular-introduction.html s exa.mp!e ke en i content
of the <input>and <textarea>
<IDOCTYPE html> elements and writes it into
<html ng-app> another part of the page (where
<head> ... you can see the double curly

<script src="https://ajax.googleapis.com/ajax/ braces in the HTML file).

Tibs/angularjs/1.0.2/angular.min.js"></script>

</head> First, include the Angular script
<body> ... in your page. You can store
<form> it locally or use the version
To:
 on Google's CDN. Until you
<input ng-model="name" type="text"/>
 understand more about Angular,

Message:
 place it in the <head> element.

<textarea ng-model="message"></textarea>

<1HDUt typeznsubm.itu value="send messagen /) Note the new markup in the

</form> ... HTML. There are attributes that
<div class="postcard"> start with ng- (which is short
<div>{{ name }}</div> for Angular). These are called
<p>{{ message }}</p> directives. There is one on the
</div> ... opening <html>tag and one on
</body> each of the form elements.
</htm1> . The value of the ng-model

attribute on the text inputs
matches the values inside the
double curly braces. Angular

automatically takes the content
of the form elements and writes
//_}‘f\\ it into the page where the
THE MAKER BUS corresponding curly braces are.

Tillyeur frnds ololn s foc an No more JavaScript is needed to

awesome day of tinkering with The P! ROLL g
R AL AHOhRD! st 1 achieve this, whereas in jQuery,
3 i this would involve four steps:
:mee 1. Writing an event handler for
essage: |
" the form elements
e ome = SOPHIE!

2. Using that to trigger code to
get the elements’ content

3. Selecting new element nodes
that represent the postcard

4. Writing the data into the page”

APIS

Let's go make some robots...

send message

VIEW & VIEWMODEL

Below, look at the angular-controller. js file.

It uses a a constructor function to create an object
called BasketCtrl. This object is known as a
controller or ViewModel. It is passed another object
called $scope as an argument. Properties of the
$scope object are set in the constructor function.

1. Note the object's name (BasketCtrl) matches the
value of the ng-controller attribute on the opening
<table> tag. In this example, there is no database,
so the controller will also act as the model: sharing
data with the view.

c09/angular-controller.html

<IDOCTYPE html>
<html ng-app>
<head>

The HTML file (the view) gets its data from the
BasketCtrl object in the JavaScript controller.

In the HTML, note how the names in curly braces,
e.g., {{ cost }}and {{ gty }}, match the
properties of the $scope object in the JavaScript.

The HTML file is now called a template because it
will display whatever data is in the corresponding
controller. The names in curly braces are like
variables that match the data in the object. If the
JavaScript object had different values, the HTML
would show those values.

<title>JavaScript & jQuery - Chapter 9 ...</title>

<script src="https://ajax.googleapis.com/.../angular.min.js"></script>
<script src="js/angular-controller.js"></script>

<link rel="stylesheet" href="css/c09.css">

</head>
<body> ...

<table ng-controller="BasketCtrl">
<tr><td>Item:</td><td>{{ description

}}</td></tr>

<tr><td>Cost:</td><td>${{ cost }}</td></tr>
<tr><td>Qty:</td><td><input type="number" ng-model="gty"></td></tr>
<tr><td>Subtotal :</td><td>{{qty * cost | currency}}</td></tr>

</table> ...
</body>
</html>

c09/js/angular-controller.js
(D function BasketCtrl($scope) {

$scope.cost = 8;
$scope.qty = 1;

(:>[$scope.description = 'Single ticket';

® }

APIS

DATA BINDING & SCOPE

2. Itis also possible to evaluate expressions inside
the curly braces. In step 3, the subtotal is calculated

in the template. This is then formatted as a currency.

Furthermore, if you update the quantity in the form,
the underlying data model (in the JavaScript object)
is updated along with the subtotal. Try updating

the values in the JavaScript file, then refreshing the
HTML to see the connection. This is an example of
something programmers call data binding; the data
in the JavaScript file is bound to the HTML and vice-
versa. If the ViewModel changes, the view updates.
If the view changes, the ViewMode! updates.

I\

THE MAKER BUS

As this shows, Angular is particularly helpful when
you load data from a separate file into the view.

A page can have multiple controllers, each of which
has its own scope. In the HTML, the ng-controller
attribute is used on an element to define the scope
of that controller. This is similar to variable scope.
For example, a different element might have a
different controller (e.g., StoreCtr1), and both
controllers would be able to have a property called
description. Because the scope is only within that
element, each controller's description property
would only be used within that controller's scope.

Buy tickets

Item: Single ticket

Cost: $8

Qty: 1 @
Subtotal: $8.00

APIS

GETTING EXTERNAL DATA

Here, the controller (the JavaScript file) collects the 1. The path to the JSON file is relative to the HTML
model (the JSON data) from a file on the server. (Ina template, not the JavaScript file (even though the
web app, the JSON data would usually come from a path is written in the JavaScript).

database.) This updates the view in the HTML.
Just like jQuery's .ajax() method, the $http service

To collect the data, Angular uses what it calls the has several shortcuts to make it easier to create

$http service. Inside the angular. js file, the code some requests. To fetch data it uses get (), post(),

uses the XMLHttpRequest object to make Ajax and jsonp(); to delete data it uses delete(); and to

requests (like those you saw in Chapter 8). create new records: put (). This example uses get ().
c09/angular-external-data.html

<table ng-controller="TimetableCtrl">
<tr><th>time</th><th>title</th><th>detail</th></tr>
(® <tr ng-repeat="session in sessions">
<td>{{ session.time }}</td>
<td>{{ session.title }}</td>
<td>{{ session.detail }}</td>
</tr>
</table>

c09/js/angular-external-data. js JAVASCRIPT

function TimetableCtrl($scope, $http) {
@ $http.get('js/items.json')
©) .success(function(data) { $scope.sessions = data.sessions; })
® .error(function(data) { console.log('error') });
// The error could show a friendly message to users...

}

c09/js/items.json
{

"sessions": [
{"time": "09.00", "title": "Intro to 3D Modeling", "detail": "Come..."}
{"time": "10.00", "title": "Circuit Hacking", "detail": "Head to the..."}
{"time": "11.30", "title": "Arduino Antics", "detail": “Learn how..."}
]
}

LOOP THROVGHIRESLULE TS

2. If the request successfully fetches data, the code
in the success () function runs. In this case, if it is
successful the $scope object is passed the data from
the JSON object. This allows the template to display
the data.

3. If it fails, the error() function is run instead. This
would to show an error message to users. Here it
writes to the console (which you meet on p464).

Session Times

TIME TITLE

In the HTML, the value of the ng-repeat directive is:
session insessions

@ sessions matches the JSON data; it corresponds
with the object name.

® session is the identifier used in the template to
indicate the name of each individual object within
the sessions object.

If the ng-repeat attribute used different names than
session, the value in the curly braces in the HTML
would have to change to reflect that name. For
example, if it said Tecture in sessions, then the
curly braces would change to reflect that:

{{ lecture.time }}, {{ lecture.title }},etc.

09.00 Intro to 3D Modeling

10.00 Circuit Hacking

4, The JSON data contains several objects, each

of which is displayed in the page. Note, there is no
JavaScript loop written in the controller. Instead, the
HTML template (or view) is where the loop occurs.

5. The ng-repeat directive on the opening <tr> tag
indicates that the table row should act like a loop. It
should go through each object in the sessions array
and create a new table row for each of them.

DETAIL

Come learn how to create 3D models of parts
you can then make on our bus! You'll get to
know the same 3D modeling software that
used worldwide in professional settings like
engineering, product design, and more.
Develop and test ideas in a fun and
informative session hosted by Bella Stone,
professional roboticist.

Head to the Electro-Tent for a free
introductory soldering lesson. There will be
electronics kits on hand for those who wish to
- make things, and experienced hackers and
engineers around to answer all your

This is just a very high-level introduction to Angular,
but does demonstrate some popular techniques
when using JavaScript to develop web apps, such as:

@ The use of templates that take content from
JavaScript and update the HTML page.

® The rise in MVC-influenced frameworks for web-
based application development.

@ The use of libraries to save developers having to
write so much code.

For more on Angular, see http://angularjs.org

Another very popular alternative is Backbone
http://backbonejs.org '

APIS

PLATFORM APIS

Many large websites expose their APIs that allow you to access and
update the data on their sites, including Facebook, Google, and Twitter.

WHAT YOU CAN DO

Each site offers different
capabilities, for example:

® Facebook offers features such
as allowing people to like
sites or add comments and
discussion to the bottom of a
web page.

® Google Maps lets you to
include various types of maps
in your pages.

® Twitter allows you to display
your latest tweets on your
web pages or send new
tweets.

By exposing some of the
functionality of their platforms
these companies are advertising
their sites and encouraging
people back to them. This in turn
increase their total amount of
activity (and their revenue).

Be aware that companies can
change either how you access
APIs or change what you are
allowed to use the APIs for.

@ APIS

HOW TO ACCESS

On the web, you can access
several of these platform APIls
by including a script they provide
in your page. That script will
typically create an object (just
like the jQuery script adds a
JQuery object). In turn, that
object will have methods and
properties that you can use to
access (and sometimes update)
the data on that platform.

Most sites that offer an API will
also provide documentation that
explains how to use its objects,
methods, and properties (along
with some basic examples).

Some of the larger sites provide
pages where you can get code
that you can copy and paste into
your site without even needing
to understand the API.

Facebook, Google, and Twitter
have all made changes to both
how you access their APIs and
what you can use them for.

THE SYNTAX

The syntax of an API will vary
from platform to platform. But
they will be documented using
tables of objects, methods, and
properties like those you saw in
the first section of this chapter.
You may also see sample code
that demonstrates tasks people
commonly use the API for (like
the examples you have seen in
this chapter).

Some platforms offer APls in
multiple languages, so that you
can interact with them using
server-side languages such

as PHP / C# as well as using
JavaScript.

In the rest of this chapter we will
be focusing on the Google Maps
APl as an example of what you
can do with platform APls.

If you work on a site for a client,
make them aware that APIs can
change (and that could result in
recoding pages that use them).

GOOGLE MAPS API

Currently, one of the most popular APIs in use on the web is the Google
Maps API, which allows you to add maps to web pages.

WHAT IT DOES

The Google Maps JavaScript API
allows you to show Google maps
in your web pages. It also allows
you to customize the look of the
maps and what information is
shown on them.

You may find it helpful to look
at the documentation for the
Google Maps AP| while going
through this example. It will
show you other things that you
can do with the API. https://
developers.google.com/maps/

€D beveiopers Emr=—rzn -

WHAT YOU'LL SEE

We only have space to show a
few of the features of the Google
Maps API, as it is very powerful
and contains a lot of advanced
features. But the examples in
this chapter will get you used to
working with its API.

You will start by seeing how to
add a map to your web pages,
then you will see how to change
the controls, and finally how

to change the colors and add
markers on top of the map.

= -

Google Maps JavaScrigt API v g+ =

+ Darscpars Ouide Mathads

= AP Rofwerce
S 3 34)
Awmama 0310
Fazn gy

-
[e e——
potieandni |

wertennes)

peini)

— petimading(}

ertiapTypeldi)

grtbrajectiont)

P

Fonsmancn n a Datsmane

Oesaription

L T st 'z cortan e gewn bt

Latiateaty i
e
o g Trce
L e el
o Fmtrs P pmtr Sactared & S st o e sap buke Pl T
A o e S Latlog
i
-
WigTemeld latring
Prajection Flahatas e ot Fro et Lo I e s . ned ol bl f
ha AT 1) P el 0 Lt
prajection. g “argad ase st 4 st 15w 6 v
weh

e e

API KEY

Some APIs require that you
register and request an API

key in order to get data from
their servers. An APl key is a

set of letters and numbers that
uniquely identify you to the
application so the owners of the
site can track how much you use
the APl and what you use it for.

At the time of writing, Google
allowed websites to call their
maps APl 25,000 times per

day for free without an API key,
but sites that consistently make
more requests are required to
use a key and pay for the service.

If you run a busy site, or the map

is part of the core application,

it is good practice to use an API

key with Google Maps because:

® You can see how many times
your site requests the API

® Google can contact you if
they change terms of service
or charge for use

To get a Google AP key, see

https://cloud.google.com/

console

APIS

BASIC MAP SETTINGS

Once you have included the Google Maps script in your page, you can
use their maps object. It lets you display Google maps in your pages.

CREATING A MAP

The maps object is stored within an object called
google. This creates scope for all Google objects.

To add a map to your page, you create a new map
object using a constructor: Map (). The constructor is
part of the maps object, and it has two parameters:
@ The element into which you want the map drawn
@ A set of map options that control how it is
displayed given using object literal notation

Zoom level is typically set using a number between
0 (the full earth) and 16. (Some cities can go higher.)

ZOOM LEVEL: 8

@ APIS

MAP OPTIONS

The settings that control how the map should look
are stored inside another JavaScript object called
mapOptions. Itis created as an object literal before
you call the Map() constructor. In the JavaScript on
the right, you can see that the mapOptions object
uses three pieces of data:

@ Longitude and latitude of the center of the map
@ The zoom level for the map

® The type of map data you want to show

The images that make up the map are called tiles.
Four map types each show a different style of map.

v

ROADMAP /

HYBRID

A BASIC GOOGLE MAP

c09/google-map.html

<div id="map"></div>
<script src="js/google-map.js"></script>
</body>

JAVASCRIPT c09/js/google-map.js

function init() {
[var mapOptions = { // Set up the map options
center: new google.maps.LatlLng(40.782710,-73.965310),
(:} mapTypeld: google.maps.MapTypeld.ROADMAP,
zoom: 13
L s
(:}' var venueMap; // Map() draws a map

| venueMap = new google.maps.Map(document.getElementById('map'), mapOptions);
}
[function ToadScript() {

var script = document.createElement('script'); // Create <script> element
& script.src = 'http://maps.googleapis.com/maps/api/js?

sensor=false&callback=initialize';

document.body.appendChild(script); i // Add element to page
)
() window.onload = loadScript; // Onload call
1. Starting at the bottom of the script, when the
page has loaded, the onload event will call the
/%) ToadScript() function.
THE MAKER BUS 2. ToadScript() creates a <script> element to load
S— the Google Maps API. When it has loaded, it calls
s init(), to initialize the map.

3. init() loads the map into the HTML page. First it
creates amapOptions object with three properties.
4, Then it uses the Map() constructor to create

a map and draw the map into the page. The
constructor takes two parameters:

@ The element that the map will appear inside

® ThemapOptions object

apis

CHANGING CONTROLS

VISIBILITY OF MAP CONTROLS POSITION OF MAP CONTROLS

TOP_LEFT TOP_CENTER TOP_RIGHT

LEFT_TOP RIGHT_TOP

CENTER_LEFT CENTER_RIGHT

I' & 3 Qr ‘? “? ’ s
i : !,;{g o
qr !’ L

LEFT_BOTTOM RIGHT_BOTTOM

N_:“"r “MapData 1kMi———3 | TemsofUse Report a map amor

"
5

To show or hide the controls, use the control name followed by a value of true (to show it) or false (to hide it).
Although Google Maps tries to prevent overlaps, use judgement to position controls on your map.

CONTROL DESCRIPTION DEFAULT
zoomControl (1) Sets the zoom level of the map. It uses a slider (for large On

maps) "+/-" buttons (for small maps)
panControl (2) Allows panning across the map On for non-touch devices
sca]eCon;*m 3) Show;.the scale of the map ".Off I
mapTypeControl (4) Switch map types (e.g., ROADMAP and SATELLITE) On

streetViewControl (5) A Pegman icon that can be dragged and dropped onto On
the map to show a street view

rotateControl Rotates maps that have oblique imagery (not shown) On when available

overviewMapControl A thumbnail showing a larger area, that reflects where ~ On when map is
the current map is within that wider area (not shown) collapsed, e.g., street view

@ APIS

GOOGLE MAP WITH
CUSTOM CONTROLS

APPEARANCE OF CONTROLS POSITION OF THE CONTROL

To alter the appearance and position of map 2. Each control has its own options object used to
controls, you add to the mapOptions object. control its style and position. The word Options

1. To show or hide a control, the key is the name of follows the control name, e.g., zoomControlOptions.
the control, and the value is a Boolean (true will Styles are discussed below. The diagram on the left-
show the control; false will hide it). hand page shows options for the position property.

JAVASCRIPT c09/js/google-map-controls.js

var mapOptions = {
zoom: 14,
center: new google.maps.Latlng(40.782710,-73.965310),
mapTypeld: google.maps.MapTypeld.ROADMAP,

panControl: false,
zoomControl: true,
zoomControlOptions: {
style: google.maps.ZoomControlStyle.SMALL,
position: google.maps.ControlPosition.TOP_RIGHT
}’
mapTypeControl: true,
mapTypeControlOptions: {
style: google.maps.MapTypeControlStyle.DROPDOWN MENU,
position: google.maps.ControlPosition.TOP_LEFT
b
scaleControl: true,
scaleControlOptions: {
position: google.maps.ControlPosition.TOP_CENTER
}’
streetViewControl: false,
overviewMapControl: false

PE'YY ¥ @ W OC

13

STYLE OF MAP CONTROLS

3. You can change the appearance of the zoom and map type controls using the following options:

zoomControlStyle: MapTypeControlStyle:

SMALL Small +/- buttons HORIZONTAL _BAR Buttons side-by-side
LARGE Vertical slider DROPDOWN_MENU Dropdown select box
DEFAULT The default for that device * DEFAULT The default for that device

APIS

STYLING A GOOGLE MAP

To style the map you need to specify three things: The first stylers property alters the colors of the

@ featureTypes: the map feature you want to style: map as a whole. It, too, contains an array of objects.
e.g. roads, parks, waterways, public transport. ® hue property adjusts color, its value is a hex code

@ elementTypes: the part of that feature you want ® lightness or saturation can take a value from
to style, such as its geometry (shapes) or labels. -100 to 100

@ stylers: properties that allow you to adjust the Then each feature that shows up on the map can
color or visibility of items on the map. have its own object, and its own stylers property.

Init, the visibility property can have three values:

The styles property in the mapOptions object sets ® on to show the feature type

the map style. It's value is an array of objects. ‘@ off tohide it

Each object affects a different feature fo the map. ® simplified to show a more basic version

c09/js/google-map-styled.js

styles: [// styles property is an array of objects
{
stylers: [// stylers property holds array of objects
{ hue: "#00ffef" }, // Overall map colors
{ saturation: -50 } // Overall map saturation
]
}!{
featureType: "road", // Road features
elementType: "geometry", // Their geometry (lines)
stylers: [
{ Tightness: 100 }, // Lightness of roads
{ visibility: "simplified" } // Level of road detail
]
}’{
featureType: "transit", // Public transport features
elementType: "geometry", // Their geometry (1lines)
stylers: [
{ hue: "#ff6600" }, // Color of public transport
{ saturation: +80 } // Saturation of public transport
]
ke 4
featureType: "transit", // Public transport features
elementType: "labels", // Their labels
stylers: [
{ hue: "#ff0066" }, // Label color
{ saturation: +80 } // Label saturation
]
F gex // More stylers shown in the code download

APIS

ADDING MARKERS

Here you can see how to add a marker to a map. The

map has been created, and its name is venueMap.

1. Create a LatLng object to store the position of the
marker using object constructor syntax. Below that

object is called pinLocation.
2. The Marker() constructor creates a marker

object. It has one parameter: an object that contains

settings using object literal notation.

JAVASCRIPT

The settings object contains three properties:

3. position is the object storing the location of the

marker (pinLocation).
4. map is the map that the marker should be added to

(because a page can have more than one map).
5. icon is the path to the image that should be

displayed as the marker on the map (this should be

provided relative to the HTML page).

¢09/js/google-map-styled.js

@ var pinLocation = new google.maps.LatLng(40.782710,-73.965310);

(@ var startPosition = new google.maps.Marker({

(® position: pinLocation,
(@ map: venueMap,
@ icon: "img/go.png"

R

N\

THE MAKER BUS

// Create a new marker

// Set its position

// Specify the map

// Path to image from HTML

Naumberg Bandshell
Central Park
New York, NY 10019

nao

o

+

"o

B g
o Fiipisiconicupe ioten T0ML——4 Tweas(Uoe pen 4 map pee

APIS

SUMMARY

APIS

JavaScript can be hard to learn and everyone makes
mistakes when writing it. This chapter will help you learn
how to find the errors in your code. It will also teach you how
to write scripts that deal with potential errors gracefully.

When you are writing JavaScript, do not expect to write it perfectly the first time.

Programming is like problem solving: you are given a puzzle and not only do you have to solve
it, but you also need to create the instructions that allow the computer to solve it, too.

When writing a long script, nobody gets everything right in their first attempt. The error
messages that a browser gives look cryptic at first, but they can help you determine what

went wrong in your JavaScript and how to fix it. In this chapter you will learn about: "
THE CONSOLE & COMMON HANDLING $
DEV TOOLS PROBLEMS ERRORS !
Tools built into the browser Common sources of errors, How code can deal with ‘
that help you hunt for errors. and how to solve them. potential errors gracefully.
4
-

1 = S

ERROR HANDLING & DEBUGGING

tEMTNL

Fined the area of a walt:

2T
ERROR HANDLING & DEBUGGING %_Sy

ORDER OF EXECUTION

To find the source of an error, it helps to know how scripts are processed.
The order in which statements are executed can be complex; some tasks
cannot complete until another statement or function has been run:

}

function greetUser() {
return 'Hello ' + getName();

function getName() {

var name = 'Molly';
return name;

}

© var greeting = greetUser();
O alert(greeting);

This script above creates a greeting message, then
writes it to an alert box (see right-hand page). In

order to create that greeting, two functions are used:

greetUser() and getName().

You might think that the order of execution (the
order in which statements are processed) would be
as numbered: one through to four. However, it is a
little more complicated.

To complete step one, the interpreter needs the
results of the functions in steps two and three
(because the message contains values returned by
those functions). The order of execution is more like
this:1,2,3,2,1, 4.

ERROR HANDLING & DEBUGGING

1. The greeting variable gets its value from the
greetUser() function.

2. greetUser() creates the message by combining
the string 'Hello ' with the result of getName().

3. getName() returns the name to greetUser().

2. greetUser() now knows the name, and combines
it with the string. It then returns the message to the
statement that called it in step 1.

1. The value of the greeting is stored in memory.

4. This greeting variable is written to an alert box.

EXECUTION CONTEXTS

The JavaScript interpreter uses the concept of execution contexts.
There is one global execution context; plus, each function creates a new
new execution context. They correspond to variable scope.

Hello Molly

EXECUTION CONTEXT

Every statement in a script lives in one of three
execution contexts:

(O GLOBAL CONTEXT
Code that is in the script, but not in a function.
There is only one global context in any page.

FUNCTION CONTEXT
Code that is being run within a function.
Each function has its own function context.

() EVAL CONTEXT (NOT SHOWN)
Text is executed like code in an internal function
called eval () (which is not covered in this book).

VARIABLE SCOPE

The first two execution contexts correspond with the
notion of scope (which you met on p98):

(O GLOBALSCOPE
If a variable is declared outside a function, it can
be used anywhere because it has global scope.
If you do not use the var keyword when creating
avariable, it is placed in global scope.

FUNCTION-LEVEL SCOPE

When a variable is declared within a function,
it can only be used within that function. This is
because it has function-level scope.

ERROR HANDLING & DEBUGGING

THE STACK

The JavaScript interpreter processes one line of code at a time.
When a statement needs data from another function, it stacks
(or piles) the new function on top of the current task.

When a statement has to call
some other code in order to do
its job, the new task goes to the
top of the pile of things to do.

Once the new task has been
performed, the interpreter can
go back to the task in hand.

Each time a new item is added
to the stack, it creates a new
execution context.

Variables defined in a function
(or execution context) are only
available in that function.

If a function gets called a
second time, the variables
can have different values.

You can see how the code that
you have been looking at so far
in this chapter will end up with
tasks being stacked up on each
other in the diagram to the right.

(The code is shown at the top of
the right-hand page.)

ERROR HANDLING & DEBUGGING

Creates greeting
variable and calls
greetUser() to get
the value

The value for the greeting
variable is obtained by calling
the greetUser() function. So
the variable cannot be assigned
until the greetUser() function
has done its job.

greetUser() returns
'Hello ' andthe
result of getName ()

Waiting...

The statement is effectively put
on hold, and the greetUser()
task gets stacked on top it.

In turn, the greetUser()
function cannot return a value
until the getName () function
has completed its task.

getName () returns
the value '"Molly' to
greetUser()

Waiting...

Waiting...

So, getName () is stacked on top

of the greetUser() function.
You can see the stack starting to
build up. When getName() has
done its job, a value is returned
back to the greetUser()
function.

}

[function greetUser() {
return 'Hello ' + getName();

e

}

[function getName() {
var name = 'Molly';
return name;

~

var greeting = greetUser();
alert(greeting);

greetUser() returns
'Hello Molly' to
the greeting variable

Waiting...

Since getName() has done its
job, it is removed from the
stack. In turn, the greetUser()
function can now finish its

job and return a value to the
greeting variable.

greeting holds the
value 'Hello Molly'

The greetUser() function

has finished its work and it is
removed from the stack and the
value is finally assigned to the
greeting variable.

ERROR HANDLING & DEBUGGING

EXECUTION CONTEXT

& HOISTING

Each time a script enters a new execution context, there are two phases

of activity:

1: PREPARE

® The new scope is created
® Variables, functions, and arguments are created
® The value of the this keyword is determined

2: EXECUTE
@ Now it can assign values to variables
® Reference functions and run their code
® Execute statements

Understanding that these two phases happen helps
with understanding a concept called hoisting. You
may have seen that you can:

@ Call functions before they have been declared
(if they were created using function declarations
- not function expressions, see p96)

® Assign a value to a variable that has not yet been
declared

This is because any variables and functions within
each execution context are created before they are
executed.

The preparation phase is often described as taking
all of the variables and functions and hoisting them
to the top of the execution context. Or you can think
of them as having been prepared.

Each execution context also creates its own
variables object. This object contains details of all
of the variables, functions, and parameters for that
execution context.

ERROR HANDLING & DEBUGGING

You may expect the following to fail, because
greetlUser() is called before it has been defined:

var greeting = greetUser();
function greetUser() {

// Create greeting
}

It works because the function and first statement are
in the same execution context, so it is treated like this:

function greetUser() {
// Create greeting
}

var greeting = greetUser();

The following would would fail because greetUser()
is created within the getName () function's context:
var greeting = greetUser();
function getName() {
function greetUser() {
// Create greeting
}

// Return name with greeting

}

UNDERSTANDING

SCOPE

In the interpreter, each execution context has its own variables object.
It holds the variables, functions, and parameters available within it.
Each execution context can also access its parent's variables object.

Functions in JavaScript are said to have lexical scope.
They are linked to the object they were defined within.
So, for each execution context, the scope is the
current execution context's variables object, plus the
variables object for each parent execution context.

Imagine that each function is a nesting doll.

The children can ask the parents for information in
their variables. But the parents cannot get variables
from their children. Each child will get the same
answer from the same parent.

var greeting = (function() {
var d = new Date();
var time = d.getHours();
var greeting = greetUser();

function greetUser() {
if (time < 12) {
var msg = 'Good morning *;
} else |
var msg = 'Welcome ';
}

return = msg + getName();

function getName() {
var name = 'Molly';
return name;

}

}

1s
alert(greeting);

If a variable is not found in the variables object
for the current execution context, it can look in the
variables object of the parent execution context.
But it is worth knowing that looking further up the
stack can affect performance, so ideally you create
variables inside the functions that use them.

If you look at the example on the left, the inner
functions can access the outer functions and their
variables. For example, the greetUser() function
can access the time variable that was declared in the
outer greeting() function.

Each time a function is called, it gets its own
execution context and variables object.

Each time an outer function calls an inner function,
the inner function can have a new variables object.
But variables in the outer function remain the same.

Note: you cannot access this variables object from
your code; it is something the interpreter is creating
and using behind the scenes. But understanding
what goes on helps you understand scope.

ERROR HANDLING & DEBUGGING

UNDERSTANDING ERRORS

If a JavaScript statement generates an error, then it throws an exception.
At that point, the interpreter stops and looks for exception-handling code.

If you are anticipating that something in your code
may cause an error, you can use a set of statements
to handle the error (you meet them on p480).

This is important because if the error is not handled,
the script will just stop processing and the user will
not know why. So exception-handling code should
inform users when there is a problem.

function greetUser() {
// Interpreter looks here

}

function getName() {

// Imagine this had an error
// It was caused by greetUser()
}

var greeting = greetUser();
alert(greeting);

(00 — 0

ERROR HANDLING & DEBUGGING

Whenever the interpreter comes across an error,

it will look for error-handling code. In the diagram
below, the code has the same structure as the code
you saw in the diagrams at the start of the chapter.
The statement at step 1 uses the function in step 2,
which in turn uses the function in step 3. Imagine
that there has been an error at step 3.

When an exception is thrown, the interpreter

stops and checks the current execution context for
exception-handling code. So if the error occurs in the
getName () function (3), the interpreter starts to look
for error handling code in that function.

If an error happens in a function and the function
does not have an exception handler, the interpreter
goes to the line of code that called the function.

In this case, the getName () function was called by
greetUser(), so the interpreter looks for exception-
handling code in the greetUser() function (2).

If none is found, it continues to the next level,
checking to see if there is code to handle the error
in that execution context. It can continue until it
reaches the global context, where it would have to it
terminate the script, and create an Error object.

So it is going through the stack looking for error-
handling code until it gets to the global context.
If there is still no error handler, the script stops
running and the Error object is created.

ERROR OBJECTS

Error objects can help you find where your mistakes are
and browsers have tools to help you read them.

When an Error object is created, it will contain the
following properties:

There are seven types of built-in error objects in
JavaScript. You'll see them on the next two pages:

PROPERTY DESCRIPTION OBJECT DESCRIPTION

name Type of execution Error Generic error - the other errors
B are all based upon this error
message Descripton

o SyntaxError Syntax has not been followed

fileNumber Name of the JavaScript file

TineNumber Line number of error

When there is an error, you can see all of this
information in the JavaScript console / Error console
of the browser.

You will learn more about the console on p464, but
you can see an example of the console in Chrome in
the screen shot below.

ReferenceError Tried to reference a variable that is
not declared/within scope

TypeError An unexpected data type that
- cannot be coerced
RangeError Numbers not in acceptable range
URIError encodeURI (), decodeURI (), and
similar methods used incorrectly
EvalError eval () function used incorrectly

Q Elements Network Sources Timeline Profiles Resources Audits |Console| @1 >= # O, x

®© ¥ <topframe> v

>

@ Uncaught SyntaxError: Unexpected token ILLEGAL

errors.js:4

1. In the red on the left, you can see thisis a
SyntaxError. An unexpected character was found.

2. On the right, you can see that the error happened
in a file called errors. js on line 4.

ERROR HANDLING & DEBUGGING

ERROR OBJECTS

CONTINUED

Please note that these error messages are from the Chrome browser. Other browsers' error messages may vary.

SyntaxError

SYNTAX IS NOT CORRECT

This is caused by incorrect use of the rules of the
language. It is often the result of a simple typo.

MISMATCHING OR UNCLOSED QUOTES
document .write{"HowdyI) b

SyntaxError: Unexpected EOF

MISSING CLOSING BRACKET
document .getElementByld('page 'l

SyntaxError: Expected token ')’

MISSING COMMA IN ARRAY
Would be same for missing] at the end
var list = ['Item 1', 'Item 2'[]'Item 3'];

SyntaxError: Expected token ']’

MALFORMED PROPERTY NAME
It has a space but is not surrounded by quote marks
user = {first]name: “Ben", lastName: "Lee"};

SyntaxError: Expected an identifier but
found 'name' instead

EvalError

INCORRECT USE OF eval() FUNCTION

The eval () function evaluates text through the
interpreter and runs it as code (it is not discussed
in this book). It is rare that you would see this type
of error, as browsers often throw other errors when
they are supposed to throw an EvalError.

ERROR HANDLING & DEBUGGING

ReferenceError

VARIABLE DOES NOT EXIST

This is caused by a variable that is not declared or is
out of scope.

VARIABLE IS UNDECLARED
var width = 12;

var area = width * ;

ReferenceError: Can't find variable:
height

NAMED FUNCTION IS UNDEFINED
document .write (EEUELLILTLEAALLION) ;

ReferenceError: Can't find variable:
randomFunction

URIError

INCORRECT USE OF URI FUNCTIONS
If these characters are not escaped in URIs, they will
causeanerror: / ? & # : ;

CHARACTERS ARE NOT ESCAPED
decodeURI('http://bbc.com/news .phpa=1 O

URIError: URI error

These two pages show JavaScript's seven different types of error objects
and some common examples of the kinds of errors you are likely to see.
As you can tell, the errors shown by the browsers can be rather cryptic.

TypeError RangeError

VALUE IS UNEXPECTED DATA TYPE NUMBER OQUTSIDE OF RANGE

This is often caused by trying to use an object or If you call a function using numbers outside of its

method that does not exist. accepted range.

INCORRECT CASE FOR document OBJECT CANNOT CREATE ARRAY WITH -1 ITEMS

mocument .write('Oops!'); var anArray = new Array() s
TypeError: ‘undefined' is not a function RangeError: Array size is not a small
(evaluating 'Document.write('Oops!')') enough positive integer

INCORRECT CASE FOR write() METHOD NUMBER OF DIGITS AFTER DECIMAL IN

l (*Oops! ') var price = 9.99;

TypeError: 'undefined' is not a function pri ce.toF'ixed();

evaluating 'document.Write('Oops!')’
(g (*Oopst)') RangeError: toFixed() argument must be

METHOD DOES NOT EXIST between 0 and 20

var box = {}; // Create empty object
bOX.; // Tr‘y L5 AEedEs getArea() gldl:‘YBEFEQ E;]DIGITS IN toPreci 510“() CAN
num = 2.3456;

TypeError: 'undefined' is not a function
> num.toPrecision();

(evaluating 'box.getArea()')

RangeError: toPrecision() argument must
DOM NODE DOES NOT EXIST be between 1 and 21

var el = dacument.getE]ementById(n];
el.innerHTML = 'Mango';

TypeError: ‘null' is not an object
(evaluating 'el.innerHTML = 'Mango'')

Error NaN

GENERIC ERROR OBJECT NOT AN ERROR

The generic Error object is the template (or Note: If you perform a mathematical operation using
prototype) from which all other error objects are a value that is not a number, you end up with the
created. value of NaN, not a type error.

NOT A NUMBER

var total = 3 * ;

ERROR HANDLING & DEBUGGING

HOW TO DEAL WITH

ERRORS

Now that you know what an error is and how the browser treats them,
there are two things you can do with the errors.

1: DEBUG THE SCRIPT TO FIX ERRORS

If you come across an error while writing a script
(or when someone reports a bug), you will need to
debug the code, track down the source of the error,
and fix it.

You will find that the developer tools available in
every major modern browser will help you with

this task. In this chapter, you will learn about the
developer tools in Chrome and Firefox. (The tools in
Chrome are identical to those in Opera.)

IE and Safari also have their own tools (but there is
not space to cover them all).

ERROR HANDLING & DEBUGGING

2: HANDLE ERRORS GRACEFULLY

You can handle errors gracefully using try, catch,
throw, and finally statements.

Sometimes, an error may occur in the script for a
reason beyond your control. For example, you might
request data from a third party, and their server
may not respond. In such cases, it is particularly
important to write error-handling code.

In the latter part of the chapter, you will learn how to
gracefully check whether something will work, and
offer an alternative option if it fails.

A DEBUGGING

WORKFLOW

Debugging is about deduction: eliminating potential causes of an error.
Here is a workflow for techniques you will meet over the next 20 pages.
Try to narrow down where the problem might be, then look for clues.

WHERE IS THE PROBLEM?

First, should try to can narrow down the area where
the problem seems to be. In a long script, this is
especially important.

1. Look at the error message, it tells you:

® The relevant script that caused the problem.

® The line number where it became a problem for
the interpreter. (As you will see, the cause of
the error may be earlier in a script; but this is the
point at which the script could not continue.)

® The type of error (although the underlying cause
of the error may be different).

2. Check how far the script is running.
Use tools to write messages to the console to tell
how far your script has executed.

3. Use breakpoints where things are going wrong.
They let you pause execution and inspect the values
that are stored in variables,

If you are stuck on an error, many programmers
suggest that you try to describe the situation (talking
out loud) to another programmer. Explain what
should be happening and where the error appears

to be happening. This seems to be an effective way
of finding errors in all programming languages. (If
nobody else is available, try describing it to yourself.)

WHAT EXACTLY IS THE PROBLEM?

Once you think that you might know the rough area
in which your problem is located, you can then try to
find the actual line of code that is causing the error.

1. When you have set breakpoints, you can see if the
variables around them have the values you would
expect them to. If not, look earlier in the script.

2. Break down / break out parts of the code to test

smaller pieces of the functionality.

® Write values of variables into the console.

@ Callfunctions from the console to check if they
are returning what you would expect them to.

® Check if objects exist and have the methods /
properties that you think they do.

3. Check the number of parameters for a function, or
the number of items in an array.

And be prepared to repeat the whole process if the
above solved one error just to uncover another...

If the problem is hard to find, it is easy to lose track
of what you have and have not tested. Therefore,
when you start debugging, keep notes of what you
have tested and what the result was. No matter
how stressful the circumstances are, if you can,
stay calm and methodical, the problem will feel less
overwhelming and you will solve it faster.

ERROR HANDLING & DEBUGGING

BROWSER DEV TOOLS &
JAVASCRIPT CONSOLE

The JavaScript console will tell you when there is a problem with a script,
where to look for the problem, and what kind of issue it seems to be.

These two pages show instructions for opening the
console in all of the main browsers (but the rest of
this chapter will focus on Chrome and Firefox).

CHROME / OPERA

On a PC, press the F12 key or:

1. Go to the options menu (or three line menu icon)
2. Select Tools or More tools.

3. Select JavaScript Console or Developer Tools

On a Mac press Alt + Cmd + J. Or:

4.Go to the View menu.

5. Select Developer.

6. Open the JavaScript Console or Developer Tools
option and select Console.

INTERNET EXPLORER

Press the F12 key or:
1. Go to the settings menu in the top-right.
2. Select developer tools.

ERROR HANDLING & DEBUGGING

Browser manufacturers occasionally change how
to access these tools. If they are not where stated,
search the browser help files for "console.”

File Edit RYCTE History B
Always Show Bookmarks Bar (3B

Stop ¥
Force Reload This Page ¥R

Enter Presentation Mode ORF
Enter Full Screen ~HF
Actual Size ®0
Zoom in H+
Zoom Out M-

Encoding >
Developer View Source
Developer Tools TRl

Print
File
Zoom (100%)

Safety

Add site to Start Screen

View downloads Ctri+)
Manage add-ons

* v v w

F12 developer tools
Goto pinned sites

The JavaScript console is just one of several developer tools that are

found in all modern browsers.

When you are debugging errors, it can help if you
look at the error in more than one browser as they
can show you different error messages.

History Bookmarks

Web Search

Downloads
Add-ons
Set Up Sync...

Web Console

P .
Start Private Browsing Q%P HpE
Clear Recent History... ¥® Get More Tools

File Edit View History Bookmarks Ee30LNE Window Help
Open Page With
User Agent

Hide Web Inspector
Show Error Console
Show Page Source
Show Page Resources

Show Snippet Editor
Show Extension Bullder

Start Profiling JavaScript CO®P
Start Timeline Recording COXT

Empty Caches THE
Disable Caches

Disable images
Disable Styles

If you open the errors.html file from the sample
code in your browser, and then open the console,
you will see an error is displayed.

FIREFOX

On a PC, press Ctrl + Shift + K or:
1. Go to the Firefox menu.

2. Select Web Developer.

3. Open the Web Console.

On a Mac press Alt + Cmd + K. Or:
1. Go to the Teols menu.

2. Select Web Developer.

3. Open the Web Console.

SAFARI

Press Alt + Cmd + Cor:

1. Go to the Develop menu.

2.Select Show Error Console.

If the Develop menu is not shown:

1. Go to the Safari menu.

2. Select Preferences.

3. Select Advanced.

4, Check the box that says "Show Develop menu in
menu bar."

ERROR HANDLING & DEBUGGING @

HOW TO LOOK AT ERRORS
IN CHROME

The console will show you when there is an
error in your JavaScript. It also displays the line
where it became a problem for the interpreter.

B OB ™ avascriot & IGuery - Cha \ K
/ |__]java5cr!pt&jqﬂ..lery Char % o\ " .

<« - C -I_"|—javasc.rib.tbook.comjco&e;clﬂ;errors'.i.'nt'n;I_m Q’iﬁ’

Find the area of a wall:

+ width

1 height

Calculate area...

® Y <topframe> ¥

© Uncaught SyntaxError: Unexpected token ILLEGAL errors.js:4
>
2 (3

1. The Console option is selected. Note that the line number does If the error stops JavaScript from
2. The type of error and the error not always indicate where the executing, the console will show
message are shown in red. error is. Rather, it is where the only one error - there may be
3. The file name and the line interpreter noticed there was a more to troubleshoot once this
number are shown on the problem with the code. error is fixed.

right-hand side of the console.

ERROR HANDLING & DEBUGGING

HOW TO LOOK AT ERRORS
IN FIREFOX

®0o JavaScript & jQuery - Chapter 10: Error Handling & Debugging ~ Console Errors

| { "} JavaScript & jQuery ~ Chapter 1...

B~ Coogle

1 > Console

csS -) d Security -~

®x SyntaxError: illegal character errors.js:4

1. The Console option is selected. 3. The type of error and the error Note that when debugging any
2. Only the JavaScript and message are shown on the left. JavaScript code that has been
Logging options need to be 4. On the right-hand side of the minified, it will be easier to
turned on. The Net, CSS, and console, you can see the name understand if you expand it first.
Security options show other of the JavaScript file and the line

information. number of the error.

ERROR HANDLING & DEBUGGING

TYPING IN THE CONSOLE
IN CHROME

You can also just type code into the console
and it will show you a result.

€ > C Ljjavé‘scriptbook.cor;ifcnde;c10/ =

Find the area of a wall:

1 height
Calculate area...

ﬂ Elements Network Sources Timeline Profiles Resources Audits |Console | x & O, x
© ¥ <topframe> v
> width = 3;
3
> height = 5;
5
> area = width % height;
15
>
Above, you can see an example Each time you write a line, the Any variable that you create in
of JavaScript being written interpreter may respond. Here, the console will be remembered
straight into the console. This it is writing out the value of each until you clear the console.
is a quick and handy way to test variable that has been created. 1. In Chrome, the no-entry sign is
your code. used to clear the console.

@ ERROR HANDLING & DEBUGGING

TYPING IN THE CONSOLE
IN FIREFOX

| 806 JavaScript & jQuery - Chapter 10: Error Handling & Debugging "
[} JavaScript & jQuery - Chapter 1... |

» Console
Net - css -] Security - » Logging
4 width = 3;
5]
¢ height = 5;
5
‘ area = width * height;
15
| 2
1. In Firefox, the Clear button will This tells the interpreter that it 2. The left and right arrows show
clear the contents of the console. no longer needs to remember which lines you have written, and

the variables you have created. which are from the interpreter.

ERROR HANDLING & DEBUGGING

WRITING FROM THE
SCRIPT TO THE CONSOLE

Browsers that have a console have a console object, which has several
methods that your script can use to display data in the console.
The object is documented in the Console API.

| .or_ OQI ./r.ijhvn;cﬂm&Mrv-Chm X N e Ml o _ e i X

« - C Djavascriptbook.com}code;‘clﬂiconsole-log.html' Q{? =

Find the area of a wall:

Calculate area...

Q, Elements Network Sources Timeline Profiles Resources Audits | Console | = ﬂ- ID‘ X
® W <topframe> v

1) And we're off... console-log, js:1
You entered 3 console-log. js:6
You entered 4 console-log,js:6
Clicked submit... sole-log. js:
Width 3 console-log, js:14
Height 4 console-log.js:17
12 ole-log. js:

1. The console.log() method
can write data from a script

to the console. If you open
console-Tog.html, you will
see that a note is written to the
console when the page loads.

ERROR HANDLING & DEBUGGING

2. Such notes can tell you how
far a script has run and what
values it has received. In this
example, the blur event causes
the value entered into a text
input to be logged in the console.

3. Writing out variables lets you
see what values the interpreter
holds for them. In this example,
the console will write out the
values of each variable when the
form is submitted.

LOGGING DATA
FOTHE CONSOLE

This example shows several uses When the user submits the form, The console.log() method
of the console.log() method. four values are displayed: can write several values to the
console at the same time, each
1. The first line is used to indicate 3. That the user clicked submit separated by a comma, as shown
the script is running. 4. The value in the width input when displaying the height (5).
5. The value in the height input

2. Next an event handler waits 6. The value of the area variable You should always remove this

for the user leaving a text input, kind of error handling code from

and logs the value that they They help check that you are your script before you use it on

entered into that form field. getting the values you expect. a live site.
c10/js/console-log.js

(@ console.log('And we\'re off...'); // Indicates script is running

var $form, width, height, area;
$form = $('#calculator');

$('form input[type="text"]').on('blur', function() { // When input loses focus

console.log('You entered ', this.value); // Write value to console
1) X
$('#calculator').on('submit', function(e) { // When the user clicks submit

e.preventDefault(); // Prevent the form submitting

console.log('Clicked submit...'); // Indicate button was clicked

width = $('#width').val();
console.log('Width ' + width); // Write width to console

height = $('#height').val();
console.log('Height ', height); // Write height to console

area = width * height;
console.log(area); // Write area to console

©@ © ® @

$form.append('<p>' + area + '</p>')

;s

ERROR HANDLING & DEBUGGING

MORE CONSOLE MEEHCGDS

To differentiate between the 1. console.info() can be used This technique is particularly

types of messages you write for general information helpful to show the nature of the

to the console, you can use 2.console.warn() can be used information that you are writing

three different methods. They for warnings to the screen. (In Firefox, make

use various colors and icons to 3. console.error() can be used sure you have the logging option

distinguish them. to hold errors selected.)

c10/js/console-methods.js

(D console.info('And we\'re off...'); // Info: script running

var $form, width, height, area;
$form = $('#calculator');

$('form input[type="text"]').on('blur', function() { // On blur event
console.warn('You entered ', this.value); // Warn: what was entered

)3

$('#calculator').on('submit', function(e) { // When form is submitted
e.preventDefault();

width = $(*#width').val();
height = $('#height').val();

area = width * height;
(® console.error(area); // Error: show area

$form.append('<p class="result">"' + area + '</p>');

1s

Q Elements Network Sources Timeline Profiles Resources Audits » ©1 22 > #% B, x
© Y <topframe> v

Mt w'ves 911, . console-nethods. js:1
You entered 12 console-methods. js:7
You entered 14 console-methods. js:7

O » 168 console-methods. js:17

:

ERROR HANDLING & DEBUGGING

GROUPING MESSAGES

1. If you want to write a set of
related data to the console, you
can use the console.group()
method to group the messages
together. You can then expand

It has one parameter; the name
that you want to use for the
group of messages. You can
then expand and collapse the
contents by clicking next to the

2. When you have finished
writing out the results for the
group, to indicate the end of the
group the console.groupEnd()
method is used.

and contract the results. group's name as shown below.

JAVASCRIPT

var $form = $('#calculator');

cl0/js/console-group.js

$form.on('submit', function(e) {
e.preventDefault();
console.log('Clicked submit...');

// Runs when submit is pressed
// Show the button was clicked

var width, height, area;
width = $('#width').val();
height = $('#height').val();
area = width * height;

(@ console.group('Area calculations');
console.info('Width ', width);
console.info('Height ', height);
console.log(area);

@ console.groupEnd();

// Start group

// Write out the width
// Write out the height
// Write out the area

// End group

$form.append('<p>' + area + '</p>');

3 ¥

Q, Elements Network Sources Timeline Profiles Resources Audits |Console | x & =, x
O W <topframe> ¥
Clicked submit... console-group. js:5
v Area calculations console-group. $:12
0 Width 12 console-group.js:13
@ Height 14 console-group.js:14
168 console-group.js:15
>

L}

ERROR HANDLING & DEBUGGING

WRITING TABULAR DATA

In browsers that support it, the The example below shows data The screen shot below shows
console.table() method lets from the contacts object. It the result in Chrome (it looks the
you output a table showing: displays the city, telephone same in Opera). Safari will show
® objects number, and country. It is expanding panels. At the time
® arrays that contain other particularly helpful when the of writing Firefox and IE did not
objects or arrays data is coming from a third party. support this method.
cl0/js/console-table.js
var contacts = { // Store contact info in an object literal
"London": {

"Tel": "+44 (0)207 946 0128",
"Country": "UK"},

"Sydney": {
"“Tal*s "™¥61 (0)2 7010 3212,
"Country": "Australia"},

"New York": {
"Tel": "+1 (0)1 555 2104",
"Country": "USA"}

}

(@ console.table(contacts); // Write data to console
var city, contactDetails; // Declare variables for page
contactDetails = ''; // Hold details written to page
$.each(contacts, function(city, contacts) { // Loop through data to
contactDetails += city + ': ' + contacts.Tel + '
';
1s
$('h2').after('<p>' + contactDetails + '</p>'); // Add data to the page
Q, Elements Network Sources Timeline Profiles Resources Audits | Console | = # Q‘x
© W <topframe> ¥
(index) Tel i Country
London "+44 (0)207 946 0128" VK"
Sydney "+61 (@)2 7010 1212" | "Australia" !
New York | "+1 (@)1 555 2104" "USA" T——

ERROR HANDLING & DEBUGGING

WRITING ON A CONDITION

Using the console.assert() 1. Below, when users leave an ' 2. The second check looks to
method, you can test if a input, the code checks to see if see if the calculated area is a
condition is met, and write to the they entered a value that is 10 numeric value. If not, then the
console only if the expression or higher. If not, it will write a user must have entered a value
evaluates to false. message to the screen. that was not a number.

JAVASCRIPT c10/js/console-assert.js

var $form, width, height, area;
$form = $('#calculator');

$('form input[type="text"]').on('blur', function() {
// The message only shows if user has entered number less than 10
(@ console.assert(this.value > 10, 'User entered less than 10');

R

$('#calculator').on('submit', function(e) {
e.preventDefault();
console.log('Clicked submit...');

width = $('#width').val();
height = $('#height').val();
area = width * height; .
// The message only shows if user has not entered a number
@ console.assert($.isNumeric(area), 'User entered non-numeric value');

$form.append('<p>' + area + '</p>');

IDF

Q Elements Network Sources Timeline Profiles Resources Audits |Console| @2 >= % (=
© V¥ <topframe> v

€© v Assertion failed: User entered less than 10 console—assert.js:6
(anonymous function) console-assert.js:6
x.event.dispatch 1St
v.handle 14766
Clicked submit... n rt.js:11

ERROR HANDLING & DEBUGGING

BREAKPOINTS

You can pause the execution of a script on any
line using breakpoints. Then you can check the
values stored in variables at that point in time.

'[E bmakpolntst x|

1 var $form, uxdtll. heigm
2/ $form = §('#calculator),

|So... [Co.. Sni.
*) javascriptbook.com |

Tascidaicla) A '#calculator').on('3\ "
iy ¢ Yeomote.togciy console, logl Clicked N
e _ breakpaints.js |
<= breakpoints.

* O ajax.googleapis.cd
» O fonts.googleapls.con 12 debugoer 1
{} Line 9, Column

1 if (area < 1008) {
debuager
Line 9, Column 1

-u: seateottory.of 3 |$(' #calculator) .on(sy
console lnni 5| console "’alicked S
width « i) 6 3"
| height S 7| width = dth').
| ares = (wid 8 helght = eight')_
9| area = (width * height);

ERROR HANDLING & DEBUGGING

CHROME

1. Select the Sources option.

2. Select the script you are
working with from the left-hand
pane. The code will appear to
the right.

3. Find the line number you want
to stop on and click on it.

4. When you run the script, it
will stop on this line. You can
now hover over any variable to
see its value at that time in the
script's execution.

FIREFOX

1. Select the Debugger option.
2. Select the script you are
working with from the left-hand
pane, The code will appear to
the right.

3. Find the line number you want
to stop on and click on it.

4, When you run the script, it
will stop on this line. You can
now hover over any variable to
see its value at that time in the
script's execution.

STEPPING THROUGH CODE

When you have set breakpoints,
you will see that the debugger
lets you step through the code
line by line and see the values
of variables as your script
progresses.

When you are doing this, if
the debugger comes across a
function, it will move onto the
next line after the function.
(It does not move to where
the function is defined.) This
behavior is sometimes called
stepping over a function.

If you want to, it is possible

to tell the debugger to step
into a function to see what is
happening inside the function.

If you set multiple breakpoints, you can step
through them one-by-one to see where values
change and a problem might occur.

Chrome and Firefox both have very similar tools for letting you step

through the breakpoints.

©O @ @@ ®

T~ SR 5

L] L]

O @ @ ®

1. A pause sign shows until the interpreter comes across a breakpoint.
When the interpreter stops on a breakpoint, a play-style button is then
shown. This lets you tell the interpreter to resume running the code.

2. Go to the next line of code and step through the lines one-by-one
(rather than running them as fast as possible).

3. Step into a function call. The debugger will move to the first line in
that function.

4. Step out of a function that you stepped into. The remainder of the
function will be executed as the debugger moves to its parent function.

ERROR HANDLING & DEBUGGING

CONDITIONAL
BREAKPOINTS

You can indicate that a breakpoint should be
triggered only if a condition that you specify is
met. The condition can use existing variables.

|Q Elements Network | Sources| Timeline Profiles Resources Audits Console = & =

[*]| breakpoints.js *
2 g$form = $("#calculator');

consule log(" CLioh

3
4 $('#calculator'),on('subnit’, functwn{e] {
5 console. log('Clicked submit.. & 1

width = $(#width').vall);

wldth $(#Wldt.h }

&
T
&8
9

i[area < 28;

10 The breakp01nt on line 8

{} Line 9, Column 1 \ ”area < 20' }—a

10 |
Line 9, Column 1

rl? Debugger

This breakpoint will stop execution only if the following exg

| width = $(*

7 i H
8| heiont = 5.0 This breakpoint will stop execut
§|-erm= e Iarea < 20;

Y 9 area m (width = hei.

@ ERROR HANDLING & DEBUGGING

CHROME

1. Right-click on a line number.
2. Select Add Conditional
Breakpoint...

3. Enter a condition into the
popup box.

4. When you run the script, it
will only stop on this line if the
condition is true (e.g., if area is
less than 20).

FIREFOX

1. Right-click on a line of code.
2. Select Add conditional
breakpoint.

3. Enter a condition into the
popup box.

4. When you run the script, it
will stop on this line only if the
condition is true (e.g., if area is
less than 20).

DEBUGGER KEYWORD

You can create a breakpoint
in your code using just the
debugger keyword. When the
developer tools are open, this
will automatically create a
breakpoint.

You can also place the debugger
keyword within a conditional
statement so that it only triggers
the breakpoint if the condition is
met. This is demonstrated in the
code below.

It is particularly important to
remember to remove these
statements before your code
goes live as this could stop
the page running if a user has
developer tools open.

JAVASCRIPT

var $form, width, height, area;
$form = §('#calculator');

cl0/js/breakpoints.js

$('#calculator').on('submit', function(e) {
e.preventDefault();
console.log('Clicked submit...');

width = §('#width').val();
height = $('#height').val():
area = (width * height);

if (area < 100) {
debugger;
}

// A breakpoint is set if the developer tools are open

$form.append('<p>' + area + '</p>');

})!

Q, Elements Network |Sources| Timeline Profiles Resources Audits Console = £ B, x
[breakpointsjs x | Elijw, A~ Tt b O
3 » Watch Expressions e 2
4 $('#calculator').on('submit', function(e) { » Cal |
5| console.log('Clicked submit...'); Sl SHREK
6 » Scope Variables
7 width = $('#width').vall); » Breakpoint
8 height = $('#height').val(); S i =
9 area = (width % height); » DOM _B_r_‘e;_lfpomtﬁ
g Y T | » XHR Breakpoints g8
a2l * > Workers
{} Line 12, Column1

If you have a development server, your debugging code can be placed in conditional statements that check
whether it is running on a specific server (and the debugging code only runs if it is on the specified server).

ERROR HANDLING & DEBUGGING

HANDLING EXCEPTIONS

If you know your code might fail, use try, catch, and finally.
Each one is given its own code block.

try {

// Try to execute this code

} catch (exception) {

// If there is an exception, run this code

} finally {

// This always gets executed

}

TRY

First, you specify the code
that you think might throw an
exception within the try block.

If an exception occurs in this
section of code, control is
automatically passed to the
corresponding catch block.

The try clause must be used in
this type of error handling code,
and it should always have either
a catch, finally, or both.

If you use a continue, break, or
return keyword inside a try, it
will go to the finally option.

ERROR HANDLING & DEBUGGING

CATCH

If the try code block throws an
exception, catch steps in with an
alternative set of code.

It has one parameter: the error
object. Although it is optional,
you are not handling the error if
you do not catch an error.

The ability to catch an error can
be very helpful if there is an issue
on a live website.

It lets you tell users that
something has gone wrong
(rather than not informing them
why the site stopped working).

FINALLY

The contents of the finally
code block will run either
way - whether the try block
succeeded or failed.

It even runs if a return keyword

is used in the try or catch block.
It is sometimes used to clean up

after the previous two clauses.

These methods are similar
to the .done(), .fail(), and
.always () methods in jQuery.

You can nest checks inside each
other (place another try inside a
catch), but be aware that it can
affect performance of a script.

Ry CalCel

This example displays JSON data
to the user. But, imagine that the
data is coming from a third party
and there have been occasional
problems with it that could
cause the page to fail.

This script checks if the JSON
can be parsed using a try block
before trying to display the
information to the users.

JAVASCRIPT

response = ' {"deals": [{"title": "Farrow and Ball",...

if (response) {
try{

If the try statement throws an
error (because the data cannot
be parsed), the code in the catch
code block will be run, and the
error will not prevent the rest of
the script from being executed.

The catch statement creates

a message using the name and
message properties of the Error
object.

var dealData = JSON.parse(response);
showContent (dealData);

}catch(e) {

var errorMessage = e.name + ' ' + e.message;
console.log(errorMessage);

FINALLY

The error will be logged to the
console, and a friendly message
will be shown to the users of
the site. You could also send
the error message to the server
using Ajax so that it could

be recorded. Either way, the
finally statement adds a link
that allows users to refresh the
data they are seeing.

c10/js/try-catch-finally.js

' // JSON data

// Try to parse JSON
// Show JSON data

// Create error msg
// Show devs msg

feed.innerHTML = 'Sorry, could not load deals'; // Users msg

} finally {
var link = document.createElement('a');

// Add refresh link

Tink.innerHTML = ' reload";

feed.appendChild(1ink);

Q, Elements Network Sources Timeline Profiles Resources Audits | Console |

= £ 18, x

Q W <topframe> ¥

SyntaxError Unexpected end of input
>

try-catch—finally.js:14

ERROR HANDLING & DEBUGGING

THROWING ERRORS

If you know something might cause a problem for your script, you can
generate your own errors before the interpreter creates them.

To create your own error, you use the following line:

throw new Error('message');

Being able to throw an error at the time you know
there might be a problem can be better than letting
that data cause errors further into the script.

If you are working with data from a third party, you
may come across problems such as:

@ JSON that contains a formatting error

® Numeric data that occasionally has a non-
numeric value

@ An error from a remote server

® A set of information with one missing value

Bad data might not cause an error in the script
straight away, but it could cause a problem later on.
In such cases, it helps to report the problem straight
away. It can be much harder to find the source of the
problem if the data causes an error in a different part
of the script.

ERROR HANDLING & DEBUGGING

This creates a new Error object (using the default
Error object). The parameter is the message you
want associated with the error. This message should
be as descriptive as possible.

For example, if a user enters a string when you
expect a number, it might not throw an error
immediately.

However, if you know that the application will try to
use that value in a mathematical operation at some
point in the future, you know that it will cause a
problem later on.

If you add a number to a string, it will resultin a
string. If you use a string in any other mathematical
calculations, the result would be NaN. In itself, NaN is
not an error; it is a value that is not a number.

Therefore, if you throw an error when the user enters
a value you cannot use, it prevents issues at some
other point in the code. You can create an error that
explains the problem, before the user gets further
into the script.

THROW ERROR FOR NaN

By checking that the results

are numeric, the script can fail

at a specific point and you can
provide a detailed error about
what caused the problem (rather
than letting it cause a problem
later in the script).

In this example, a try block
attempts to calculate the area of
arectangle. If it is given numbers
to work with, the code will run.

If it does not get numbers, a
custom error is thrown and the
catch block displays the error.

If you try to use a stringin a
mathematical operation (other
than in addition), you do not get
an error, you get a special value
called NaN (not a number).

cl0/js/throw.js

JAVASCRIPT

var width = 12;
var height = 'test';

// width variable
// height variable

function calculateArea(width, height) {
try {
var area = width * height;
if (lisNaN(area)) {
return area;

// Try to calculate area
// If it is a number
// Return the area

} else { // Otherwise throw an error
throw new Error('calculateArea() received invalid number');
}
} catch(e) { // If there was an error
console.log(e.name + ' ' + e.message); // Show errar in console

return 'We were unable to calculate the area.'; // Show users a message

}
}

// TRY TO SHOW THE AREA ON THE PAGE
document.getElementById('area').innerHTML = calculateArea(width, height);

There are two different errors This not only catches an error Ideally, form validation, which

shown: one in the browser
window for the users and
another in the console for the
developers.

that would not have been thrown
otherwise, but it also provides a
more descriptive explanation of
what caused the error.

you learn about in Chapter 13,
would solve this kind of issue. It
is more likely to occur when data
comes from a third party.

ERROR HANDLING & DEBUGGING

484

DEBUGGING TIPS

Here are a selection of practical tips that you
can try to use when debugging your scripts.

ANOTHER BROWSER
Some problems are browser-
specific. Try the code in another
browser to see which ones are
causing a problem.

ADD NUMBERS

Write numbers to the console

s0 you can see which the items
get logged. It shows how far your
code runs before errors stop it.

STRIP IT BACK

Remove parts of code, and strip
it down to the minimum you
need. You can do this either by
removing the code altogether, or
by just commenting it out using
multi-line comments:

/* Anything between these
characters is a comment */

EXPLAINING THE CODE

Programmers often report
finding a solution to a problem
while explaining the code to
someone else.

ERROR HANDLING & DEBUGGING

SEARCH
Stack Overflow is a Q+A site for
programmers.

Or use a traditional search
engine such as Google, Bing, or
DuckDuckGo.

CODE PLAYGROUNDS

If you want to ask about
problematic code on a forum, in
addition to pasting the code into
a post, you could add it to a code
playground site (such as
JSBin.com, JSFiddle.com, or
Dabblet.com)and then post a
link to it from the forum.

(Other popular playgrounds
include CSSDeck. com and
CodePen.com - but these sites
place more emphasis on show
and tell.)

VALIDATION TOOLS
There are a number of online
validation tools that can help you
try to find errors in your code:

JAVASCRIPT
http://www.jslint.com
http://www.jshint.com

JSON
http://www.jsonlint.com

JQUERY

There is a jQuery debugger
plugin available for Chrome
which can be found in the
Chrome web store.

GO BACK TO BASICS

JavaScript is case sensitive so
check your capitalization.

If you did not use var to declare
the variable, it will be a global
variable, and its value could be
overwritten elsewhere (either in
your script or by another script
that is included in the page).

If you cannot access a variable's
value, check if it is out of scope,
e.g., declared within a function
that you are not within.

Do not use reserved words or
dashes in variable names.

Check that your single / double
quotes match properly.

Check that you have escaped
quotes in variable values.

Check in the HTML that values
of your id attributes are unique.

COMMON ERRORS

Here is a list of common errors you might find

with your scripts.

MISSED / EXTRA
CHARACTERS

Every statement should end in a
semicolon.

Check that there are no
missing closing braces } or
parentheses).

Check that there are no commas
insidea ,} or ,) by accident.

Always use parentheses to-
surround a condition that you
are testing.

Check the script is not missing
a parameter when calling a
function.

undefined is not the same
as null:null is for objects,
undefined is for properties,
methods, or variables.

Check that your script has
loaded (especially CDN files).

Look for conflicts between
different script files.

DATA TYPE ISSUES

Using = rather than == will assign
a value to a variable, not check
that the values match.

If you are checking whether
values match, try to use strict
comparison to check datatypes
at the same time. (Use ===
rather than ==,

Inside a switch statement, the
values are not loosely typed (so
their type will not be coerced).

Once there is a match in a switch
statement, all expressions will be
executed until the next break or
return statement is executed.

The replace() method only
replaces the first match. If you
want to replace all occurrences,
use the global flag.

If you are using the parseInt()
method, you might need to pass
a radix (the number of unigue
digits including zero used to
represent the number).

ERROR HANDLING & DEBUGGING

SUMMARY

ERROR HANDLING & DEBUGGING

486/ ERROR HANDLING & DEBUGGING

Content panels allow you to showcase extra information
within a limited space. In this chapter, you will see several
examples of content panels that also give you practical
insight into creating your own scripts using jQuery.

In this chapter, you will see how to create many types of content panels: accordions, tabbed
panels, modal windows (also known as a lightboxes), a photo viewer, and a responsive slider.

Each example of a content panel also demonstrates how to apply the code you have learned
throughout the book so far in a practical setting.

Throughout the chapter, reference will be made to more complex jQuery plugins that extend
the functionality of the examples shown here. But the code samples in this chapter also show
how it is possible to achieve techniques you will have seen on popular websites in relatively
few lines of code (without needing to rely on plugins written by other people).

CONTENT PANELS

ACCORDION

An accordion features titles which, when clicked,
expand to show a larger panel of content.

Take your tastebuds for a gentle stroll through an English garden ffied with Morsieur
Piguon's besutifully fr With three sweetly foral
optians: Elderberry. Rose Petal. and Chrysanthemum - all edile and & naturally
flavored - they wil hanve you dresming of butterfies and bisdsang in no Gme.

BALT O THE SEA

MODAL WINDOW

When you click on a link for a modal window (or
"lightbox"), a hidden panel will be displayed.

R

j AHART THE MACIC BT

Maossreen Prcwx>c.
(ﬂ WITH YOUE JRI#Y

\}___/J
0 ® 0

Try our latest sweet]
SALTED CARAMEL &

RESPONSIVE SLIDER

The slider allows you to show panels of content that
slide into view as the user navigates between them.

THEY SAY NO TWO
MARSHMALLOWS
ARE THE SAME..

At Jeast our chefs &t Monsienr
Pigeon do. That's becanse they
eraft each delicions kateh
individually by hand using
all-natural ingredients.

TABBED PANEL

Tabs automatically show one panel, but when you
click on another tab, the panel is changed.

DESCRIPTION

Taka your tastebuds for a gentle stoll through an English garden filled with Monsieur
ifully fragrant With th

options: Rose Petal, and Ch
flawoned - they will ¥ gofb

- alt edible and all naturaly
oy

PHOTO VIEWER

Photo viewers display different images within the
same space when the user clicks on the thumbnails.

THE FLOWER SERIES

ke o b i
s) i 4

/(Y\q e st

_ re———

fawludl-—=
B

Rose Perar.

S575/ 15 e packet

CREATING A JQUERY PLUGIN

The final example revisits the accordion (the first
example) and turns it into a jQuery plugin.

Take your tastebuds for a gentle stroll through an English garden Rfied with Mansisur
Pegean's beautifully fragrant Flower Saries marshmaliows. With thees sweetly lloral

options. . Rose Petal, and Chry « ot edible and all raturally
v you dreaming of busterflies and brdsang in na time.

CONTENT PANELS

SEPARATION

OF CONCERNS

As you saw in the introduction to this book, it is considered good practice
to separate your content (in HTML markup), presentation (in CSS rules),

and behaviors (in JavaScript).

In general, your code should reflect that:

® HTML is responsible for structuring content
® (SSis responsible for presentation

@ JavaScript is responsible for behavior

Enforcing this separation produces code that is
easier to maintain and reuse. While this may already
be a familiar concept to you, it's important to
remember as it is very easy to mix these concerns in
with your JavaScript. As a rule, editing your HTML
templates or stylesheets should not necessitate
editing your scripts and vice versa.

@ CONTENT PANELS

You can also place event listeners and calls to
functions in JavaScript files rather than adding them
to the end of an HTML document.

If you need to change the styles associated with an
element, rather than having styles written in the
JavaScript, you can update the value of the class
attributes for those elements. In turn, they can
trigger new rules from the CSS file that change the
appearance of those elements.

When your scripts access the DOM, you can
uncouple them from the HTML by using class
selectors rather than tag selectors.

ACCESSIBILITY
& NO JAVASCRIPT

When writing any script, you should think about those who might be
using a web page in different situations than you.

ACCESSIBILITY

Whenever a user can interact with an element:
® |Ifitisalink, use <a>
® If it acts like a button, use a button

Both can gain focus, so users can move between
them focusable elements using the Tab key (or other
non-mouse solution). And although any element can
become focusable by setting its tabindex attribute,
only <a> elements and some input elements fire a
click event when users press the Enter key on their
keyboard (the ARIA role="button" attribute will
not simulate this event).

<!DOCTYPE html><html class="no-js"> ...

<body>

NO JAVASCRIPT

This chapter's accordion menu, tabbed panels,
and responsive slider all hide some of their content
by default. This content would be inaccessible to
visitors that do not have JavaScript enabled if we
didn't provide alternative styling. One way to solve
this is by adding a class attribute whose value is
no-js to the opening <html> tag. This class is then
removed by JavaScript (using the replace() method
of the String object) if JavaScript is enabled.

The no-js class can then be used to provide styles
targeted to visitors who do not have JavaScript
enabled.

cll/no-js.html

<div class="js-warning">You must enable JavaScript to buy from us</div>
<l-- Turn off your JavaScript to see the difference -->

<script src="js/no-js.js"></script>

</body>
</html>

JAVASCRIPT

var elDocument = document.documentElement;

cll/js/no-js.js

elDocument.className = elDocument.className.replace(/(~|\s)no-js(\s|$)/, '$1');

CONTENT PANELS

ACCORDION

When you click on the title of an accordion, its corresponding panel
expands to reveal the content.

An accordion is usually created
within an unordered list (in
aelement). Each <1i>
element is a new item in the
accordion. The items contain:

® A visible label (in this

hh:muﬂemiwuwﬂ:wdlmw»b@damﬁlhdmm

example, it is a <button>) Pigeon's beautifully fragrant Flower Series ly floral
= = options: Elderberry, Rose Petal, and Chrysanthemum - all e(ﬂ:i:aﬂd all nalmlly
@ A hidden panel holding the flavored - they will have you dreaming of butterflies and birdsong in na time.

content (a <div>) m——
Clicking a label prompts the
associated panel to be shown
(or to be hidden if it is in view).
To just hide or show a panel, Other tabs scripts include liteAccordion and zAccordion.
you could change the value They are also included in jQuery Ul and Bootstrap.

of the class attribute on the

associated panel (triggering a

new CSS rule to show or hide it).

But, in this case, jQuery will be

used to animate the panel into

view or hide it.

HTMLS introduces <details=>
and <summary> elements to
create a similar effect, but (at the
time of writing) browser support
was not widespread. Therefore,
a script like this would still be
used for browsers that do not
support those features.

CONTENT PANELS

ACCORDION WITH ALL PANELS COLLAPSED

LABEL 1 COLLAPSED
LABEL 2 COLLAPSED

LABEL 3 COLLAPSED

ACCORDION WITH SECOND PANEL EXPANDED

LABEL1 : COLLAPSED
1

LABEL 2

CONTENT 2

| CONTENT 2
EXPANDED

LABEL 3 COLLAPSED

ANIMATING CONTENT WITH SHOW, HIDE, AND TOGGLE

jQuery's .show(), .hide(), and
.toggle() methods animate the
showing and hiding of elements.

jQuery calculates the size of the
box, including its content, and
any margins and padding. This
helps if you do not know what
content appears in a box.

(To use CSS animation, you
would need to calculate the box's
height, margin and padding.)

I BOX HEIGHT il

@ MARGIN @ BORDER @ PADDING

.toggle() saves you writing
conditional code to tell whether
the box is already being shown
or not. (If a box is shown, it hides
it, and if hidden, it will show it.)

When the page loads, CSS rules
are used to hide the panels.

Clicking a label prompts the
hidden panel that follows it to
animate and reveal its full height.
This is done using jQuery.

Clicking on the label again would
hide the panel.

The three methods are all
shorthand for the animate()
method. For example, the
show() method is shorthand for:

$('.accordion-panel')
.animate({
height: 'show',
paddingTop: 'show',
paddingBottom: 'show',
marginTop: 'show',
marginBottom: 'show'

CONTENT PANELS

CREATING AN ACCORDION

Below you can see a diagram, rather like a flowchart.

These diagrams have two purposes. They help you:

i) Follow the code samples; the numbers on the
diagram correspond with the steps on the right,
and the script on the right-hand page. Together, the
diagrams, steps, and comments in the code should
help you understand how each example works.

ii) Learn how to plan a script before coding it.

This is not a "formal" diagram style, but it gives you
a visual idea of what is going on with the script.
The diagrams show how a collection of small,
individual instructions achieve a larger goal, and

if you follow the arrows you can see how the data
flows around the parts of the script.

o Event: click on tab
|

ANONYMOUS FUNCTION:
Shows/hides the corresponding panel

(2] Prevent default action of button
|
Get button user clicked on
|
(4] Get accordion panel after that button

&
1
e Is panel being
animated?
(6] ? Is panel visible? ?

]]
Show panel

Hide panel

Some programmers use Unified Modeling Language
or class diagrams - but they have a steeper learning
curve, and these flowcharts are here to help you see
how the interpreter moves through the script,

CONTENT PANELS

Now let's take a look at how the diagram is
translated into code. The steps below correspond
to the numbers next to the JavaScript code on the
right-hand page and the diagram on the left.

1. A jQuery collection is created to hold elements
whose class attribute has a value of accordion.

In the HTML you can see that this corresponds to
the unordered list element (there could be several
lists on the page, each acting as an accordion).

An event listener waits for the user to click on one
of the buttons whose class attribute has a value of
accordion-control. This triggers an anonymous
function.

2. The preventDefault () method prevents
browsers treating the the button like a submit
button. It can be a good idea to use the
preventDefault() method early in a function so
that anyone looking at your code knows that the
form element or link does not do what they might
expect it to.

3. Another jQuery selection is made using the
this keyword, which refers to the element the user
clicked upon. Three jQuery methods are applied to
that jQuery selection holding the element the user
clicked on.

4, .next('.accordion-panel') selects the next
element with a class of accordion-panel.

5..not(':animated') checks that it is not in the
middle of being animated. (If the user repeatedly
clicks the same label, this stops the .s1ideToggle()
method from queuing multiple animations.)

6. .slideToggle() will show the panel if it is
currently hidden and will hide the panel if it is
currently visible.

cll/accordion.html

<ul class="accordion">

<button class="accordion-control">Classics</button>
<div class="accordion-panel">Panel content goes here...</div>
</1i>
<li=
<button class="accordion-control">The Flower Series</button>
<div class="accordion-panel">Panel content goes here...</div>
q/]ib
= -2
<button class="accordion-control">Salt 0' the Sea</button>
<div class="accordion-panel">Panel content goes here...</div>
</1i>

CSS cll/css/accordion.css

.accordion-panel {
display: none;}

JAVASCRIPT cll/js/accordion.js

(@ $('.accordion').on('click', '.accordion-control', function(e){ // When clicked

(@ e.preventDefault(); // Prevent default action of button

® $(this) // Get the element the user clicked on

D) .next('.accordion-panel"') // Select following panel

® .not(':animated"') // If it is not currently animating

® .slideToggle(); // Use slide toggle to show or hide it
})s

Note how steps 4, 5, and 6 are chained off the same jQuery selection.
You saw a screenshot of the accordion example on p492, at the start of this section.

CONTENT PANELS

TABBED PANEL

When you click on one of the tabs, its corresponding panel is shown.
Tabbed panels look a little like index cards.

You should be able to see all of
the tabs, but:

MARSHMALLOWS

@ Only one tab should look

active. DESCRIPTION
Take your tastebuds for a gentle stroll through an English garden filled with Monsieur
& Oniy the pane[that Pigeon's beautifully fragrant Flower Series marshmallows. With three sweetly floral
" options: Elderberry, Rose Petal, and Chrysanthemum - all edible and all naturalty
corresponds to the active tab flavored - they will have you dreaming of butterflies and g1 no time.

should be shown (all other
panels should be hidden).

The tabs are typically created
using an unordered list. Each
<1i>element represents a tab
and within each tab is a link. Other tabs scripts include Tabslet and Tabulous.
They are also included in jQuery Ul and Bootstrap.

The panels follow the unordered
list that holds the tabs, and each
panel is stored in a <div>,

To associate the tab to the panel:

@® The link in the tab, like all
links, has an href attribute.

® The panel has an id attribute.
Both attributes share the same
value. (This is the same principle

as creating a link to another
location within an HTML page.)

CONTENT PANELS

FIRST TAB SELECTED When the page loads, CSS is

used to make the tabs sit next to
TA8 3 —=FRS-IMEEE R each other and to indicate which

one is considered active.

CONTENT CSS also hides the panels, except
CONTENT PANEL 1 — PANEL1 for the one that corresponds
SHOWING with the active tab.

When the user clicks on the

link inside a tab, the script uses
jQuery to get the value of the

" href attribute from the link. This

PANEL 2 HIDDEN
PANEL 3 HIDDEN

SECOND TAB SELECTED

corresponds to the id attribute
TAB1 PR — A5 2 HIGHLIGHTED s
PANEL 1 HIDDEN shown.

1

The script then updates the
CONTENT values in the class attribute
CONTENTRANEL £ [~ FANEL 2 on that tab and panel, adding a
SHOWING :
value of active. It also removes
that value from the tab and panel
that had previously been active.

PANEL 3 HIDDEN

If the user does not have
JavaScript enabled, the link in
the tab takes the user to the
appropriate part of the page.

CONTENT PANELS

498

CREATING TAB PANELS

(1] Select all sets of tabs on page

-

LOOP THROUGH EACH SET OF TABS

-

ANONYMOUS FUNCTION:
Setup this group of tabs

Create variables:

$this: current list

(2] $tab: currently active tab

$1ink: link element in active tab
$panel: value of href attribute on link

“

i
o Event: click on tab control
|

ANONYMOUS FUNCTION
Show this tab and hide others

o Prevent default action of link
|
Create variables:
$1ink: jQuery object containing link
id: value of href attribute from tab
'S user just clicked
<

o Is this item
active?

Remove active from class on tab
(5) |
Remove active from class on panel
I
o Set tab user clicked on as active
|

Set corresponding panel as active

+

I
Update $panel & $tab variables

L GO TO NEXT SET OF TABS —J

CONTENT PANELS

The flowchart shows the steps that are involved

in creating tabs when they are found in the HTML.
Below, you can see how these steps can be
translated into code:

1. A jQuery selection picks all sets of tabs within
the page. The .each() method calls an anonymous
function that is run for each set of tabs (like a loop).
The code in the anonymous function deals with

one set of tabs at a time, and the steps would be
repeated for each set of tabs on the page.

2. Four variables hold details of the active tab:

i) $this holds the current set of tabs.

i) $tab holds the currently active tab.

The .find() method selects the active tab.

iii) $11nk holds the <a> element within that tab.

iv) $panel holds the value of the href attribute for
the active tab (this variable will be used to hide the
panel if the user selects a different one).

3. An event listener is set up to check for when the
user clicks on any tab within that list. When they do,
it runs another anonymous function.

4. e.preventDefault() prevents the link that users
clicked upon taking them to that page.

5. Creates a variable called $11nk to hold the current
link inside a jQuery object.

6. Creates a variable called id to hold the value of
the href attribute from the tab that was clicked. It is
called id because it is used to select the matching
content panel (using its id attribute).

7. An if statement checks whether the id variable
contains a value, and the current item is not active.
If both conditions are met:

8. The previously active tab and panel have the
class of active removed (which deactivates the tab
and hides the panel).

9. The tab that was clicked on and its corresponding
panel both have active added to their class
attributes (which makes the tab look active and
displays its corresponding panel, which was hidden).
At the same time, references to these elements are
stored in the $panel and $tab variables.

HTML c11/tabs.html

<ul class="tab-list">
<1i class="active">Description</1i>
Ingredients</1i>
Delivery</1i>

-:/u'|>

<div class="tab-panel active" id="tab-1">Content 1...</div>

<div class="tab-panel" id="tab-2">Content 2...</div>

<div class="tab-panel" id="tab-3">Content 3...</div>

CcSS cll/css/tabs.css

.tab-panel {
display: none;}
.tab-panel.active {
display: block;}

JAVASCRIPT c11/js/tabs.js

@ $('.tab-list').each(function(){ // Find lists of tabs
var $this = $(this); // Store this list
var $tab = $this.find('1i.active'); - // Get the active list item
var $1ink = $tab.find('a'); // Get link from active tab
var $panel = $($1ink.attr('href')); // Get active panel
® $this.on('click', '.tab-control', function(e) { // When click on a tab
@ e.preventDefault(); // Prevent link behavior
® var $1ink = $(this); // Store the current Tink
® var id = this.hash; // Get href of clicked tab
@ if (id && !$1ink.is('.active')) { // If not currently active
® $panel.removeClass('active'); // Make panel inactive
$tab.removeClass('active'); // Make tab inactive
$panel = $(id).addClass('active'); // Make new panel active
$tab = $link.parent().addClass('active'); // Make new tab active
}
s
s

CONTENT PANELS @

MODAL WINDOW

A modal window is any type of content that appears "in front of" the rest
of the page's content. It must be "closed" before the rest of the page can
be interacted with.

In this example, a modal window
is created when the user clicks
on the heart button in the top
left-hand corner of the page.

The modal window opens in
the center of the page, allowing
users to share the page on social

- > e, e
networks. ,F Yt ik o

Moasipvn Picion

Try our latest sweel) ®itw Yo om

The content for the modal SALTED CARAMEL &
window will typically sit within
the page, but it is hidden when
the page loads using CSS.

JavaScript then takes that
content and displays it inside

<div> elements that create the Other examples of modal window scripts include Colorbox (by Jack L.
modal window on top of the Moore), Lightbox 2 (by Lokesh Dhakar), and Fancybox (by Fancy Apps).
existing page. They are also included in jQuery Ul and Bootstrap.

Sometimes modal windows

will dim out the rest of the

page behind them. They can

be designed to either appear
automatically when the page has
finished loading or they can be
triggered by the user interacting
with the page.

CONTENT PANELS

A design patternis a term
programmers use to describe a
common approach to solving a
range of programming tasks.

This script uses the module
pattern. It is a popular way to
write code that contains both
public and private logic.

<div class="modal">

Once the script has been
included in the page, other
scripts can use its public
methods: open(), close(), or
center(). But users do not need
to access the variables that
create the HTML, so they remain
private (on p505 the private
code is shown on green).

<div class="modal-content">

<button role="button" class="modal-close">close</button>

Users of this script only need to
know how the open () method
works because;

@ close() is called by an event
listener when the user clicks
on the close button.

@ center() is called by the
open() method and also by
an event listener if the user
resizes the window.

When you call the open()
method, you specify the content
that you want the modal window
to contain as a parameter (you
can also specify its width and
height if you want).

In the diagram, you can see that
the script adds the content to the
page inside <div=> elements.

Using modules to build parts of

an application has benefits:

@ |t helps organize your code.

® You can test and reuse the
individual parts of the app.

@ |t creates scope, preventing
variable /method names
clashing with other scripts.

This modal window script
creates an object (called modal),
which, in turn, provides three
new methods you can use to
create modal windows:

open() opens a modal window
close() closes the window
center() centers it on the page

Another script would be used
to call the open() method and
specify what content should
appear in the modal window.

div.modal acts as a frame
around the modal window.

div.modal-content actsas a
container for the content being
added to the page.

button.modal-close allows the
user to close the modal window.

CONTENT PANELS

CREATING MODALS

The modal script needs to do two things:

1. Create the HTML for the modal window

2. Return the modal object itself, which consists of
the open(), close(), and center() methods

Including the script in the HTML page does not have
any visible effect (rather like including jQuery in your
page does not affect the appearance of the page).

But it does allow any other script you write to use the
functionality of the modal object and call its open()
method to create a modal window (just like including
jQuery script includes the jQuery object in your
page and allows you to use its methods).

This means that people who use the script only need

to know how to call the open() method and tell it
what they want to appear in the modal window.

In the example on the right, the modal window is
called by a script called modal-init.js. You will see
how to create the modal object and its methods on
the next double page spread, but for now consider
that including this script is the equivalent of adding
the following to your own script. It creates an object
called modal and adds three methods to the object:

var modal = {
center: function() {
// Code for center() goes here
1,
open: function(settings) {
// Code for open() goes here
by
close: function() {
// Code for close() goes here

}
S

The modal-init.js file removes the share content
from the HTML page. It then adds an event handler
to call the modal object's open() method to open

a modal window containing the content it just
removed from the page. init is short for initialize
and is commonly used in the name of files and
functions that set up a page or other part of a script.

o Create variable:
$content: part of page to appear in modal
|
Hide that part of page by detaching it

v

I
[2] Event: click on share button
I

ANONYMOUS FUNCTION:
Show content in modal window

Call open.g] method of modal object, then
© passit the Scontent variable as a parameter,
along with the modal’s width and height

CONTENT PANELS

1. First the script gets the contents of the element
that has an id attribute whose value is share-
options. Note how the jQuery .detach() method
removes this content from the page.

2. Next an event handler is set to respond to when

the user clicks on the share button. When they do,

an anonymous function is run.

3. The anonymous function uses the open() method

of the modal object. It takes parameters in the form

of an object literal:

@ content: the content to be shown in the modal
window. Here it is the content of the element
whose id attribute has a value of share-options.

@ width: the width of the modal window.

® height: the height of the modal window.

Step 1uses the .detach() method because it keeps
the elements and event handlers in memory so they
can be used again later. jQuery also has a . remove()
method but it removes the items completely.

USING THE MODAL SCRIPT

HTML c11/modal-window. html

® <div id="share-options">
<!-- This is where the message and sharing buttons go -->
</div>
<script src="js/jquery.js"></script>
@ <script src="js/modal-window.js"></script>
<script src="js/modal-init.js"></script>
</body>
</html>
In the HTML above, you should note three things: The modal-init.js file below opens the modal
1. A <div> that contains the sharing options. window. Note how the open() method is passed
2. A link to the script that creates the modal object three pieces of information in JSON format:
(modal-window. js). i) content for modal (required)
3. A link to the script that will open a modal window ii) width of modal (optional - overrides default)
using the modal object (modal-init.js), using it iii) height of modal (optional - overrides default)

to display the sharing options.

JAVASCRIPT cll/js/modal-init.js

(function(){
(@ var $content = $('#share-options').detach(); _// Remove modal from page

@ $('#share').on('click', function() { // Click handler to open modal
® modal.open({content: $content, width:340, height:300});
1); ® @
10)s
The z-index of the modal window must be very high These styles ensure the modal window sits on top of
so that it appears on top of any other content. the page (there are more styles in the full example).
CsS cl1/css/modal-window.css
.modal {

position: absolute;
z-index: 1000;}

CONTENT PANELS

MODAL OBJECT

Create HTML for modal window:
$window: the window object

o $modal: modal window element
$content: modal window content
$close: close button -
Add $content and $close to $modal

(3] Event: click on close button

ANONYMOUS FUNCTION:
Used to close the modal window

Prevent default action of link
|
Call close() function

(s FUNCTION: center() —

Center the modal window

Get height of viewport & subtract
height of modal, halve that figure to get
distance modal should be from top of
window, then do same for widths

|
o Set CSS for modal using these values

a FUNCTION: open(settings)
Show/hide the modal window

e Empty modal window & add new content
i
o Use CSS to set height & width of modal
|
Add modal window to <body>
|

(10] Center window using center()
m Event: resize on browser window ——
@ FUNCTION: close()

Close the modal window

Remove content from modal window
|
Detach modal and its event handlers

CONTENT PANELS

Below are the steps for creating the modal object.
Its methods are used to create modal windows.

1. The modal object is declared. The methods of

this object are created by an Immediately Involved
Function Expression or IIFE (see p97). (This step

is not shown in the flowchart.)

2. Store the current window object in a jQuery
selection, then create the three HTML elements
needed for the modal window. Assemble the modal
window and store it in $modal.

3. Add an event handler to the close button which
calls the modal object's close() method.

4. Following the return keyword, there is a code
block in curly braces. It creates three public methods
of the modal object. Please note: This step is not
shown in the flowchart.

5. The center() method creates two variables:

i) top: takes the height of the browser window and
subtracts the height of the modal window. This
number is divided by two, giving the distance of the
modal from the top of the browser window.

ii) 1eft: takes the width of the browser window and
subtracts the width of modal window. This number
is divided by twe, giving the distance of the modal
from the left of the browser window.

6. The jQuery .css() method uses these variables
to position the modal in the center of the page.

7. open() takes an object as a parameter; it is
referred to as settings (the data for this object was
shown on the previous page).

8. Any existing content is cleared from the modal,
and the content property of the settings object is
added to the HTML created in steps 1and 2.

9. The width and height of the modal are set using
values from the settings object. If none were given,
auto is used. Then the modal is added to the page
using the appendTo() method.

10. center() is used to center the modal window.
11. If the window is resized, call center() again.

12. close() empties the modal, detaches the HTML
from the page, and removes any event handlers.

In the code below, the lines that are highlighted in When this script has been included in a page, the

green are considered private. These lines of code center(), open(), and close() methods in steps
are only used within the object. (This code cannot be 5-12 are available on the modal object for other
accessed directly from outside the object.) scripts to use. They are referred to as public.
cl11/js/modal-window.js
(@ var modal = (function() { // Declare modal object

@

®

® ©® © 00 _©

var $window = $(window);

var $modal = $('<div class="modal"/>'); // Create markup for modal
var $content = $('<div class="modal-content"/>');

var $close = $('<button role="button" class="modal-close">close</button>');

$modal.append($content, $close); // Add close button to modal

$close.on('click', function(e) { // If user clicks on close
e.preventDefault(); // Prevent link behavior
modal.close(); // Close the modal window

1s

return { // Add code to modal
center: function() { // Define center() method

// Calculate distance from top and left of window to center the modal
var top = Math.max($window.height() - $modal.outerHeight(), 0) / 2;
var left = Math.max($window.width() - $modal.outerWidth(), 0) / 2;

$modal.css({ // Set CSS for the modal
top: top + $window.scrol1Top(), // Center vertically
left: Teft + $window.scrollLeft() // Center horizontally
1)
}!
open: function(settings) { // Define open() method
$content.empty().append(settings.content); // Set new content of modal
$modal.css({ // Set modal dimensions
width: settings.width || 'auto’, // Set width
height: settings.height || 'auto’ // Set height
}).appendTo('body'); // Add it to the page
modal.center(); // Call center() method
$(window) .on('resize', modal.center); // Call it if window resized
ks
close: function() { // Define close() method
$content.empty(); // Remove content from modal
$modal.detach(); // Remove modal from page
$(window) .of f('resize', modal.center); // Remove event handler
}
I3

10D

CONTENT PANELS

PHOTO VIEWER

The photo viewer is an example of an image gallery. When you click on a
thumbnail, the main photograph is replaced with a new image.

In this example, you can see
one main image with three
thumbnails underneath it.

The HTML for the photo viewer
consists of:

® One large <div> element that
will hold the main picture.
The images that sit in the
<div> are centered and
scaled down if necessary to
fit within the allocated area.

® A second <div> element that
holds a set of thumbnails that
show the other images you
can view. These thumbnails
sit inside links. The href
attribute on those links point
to the larger versions of their
images.

CONTENT PANELS

THE FLOWER SERIES

Tane yonus tastnbuc fora
jgezie s theough an
Engian ganden Rlied with
Morewr Pigeon's beautfulry
fragrant Mower Series

Rose PeTaL.

$5.75 / 15 oz packet

- B

Other gallery scripts include Galleria, Gallerific, and TN3Gallery.

FIRST PHOTO SELECTED

PHOTO 1

THUMBE § THUMB
2 3

SECOND PHOTO SELECTED

PHOTO 2

THUMB § THUMB

P 3

PHOTO1
SHOWING

— THUMBNAIL 1 HIGHLIGHTED

PHOTO 2

|~ SHOWING

— THUMBNAIL 2 HIGHLIGHTED

When you click on a thumbnail,
an event listener triggers an
anonymous function that:

1. Looks at the value of the href
attribute (which points to the
large image)

2. Creates a new element
to hold that image

3. Makes it invisible

4. Adds it to the big <div=
element

Once the image has loaded, a
function called crossfade()

is used to fade between the
existing image and the new one
that has been requested.

CONTENT PANELS

USING THE PHOTO ViIEVWEK

In order to use the photo viewer, The thumbnails sit in another ® class always has a value of
you create a <div>element to <div>. Each oneisin an <a> thumb and the current main
hold the main image. It is empty, element with three attributes: image has a value of active
and its id attribute has a value of @ href points to the larger @ titledescribes the image (it
photo-viewer. version of the image will be used for alt text)

cl1/photo-viewer.html HTML

<div id="photo-viewer"></div>
<div id="thumbnails">

</div>

The script comes before the
closing </body> tag. As you will
see, it simulates the user clicking
on the first thumbnail.

cll/css/photo-viewer.css CcSss

#photo-viewer {
position: relative;
height: 300px;

The <div> that holds the main overflow: hidden;)

picture uses relative positioning.
This removes the element from
normal flow, so a height for the
viewer must be specified.

#photo-viewer.is-loading:after {
content: url (images/load.gif);
position: absolute;

A top: 0;
While images are loading, a right: 0;)

class of is-1oading is added
to them (it displays an animated

#photo-viewer img {
loading gif). When the image has

position: absolute;

loaded, is-1oading is removed. max-width: 100%;
max-height: 100%;

If the images are larger than top: 50%:
the viewer the max-width and left: 50%;)
max-height properties will scale
them to fit. To center the image
within the viewer a mix of CSS
and JavaScript will be used. See
p511 for detailed explanation.

a.active {
opacity: 0.3;}

@ CONTENT PANELS

ASYNCHRONOUS LOADING
& CACHING IMAGES

This script (shown on the next page) shows two interesting techniques:
1. Dealing with asynchronous loading of content

2. Creating a custom cache object

SHOWING THE RIGHT IMAGE WHEN
LOADING IMAGES ASYNCHRONOUSLY

PROBLEM:

The larger images are only loaded into the page
when the user clicks on a thumbnail, and the script
waits for the image to fully load before displaying it.

Because larger images take longer to load, if a user

clicks on two different images in quick succession:

1. The second image could load faster than the first
one and be displayed in the browser.

2.1t would be replaced by the first image the user
clicked on when that image had loaded. This could
make users think the wrong image has loaded.

SOLUTION:

When the user clicks on a thumbnail:

® A function-level variable called src stores the
path to this image.

® A global variable called request is also updated
with the path to this image.

® Anevent handler is set to call an anonymous
function when this image has loaded.

When the image loads, the event handler checks if

the src variable (which holds the path to this image)

matches the request variable. If the user had clicked

on another image since the one that just loaded, the

request variable would no longer match the src

variable and the image should not be shown.

CACHING IMAGES THAT HAVE
ALREADY LOADED IN THE BROWSER

PROBLEM:

When the user requests a big image (by clicking on
the thumbnail), a new element is created and
added to the frame.

If the user goes back to look at an image they have
already selected, you do not want to create a new
element and load the image all over again.

SOLUTION:

A simple object is created, and it is called cache.
Every time a new element is created, it will be
added to the cache object.

That way, each time an image is requested, the code

can check if the corresponding element is
already in the cache (rather than creating it again).

CONTENT PANELS

PHOTO VIEWER SCRIPT (1)

This script introduces some new concepts, so it will
be spread over four pages. On these two pages you
see the global variables and crossfade() function.

Store In variables:

request: last image that was requested
o $current: image currently being shown

cache: object to remember loaded images

$frame: container for image

$thumbs: container for thumbnails

e FUNCTION: crossfade($img)
Fades to new image (passed as a parameter)

Is there a
e ? current image? ?
[
Stop animation

& fade out old
image
v,

e Center new image using CSS

|
(5] Fade in new image

|
(6] Store new image in $current

THE CACHE OBJECT

The idea of a cache object might sound complicated,
but all objects are just sets of key/value pairs. You
can see what the cache object might look like on

the right. When an image is requested by clicking

on a new thumbnail, a new property is added to the
cache object:

® The key added to the cache object is the path to
the image (below this is referred to as src).
Its value is another object with two properties.

@ src.$img holds a reference to a jQuery object that
contains the newly created element.

@ src.isloadingis a property indicating whether or
not it is currently loading (its value is a Boolean).

CONTENT PANELS

1. A set of global variables is created. They can

be used throughout the script - both in the
crossfade() function (on this page) and the event
handlers (on p512).

2. The crossfade () function will be called when the
user has clicked on a thumbnail. It is used to fade
between the old image and the new one.

3. An if statement checks to see if there is an image
loaded at the moment. If there is, two things happen:
the .stop() method will stop any current animation
and then . fadeOut () will fade the image out.

4, To center the image in the viewer element, you
set two CSS properties on the image. Combined
with the CSS rules you saw on p508, these CSS
properties will center the image in its container.

(See the diagrams on the bottom of p511.)

i) marginleft: gets the width of the image using the
.width() method, divides it by two, and uses that
number as a negative margin.

ii) marginTop: gets the height of the image, using the
.height () method, divides it by two, and makes that
number a negative margin.

5. If the new image is currently being animated, the
animation is stopped and the image is faded in.

6. Finally, the new image becomes the current image
and is stored in the $current variable.

var cache = {
"c11/img/photo-1.jpg": {
"$img": jQuery object,
"isLoading": false
15
"c11/img/photo-2.jpg": {
"$img": jQuery object,
"isLoading": false
}'
"c11/img/photo-3.jpg": |
"$img": jQuery object,
"isLoading": false
b
}

JAVASCRIPT

var request;
var $current;
var cache = {};

var $frame = §('#photo-viewer');

n

var $thumbs = $('.thumb');
(@ function crossfade($img) {

if ($current) {

cll/js/photo-viewer.js

// Latest image to be requested
// Image currently being shown
// Cache object

// Container for image

// Container for image

// Function to fade between images
// Pass in new image as parameter
// If there is currently an image showing

©; $current.stop().fadeOut('slow'); // Stop animation and fade it out

| 3

$img.css ({

L 133

@ marginLeft: -$img.width() / 2
marginTop: -$img.height() / 2

(B $img.stop().fadeTo('slow', 1);

® $current = $img;

CENTERING THE IMAGE

i) Centering the image involves
three steps. In the style sheet,
absolute positioning is used to
place it in the top-left corner of
the containing element.

3

// Set the CSS margins for the image
// Negative margin of half image's width
// Negative margin of half image's height

// Stop animation on new image & fade in

// New image becomes current image

:

ii) In the style sheet, the image is iii) In the script, negative margins
moved down and right by 50% of move the image up and left by
the container's width and height: half the image's width and height:
width: 800px+2 =400 px width: 500 px + 2 = 250 px
height: 500px +2 =250 px height: 400px +2 =200 px

CONTENT PANELS @

PHOTO VIEWER SCRIPT (2)

@ ® 06 00

® O

Event: click on thumbnail

-

I
Simulate user clicking on first thumbnail

=

ANONYMOUS FUNCTION

Create variables: $img: to load image, src:
path to image, request: path to latest image

Prevent default action of link
|
Update active thumbnail

-

o Is this image
in the cache?
-
Is this image
? still loading?

Call function: crossfade()

Create element & store in $img

Update cache & set isLoading to true

-

I
Event: load on new image

-

I
Add is-loading class to frame
|
Update src & alt of image

e e

| |

S T WP ST —

S HE e s

S ISTEE T S EEE

ANONYMOUS FUNCTION

Hide image
|
Remove ‘loading’ & add image
|

Update cache & set isLoading to false

k3

Is image still
latest wanted? ?

Call function: crossfade()

S —

@ CONTENT PANELS

1. The thumbnails are wrapped in links. Every time

users click on one, the anonymous function will run.

2. Three variables are created:

i) $img will be used to create new elements

that will hold the larger images when they load.

ii) src (a function-level variable) holds the path to

the new image (it was in the href attribute of the link).

iii) request (a global variable) holds the same path.

3. The link is prevented from loading the image.

4. The active class is removed from all the thumbs

and is added to the thumb that was clicked on.

5. If the image is in the cache object and it has

finished loading, the script calls crossfade().

6. If the image has not yet loaded, the script creates

a new element.

7. It is added to the cache. isLoading is set to true.

8. At this point, the image has not loaded yet (only

an empty element was created). When the

image loads, the 1o0ad event triggers a function

(which needs to be written before the image loads).

9. First, the function hides the image that just loaded.

10. It then removes the is-1o0ading class from the

frame and adds the new image to the frame.

11. In the cache object, isLoading is set to false (as

it will have loaded when this function runs).

12. An if statement checks if the image that just

loaded is the one the user last requested. To see how

this is done, look back at step 2 again:

® The src variable holds the path to the image that
just loaded. It has function-level scope.

® The request variable is updated each time the
user clicks on an image. It has global scope.

So, if the user has clicked on an image since this one,

the request and src variables will not be the same

and nothing should be done. If they do match, then:

crossfade() is called to show the image.

13. Having set all of this in place, it is time to load the

image. The is-1oading class is added to the frame.

14. Finally, by adding a value to the src attribute on

the image, the image will start to load. Its alt text is

retrieved from the tit1e attribute on the link.

15. The last line of the script simulates the user

clicking on the first thumbnail. This will load the first

image into the viewer when the script first runs.

JAVASCRIPT

cll/js/photo-viewer.js

(@ $(document).on('click', '.thumb', function(e){ // When a thumb is clicked on

var $img;
var src = this.href;
request = src;

@

e.preventDefault();

$thumbs.removeClass('active');
| $(this).addClass('active');

®

if (cache.hasOwnProperty(src)) {

®

crossfade(cache[src].$img);
|}
} else {
$img = $('');
cache[src] = {
$img: $img,
islLoading: true

Q)

L i

if (cache[src].isloading === false)

// Create local variable called $img
// Store path to image

// Store path again in request

// Stop default 1ink behavior

// Remove active from all thumbs
// Add active to clicked thumb

// If cache contains this image

{ // And if islLoading is false

// Call crossfade() function

// Otherwise it is not in cache

// Store empty element in $img
// Store this image in cache

// Add the path to the image

// Set isloading property to true

// Next few lines will run when image has loaded but are prepared first

$img.on('load', function() {
$img.hide();

// When image has loaded
// Wide it

// Remove is-loading class from frame & append new image to it
$frame.removeClass('is-loading').append($img);
cache[src].islLoading = false; // Update isLoading in cache
// If still most recently requested image then

if (request === src) {
crossfade($img);
}
D

$frame.addClass('is-1oading');

S &) ® 66 ©O®

}
1)s

// Call crossfade() function
// Solves asynchronous Toading issue

// Add is-loading class to frame

$img.attr({ // Set attributes on element
By o, // Add src attribute to load image
‘gl thisatitle: [| ¥ // Add title if one was given in link
B

// Last line runs once (when rest of script has loaded) to show the first image

@® $('.thumb').eq(0).click();

// Simulate click on first thumbnail

CONTENT PANELS @

RESPONSIVE SLIDER

A slider positions a series of items next to each other, but only shows one
at a time. The images then slide from one to the next.

This slider loads several panels,
but only shows one at a time. It
also provides buttons that allow
users to navigate between each
of the slides and a timer to move
them automatically after a set
interval.

In the HTML, the entire slider

is contained within a <div>
element whose class attribute
has value of slider-viewer. In
turn, the slider needs two further
<div> elements:

® A container for the slides.
Its class attribute has a value
of s1ide-group. Inside this
container, each individual
slide is in another <div>
element.

® A container for the buttons.
Its class attribute has a
value of s1ide-buttons. The
buttons are added by the
script.

If the HTML contains markup for
more than one slider, the script
will automatically transform all
of them into separate sliders.

@ CONTENT PANELS

THEY SAY NO TWO
MARSHMALLOWS

ARE THE SAME..

At least our ehefs at Monsleur
Pigeon do. That's because they
eraft each delicious bateh
individually by hand using
all-natural ingredients.

Other slider scripts include Unslider, Anything Slider, Nivo Slider, and
WOW Slider. Sliders are also included in jQuery Ul and Bootstrap.

When the page first loads, the CSS hides all of the
slides, which takes them out of normal flow.

The CSS then sets the display property of the first
slide b1ock to make it visible.

The script then goes through each slide and:
® Assigns an index number to that slide
® Adds a button for it under the slide group

For example, if there are four slides, when the page
first loads, the first slide will be shown by default,
and four buttons will be added underneath it.

The index numbers allow the script to identify
each individual slide. To keep track of which slide
is currently being shown, the script uses a variable
called currentIndex (holding the index number of

the current slide). When the page loads, this is 0, so

it shows the first slide. It also needs to know which
slide it is moving to, which is stored in a variable
called newS1ide.

When it comes to moving between the slides (and
creating the sliding effect), if the index number of
the new slide is higher than the index number of the
current slide, then the new slide is placed to the right
of the group. As the visible slide is animated to the
left, the new slide automatically starts to come into
view, taking its place.

If the index number of the new slide is lower than the
current index, then the new slide is placed to the left
of the current slide, and as it is animated to the right,
the new slide starts to come into view.

After the animation, the hidden slides are placed
behind the one that is currently active.

CONTENT PANELS @

USING THE SEIDER

As long as you include the script within your page,
any HTML that uses the structure shown here will
get transformed into a slider.

There could be several sliders on the page and each
one will be transformed using the same script that
you see on the next double-page spread.

c11/slider.html
<div class="slide-viewer">
<div class="slide-group">
<div class="slide slide-1"><!-- slide content --></div>
<div class="slide slide-2"><!-- slide content --></div>
<div class="slide slide-3"><!-- slide content --></div>
<div class="slide slide-4"><!-- slide content --></div>
</div>
</div>
<div class="slide-buttons"></div>

The width of the s1ide-viewer is not fixed, so it
works in a responsive design. But a height does need
to be specified because the slides have an absolute
position (this removes them from the document flow
and without it they could only be Tpx tall).

cll/css/slider.css

slide-viewer |
position: relative;
overflow: hidden;
height: 300px;}

.slide-group {
width: 100%;
height: 100%;
position: relative;}

.slide {
width: 100%;
height: 100%;
display: none;
position: absolute;}

.slide:first-child {
display: block;)

CONTENT PANELS

Each slide is shown at the same width and height as
the viewer. If the content of a slide is larger than the
viewer, the overflow property on the slide-viewer
hides the parts of the slides that extend beyond the

frame. If it is smaller it is positioned to the top-left.

CSS

SLIDER SCRIPT OVERVIEW

A jQuery selector finds the sliders within the HTML markup.
An anonymous function then runs for each one to create the slider.
There are four key parts to the function.

1: SETUP

Each slider needs some variables, they are in
function-level scope so they:

@ Can have different values for each slider
@ Do not conflict with variables outside of the script

2: CHANGING SLIDE: move()

move() is used to move from one slide to another,

and to update the buttons that indicate which slide
is currently being shown. It is called when the user
clicks on a button, and by the advance() function.

3: ATIMER TO SHOW THE NEXT SLIDE
AFTER 4 SECONDS: advance()

A timer will call move() after 4 seconds.

To create a timer, JavaScript's window object has a
setTimeout () method. It executes a function after a
number of milliseconds. The timer is often assigned
to a variable, and it uses the following syntax:

var timeout = setTimeout(function, delay);

® timeout is avariable name that will be used to
identify the timer.

® function can be a named function or an
anonymous function.

@ delay is the number of milliseconds before the
function should run.

To stop the timer, call clearTimeout (). It takes one
parameter: the variable used to identify the timer:
clearTimeout (timeout);

4: PROCESSING EACH OF THE SLIDES
THAT APPEAR WITHIN A SLIDER

The code loops through each of the slides to:

® Create the slider
@ Add a button for each slide with an event handler
that calls the move () function when users clicks it

CONTENT PANELS @

SLIDER SCRIPT

LOOP THROUGH EACH SLIDER

S

ANONYMOUS FUNCTION:
Create slider for this set of markup

Store [n variables: $this: current slider,
$group: slides contalner, $s11ides: all slides,
buttonArray: buttons, currentIndex:
current slide, timeout: stores the timer

v

LOOP THROUGH EACH SLIDE

ANONYMOUS FUNCTION:
Create button for each slide

Create a button for this item

¥
]
Is this the
current slide? ?
»
]
Add class:
active
g J
s
Event: click on this radio element
¥ |
Add button to Call move()

container & array (see p520)

k-.._._ GO TO NEXT SLIDE —____..J

Call advance() function

FUNCTION: advance()
Clear and reset the timer

Call clearTimeout () & setTimeout ()

+
I
Is this the
? last slide? ?
1 1
Call move() Call move()
to next slide to first slide

3

@ CONTENT PANELS

N GO TO NEXT SLIDER ———-——-)

1. There may be several sliders on a page, so the
script starts by locking for every element whose
class attribute has a value of s1ider. For each one,
an anonymous function is run to process that slider.
2. Variables are created to hold:

i) The current slider

ii) The element that wraps around the slides

iii) All of the slides in this slider

iv) An array of buttons (one for each slide)

v) The current slide

vi) The timer

3. The move() function appears next; see p520.
Please note: This is not shown in the flowchart,

4, The advance() function creates the timer.

5. It starts by clearing the current timer. A new timer
is set and when the time has elapsed it will run an
anonymous function.

6. An if statement checks whether or not the
current slide is the last one.

If it is not the last slide then it calls move () with a
parameter that tells it to go to the next slide.
Otherwise it tells move() to go to the first slide.

7. Each slide is processed by an anonymous function.
8. A <button> element is created for each slide.

9. If the index number of that slide is the same as the
number held in the currentIndex variable, then a
class of active is added to that button.

10. An event handler is added to each button. When
clicked it calls the move () function. The slide's index
number indicates which slide to move to.

11. The buttons are then added to the button
container, and to the array of buttons.

This array is used by the move () function to indicate
which slide is currently being shown.

12. advance() is called to start the timer.

JAVASCRIPT

(D $('.slider').each(function(){

[var $this = $(this),

var $group $this.find('.slide-gr

& var $slides = $this.find('.slide'),
var buttonArray = [],

var currentIndex = 0,

var timeout;

i

// move() - The function to move th

©)
(@ function advance() {
(:}[clearTimeout (timeout);
// Start timer to run an anonymou
timeout = setTimeout (function(){
if (currentIndex < ($slides.len
move (currentIndex + 1);
} else |
move (0) ;
}
}, 4000);
]

A= s

.each($slides, function(index){

// Create a button element for th

var $bhutton = $('<button type="hu

if (index === currentIndex) {
$button.addClass('active');

}

$button.on('click', function(){
move (index) ;

}).appendTo('.sTide-buttons');

buttonArray.push($button);

13

98 000

@ advance();
1)

PROBLEM: GETTING THE RIGHT GAP
BETWEEN SLIDES USING A TIMER

Each slide should show for four seconds (before the
timer moves it on to the next slide). But if the user
clicks a button after two seconds, then the new slide
might not show for four seconds because the timer
is already counting down.

cll/js/slider.js

// For every slider
// Get the current slider

oup'), // Get the slide-group (container)
// 3Query object to hold all slides
// Create array to hold nav buttons
// Index number of current slide
// Used to store the timer

e slides goes here (see next page)

// Sets a timer between slides
// Clear timer stored in timeout
s function every 4 seconds
//
gth - 1)) { // If not the last slide
// Move to next slide
// Otherwise
// Move to the first slide

// Milliseconds timer will wait

e button

tton" class="slide-btn">•</button>');
// If index is the current item

// Add the active class

// Create event handler for the button
// 1t calls the move() function

// Add to the buttons holder

// Add it to the button array

SOLUTION: RESET THE TIMER WHENEVER A

BUTTON IS CLICKED

The advance() function clears the timer before

setting it off again. Every time the user clicks on a

button the mave() function (shown on the next two
. pages) it calls advance() to ensure the new slide is

shown for four seconds.

CONTENT PANELS

SLIDER MOVE() FUNCTION

o FUNCTION: move(index)
Slides to the image specified
. Createvariables:
© animateleft: animate from left/right
~ slideleft: position new slide to left/right
. .

o Call advance() function
4
1
Is slider moving
o OR is new image
current image?
(s} Update buttons to show which is active
Is index number
of new image > ?

K
]
? current image?
Set variable: Set variable:
slideleft: position slideleft: position
new slide to left new slide to right
| |
Set variable: Set variable:
animateleft: animateleft:
animate current animate current
slide to right slide to left
\ J
i 4
(7} Update CSS of new slide to position it
to right or left of current slide
|
e Animate current slide to position set in
variable above (this reveals new slide)
|
(o} Hide slide that just moved out of view
|
@ Position new item (left property set to 0)
|
@ Reposition all items (left property set to 0)
|
@ setScurrentIndex to index no. of new slide

CONTENT PANELS

1. The move() function will create the animated
sliding movement between two slides. When it is
called, it needs to be told which slide to move to.

2. Two variables are created that are used to control
whether the slider is moving to the left or right.

3. advance() is called to reset the timer.

4. The script checks if the slider is currently
animating or if the user selected the current slide. In
either case, nothing should be done, and the return
statement stops the rest of the code from running.

5. References to each of the buttons were stored in
an array in step 11 of the script on the previous page.
The array is used to update which button is active.

6. If the new item has a higher index number, then
the slider will need to move from right to left. If the
item has a lower index number, the slider will need
to move from left to right. These variable values are
set first and are then used in step 7.

slideLeft positions the new slide in relation to the
current slide. (100% sits the new slide to the right of
it and -100% sits the new slide to the left of it.)

animateleft indicates whether the current slide
should move to the left or the right, letting the new
slide take its place. (-100% moves the current slide to
the left, 100% moves the current slide to the right.)

7. The new slide is positioned to the right or the left
of the current slide using the value in the s1ideLeft
variable and its display property is set to block so
that it becomes visible. That new slide is identified
using newIndex, which was passed into the function.

8. The current slide is then moved to the left or right
using the value stored in the animateLeft variable.
That slide is selected using the currentIndex
variable, which was defined at the start of the script.

JAVASCRIPT

// Setup of the script shown on the previous page

cll/js/slider.js

(@) function move(newIndex) {
® var animatelLeft, slideleft;

// Creates the slide from old to new one
// Declare variables

® advance();

// When slide moves, call advance() again

// If current slide is showing or a slide is animating, then do nothing
if ($group.is(':animated') || currentIndex === newlndex) {

@) return;
. 3

e buttonArray[currentIndex].removeClass('active'); // Remove class from item
buttonArray[newIndex] .addClass('active'); // Add class to new item

if (newIndex > currentIndex) {
slideleft = '100%"';
animatelLeft = '-100%';

else {

slidelLeft = '-100%';
animateleft = '100%';

// 1f new item > current

// Sit the new slide to the right

// Animate the current group to the left
// Otherwise

// Sit the new slide to the left

// Animate the current group to the right

[

®

L }
// Position new slide to left (if less) or right (if more) of current
$slides.eq(newIndex).css({left: slideleft, display: 'block'});
$group.animate({left: animateLeft} , function() { // Animate slides and
$slides.eqg(currentIndex).css({display: 'none'}); // Hide previous slide
$slides.eg(newIndex).css({left: 0}); // Set position of the new item
$group.css({left: 0}); // Set position of group of slides
currentIndex = newIndex; // Set currentIndex to new image
35
}

PEEO®R

// Handling the slides shown on p519

Once the slide has finished animating, an
anonymous function performs housekeeping tasks:

9. The slide that was the currentIndex is hidden.

10. The position of the left-hand side of the new slide
is set to 0 (left-aligning it).

11. The position of all of the other slides is set so the
left-hand side is 0 (left-aligning them).

12. At this point, the new slide will be visible, and
the transition is complete, so it is time to update the
currentIndex variable to hold the index number

of the slide that has just been shown. This is easily
done by giving it the value that was stored in the
newIndex variable.

Now that this function has been defined, as you saw
on the p519, the code creates a timer and goes
through each slide adding a button and an event

- handler for it. (Steps 4-12 on the page p519.)

CONTENT PANELS @

CREATING A
JQUERY PLUGIN

jQuery plugins allow you to add new methods
to jQuery without customizing the library itself.

jQuery plugins have benefits over plain scripts: You can turn any function into a plugin if it:

® You can perform the same task on any elements ® Manipulates a jQuery selection
that match jQuery's flexible selector syntax ® Canreturn a jQuery selection

® Once the plugin has done its job, you can chain
other methods after it (on the same selection) The basic concept is that you:

® They facilitate re-use of code (either within one ® Passit a set of DOM elements in a jQuery
project or across multiple projects) selection

® They are commonly shared within the JavaScript ® Manipulate the DOM elements using the jQuery
and jQuery community plugin code

® Namespace collisions (problems when two ® Return the jQuery object so that other functions
scripts use the same variable name) are can be chained off it

prevented by placing the script is placed in an IIFE
(immediately invoked function expression, which

you met on p97)
This final example shows you The earlier version applied to all Here a jQuery selection is made
how to create a jQuery plugin. matching markup on the page; collecting elements with a class
It takes the accordion example the plugin version requires that of menu. The .accordion()
you saw at the start of the users call the accordion() method is called; once that has
chapter and turns it into a plugin. method on a jQuery selection. run, . fadeIn() is called.

$('.menu').accordion(500).fadeIn();

1. A jQuery selection is made 2. The .accordion() method 3. The .fadeIn() methodis
containing any elements which is called on those elements. It applied to the same selection of
have the class of menu. has one parameter; the speed of elements once .accordion()

animation (in milliseconds). has done its job.

@ CONTENT PANELS

BASIC PLUGIN STRUCTURE

1) ADDING A METHOD TO JQUERY

jQuery has an object called . fn
which helps you extend the
functionality of jQuery.

Plugins are written as methods

that are added to the . fn object.

$.fn.accordion = function(speed) {

// Plugin will go here
}

Parameters that can be passed
to the function are placed inside
the parentheses on the first line:

2) RETURNING THE JQUERY SELECTION TO CHAIN METHODS

jQuery works by collecting a set
of elements and storing them

in a jQuery object. The jQuery
object's methods can be used to
alter the selected elements.

Because jQuery lets you chain
multiple methods to the same
selection, once the plugin has
done its job it should return the
selection for the next method.

$.fn.accordion = function(speed) {

// Plugin will go here
return this;

}

3) PROTECTING THE NAMESPACE

jQuery is not the only JavaScript
library to use $ as a shorthand,
so the plugin code lives in an
IIFE, which creates function-level
scope for the code in the plugin.

(function($){

On the first line below, the |IFE
has one named parameter: $. On
the last line, you can see that the
JQuery selection is passed into
the function.

$.fn.accordion = function(speed) {

// Plugin code will go here

}
}) (iQuery);

If you want to pass in more

values, it is typically done using a

single parameter called options.

When the function is called, the
options parameter contains an
object literal.

The selection is returned using:
1. The return keyword (sends a
value back from a function)
2. this (refers to the selection

that was passed in)

Inside the plugin, $ acts like a
variable name. It references the
JQuery object containing the set
of elements that the plugin is
supposed to be working with.

The object can contain a set of
key/value pairs for the different
options.

CONTENT PANELS

THE ACCORDION PLUGIN

e A

IIFE:
Pass in the jQuery selection ($)

0o

FUNCTION: accordion()
Created on fn object

Event: click on tab
s

ANONYMOUS FUNCTION:
Shows/hides corresponding panel

]

Prevent default action of button |
|
Get button user clicked on
|
Get corresponding panel

+

000 O

Is panel being
animated?

©

4 4
Lﬁ
(8] ? Is panel visible? ?

Show panel

e O T

Hide panel

L T ST

e Return jQuery object

e A

LIRS

To use the plugin, you create a jQuery selection that
contains any elements that hold an accordion.
In the example on the right, the accordionisin a
 element that has a class name of menu (but
you could use any name you wish). You then call the
.accordion() method on that selection, like so:

$('.menu').accordion(500);

This code could be placed in the HTML document
(as shown on the right-hand page), but it would
be better placed in a separate JavaScript file that
runs when the page loads (to keep the JavaScript
separate from the HTML).

CONTENT PANELS

You can see the full code for the accordion plugin
on the right. The parts in orange are identical to the
accordion script at the start of the chapter.

1. The plugin is wrapped in an IIFE to create function-
level scope. On the first line, the function is given
one named parameter: $ (which means you can use
the $ shortcut for jQuery in the function).

10. On the last line of code, the jQuery object is
passed into the function (using its full name jQuery
rather than its shortcut $). This jQuery object
contains the selection of elements that the plugin is
working with. Together, points 1and 10 mean that in
the IIFE, $ refers to the jQuery object and it will not
be affected if other scripts use $ as a shorthand, too.

2. Inside the IIFE, the new .accordion() method is
created by extending the fn object. It takes the one !
parameter of speed.

3. The this keyword refers to the jQuery selection
that was passed into the plugin. It is used to create
an event handler that will listen for when the user
clicks on an element with a class attribute whose
value is accordien-control. When the user does,
the anonymous function runs to animate the
corresponding panel into or out of view.

4. The default action of the link is prevented.

5. In the anonymous function, $(this) refersto a
jQuery object containing the element that the user
clicked upon.

6. 7. 8. The only difference between this anonymous
function and the one used in the example at the start
of the chapter is that the .s1ideToggle() method
takes a parameter of speed to indicate how fast the
panel should be shown or hidden. (It is specified
when the .accordion() method is called.)

9. When the anonymous function has done its work, ;
the jQuery object containing the selected elements
is returned from the function, allowing the same set
of elements to be passed to another jQuery method.

cll/js/accordion-plugin.js

(@ (function($){ // Use § as variable name
@ $.fn.accordion = function(speed) { // Return the jQuery selection
® this.on('click', '.accordion-control', function(e){
@ e.preventDefault();
® $(this)
® .next('.accordion-panel’)
@ .not(':animated")
.slideToggle(speed);
s
® return this; // Return the jQuery selection
}
@ })(jQuery); // Pass in jQuery object
Note how the filename for After the accordion plugin Below you can see the HTML
the jQuery plugin starts with script has been included, the for the accordion. This time it
Jjquery. to indicate that this accordion() method can be includes both the jQuery script
script relies upon jQuery. used on any jQuery selection. and the jQuery accordion script.

cll/accordion-plugin.html

<ul class="menu">
<]i>
<h3>Classics</h3>
<div class="accordion-panel">If you like your flavors traditional...</div>

<h3>The Flower Series</h3>
<div class="accordion-panel">Take your tastebuds for a gentle...</div>
</1i>
<]i>
<h3>Salt o' the Sea</h3>
<div class="accordion-panel">Ahoy! If you long for a taste of...</div>
</]i>
(/u])
<script src="js/jquery.js"></script>
<script src="js/jquery.accordion.js"></script>
<script>
$('.menu').accordion(500);
</script>

CONTENT PANELS @

SUMMARY

CONTENT PANELS

CONTENT PANELS

If your pages contain a lot of data, there are tree techniques
that you can use to help your users to find the content they

are looking for.

FILTERING

Filtering lets you reduce a
set of values, by selecting
the ones that meet stated
criteria.

SEARCH

Search lets you show the
items that match one

or more words the user
specifies.

SORTING

Sorting lets you reorder a
set of items on the page
based on criteria (for
example, alphabetically).

Before you get to see how to deal with filtering, searching, and sorting, it is important to
consider how you are going to store the data that you are working with. In this chapter many
of the examples will use arrays to hold data stored in objects using literal notation.

@ FILTERING, SEARCHING & SORTING

F!L.TE'RTG, SEARCHING & SORTING (529

JAVASCRIPT ARRAY
METHODS

An array is a kind of object. All arrays have the methods listed below;
their property names are index numbers. You will often see arrays used
to store complex data (including other objects).

Each item in an array is sometimes called an element. It does not mean that the array holds HTML elements;
element is just the name given to the pieces of information in the array. *Note some methods only work in I[E9+,

ADDING ITEMS push() Adds one or more items to end of array and returns number of items in it
unshift() Adds one or more items to start of array and returns new length of it
REMOVING ITEMS pop() Remaoves last element from array (and returns the element)
stn ft() Removes first element from array (and returns the element)
ITERATING forEach() Executes a function once for each element in array*
some() Checks if some elements in array pass_a test specified by a function*
every() .‘.e.r‘;ecks if all elements EH"array pass a test specified by a function*
COMBINING concat() Creates new array containing this array and other arrays/values
FILTERING filter() Creates new array with elements that pass a test specified by a function*
REORDERING sort() Reorders items in array using a function (called a compare function)
reverse() Reve;;;.; order of items in array
MODIFYING map() Calls a function on each element in array & creates new array with results

@ FILTERING, SEARCHING & SORTING

JQUERY METHODS FOR
FILTERING & SORTING

jQuery collections are array-like objects representing DOM elements.
They have similar methods to an array for modifying the elements.
You can use other jQuery methods on the selection once they have run.

In addition to the jQuery methods shown below, you may see animation methods chained after filtering and
sorting methods to create animated transitions as the user makes a selection.

ADDING OR .add() Adds elements to a set of matched elements

COMBINING

ITEMS

REMOVING ITEMS .not() Removes elements from a set of matched elements

ITERATING .each() Applies same function to each element in matched set

FILTERING .filter() Reduces number of elements in matched set to those that either match

a selector or pass a test specified by a function

CONVERTING .toArray() Converts ajQuery collection to an array of DOM elements, enabling the
use of the array methods shown on the left-hand page

FILTERING, SEARCHING & SORTING @

SUPPORTING OLDER

BROWSERS

Older browsers do not support the latest methods of the Array object.
But a script called the ECMAScript 5 Shim can reproduce these methods.
ECMAScript is the standard that modern JavaScript is based upon.

A BRIEF HISTORY OF JAVASCRIPT

1996 Jan
Feb
Mar - Netscape Navigator 2 contains the
Apr first version of JavaScript written
May by Brendan Eich
Jun
Jul
Aug - Microsoft created a compatible
Sep scripting language called JScript
Oct
Nov - Netscape gave JavaScript to the

Dec ECMA standards body so that its
development could be standardized

1997 Jan
Feb
Mar
Apr
May
Jun .. ECMAScript 1 was released
Jul
Aug
Sep
Nov
Dec

2014 May - Time of writing: ECMAScript 6 is
close to being finalized

@ FILTERING, SEARCHING & SORTING

ECMAScript is the official name for the standardized
version of JavaScript, although most people still call
it JavaScript unless they are discussing new features.

ECMA International is a standards body that looks
after the language, just like the W3C looks after
HTML and CSS. And, browser manufacturers often
add features beyond the ECMA specs (just as they
do with HTML & CSS).

In the same way that the latest features from the
HTML and CSS specifications are only supported
in the most recent browsers, so the latest features
of ECMAScript are only found in recent browsers.
This will not affect much of what you have learned
in this book (and jQuery helps iron out issues with
backwards compatibility), but it is worth noting for
the techniques you meet in this chapter.

The following methods of the Array object were
all introduced in ECMAScript version 5, and they
are not supported by Internet Explorer 8 (or older):
forEach(), some(), every(), filter(), map().

For these methods to work in older browsers

you include the ECMAScript 5 Shim, a script that
reproduces their functionality for legacy browsers:
https://github.com/es-shims/es5-shim

ARRAYS VS. OBJECTS
CHOOSING THE BEST
DATA STRUCTURE

In order to represent complex data you might need several objects.
Groups of objects can be stored in arrays or as properties of other objects.
When deciding which approach to use, consider how you will use the data.

OBJECTS IN AN ARRAY

When the order of the objects is important, they
should be stored in an array because each item in
an array is given an index number. (Key-value pairs
in objects are not ordered.) But note that the index
number can change if objects are added/removed.
Arrays also have properties and methods that help
when working with a sequence of items, e.g.,

@ The sort() method reorders items in an array.

® The length property counts the number of items.

var people = [
{name: 'Casey', rate: 70, active: true},
{name: 'Camille', rate: 80, active: true},
{name: 'Gordon', rate: 75, active: false},
{name: 'Nigel', rate: 120, active: true}

]

To retrieve data from an array of objects, you can
use the index number for the object:

// This retrieves Camille's name and rate
person[1].name;

person[1].rate;

To add/remove objects in an array you use array
methods.

To iterate over the items in an array you can use
forEach().

OBJECTS AS PROPERTIES

When you want to access objects using their name,
they work well as properties of another object
(because you would not need to iterate through all
objects to find that object as you would in an array).

But note that each property must have a unique
name. For example, you could not have two
properties both called Casey or Cami11e within the
same object in the following code.

var people = {
Casey = {rate: 70, active: true},
Camille = {rate: 80, active: true},
Gordon = {rate: 75, active: false},
Nigel = {rate: 120, active: true}

J

To retrieve data from an object stored as a property
of another object, you can the object's name:

// This retrieves Casey's rate
people.Casey.rate;

To add/remove objects to an object you can use the
delete keyword or set it to a blank string.

To iterate over child objects you can use
Object.keys.

FILTERING, SEARCHING & SORTING @

FILTERING

Filtering lets you reduce a set of values.
It allows you to create a subset of data that meets certain criteria.

To look at filtering, we will start with data about The data will be filtered before it is displayed. To do
freelancers and their hourly rate. Each person is this we will loop through the objects that represent
represented by an object literal (in curly braces). each person. If their rate is more than $65 and less
The group of objects is held in an array: than $90, they are put in a new array called results.

var people = [

{ LOOP THROUGH EACH PERSON
name: 'Casey’',
rate: 60 T

, £

{
name: 'Camille’, ? Is rate >= 652
rate: 80 |

: ? Is rate <= 90? ?
name: 'Gordon', :

rate: 75
} » ;_J I
{) Add person to results array
name: 'Nigel',
rate: 1,'20g GO TO NEXT PERSON Q
}
1;
NAME HOURLY RATE ($)
Camille 80
Gordon 75

@ FILTERING, SEARCHING & SORTING

DISPLAYING THE ARRAY

On the next two pages, you will see two different
approaches to filtering the data in the people array,
both of which involve using methods of the Array
object: .forEach() and .filter().

Both methods will be used to go through the data in
the people array, find the ones who charge between
$65 and $90 per hour and then add those people to
a new array called results.

Once the new results array has been created, a for

loop will go through it adding the people to an HTML
table (the result is shown on the left-hand page).

@ $(function() {
@

Below, you can see the code that displays the data
about the people who end up in the results array:
1. The entire example runs when the DOM is ready.
2. The data about people and their rates is included
in the page (this data is shown on left-hand page).
3. A function will filter the data in the people array
and create a new array called results (next page).
4. A <tbody> element is created.

5. A for loop goes through the array and uses
jQuery to create a new table row for each person
and their hourly rate.

6. The new content is added to the page after the
table heading.

cl2/js/filter-foreach.js + cl2/js/filter-filter.js

// DATA ABOUT PEOPLE GOES HERE (shown on left-hand page)

(3 // FILTERING CODE (see p537) GOES HERE - CREATES A NEW ARRAY CALLED results

// LOOP THROUGH NEW ARRAY AND ADD MATCHING PEOPLE TO THE RESULTS TABLE

(@ var $tableBody = $('<tbody></tbody>'); // New content jQuery

for (var i = 0; i < results.length; i++) { // Loop through matches
var person = results[i]; // Store current person
var $row = $('<tr></tr>'); // Create a row for them
$row.append(§('<td></td>').text(person.name)); // Add their name
$row.append($('<td></td>").text(person.rate)); // Add their rate
$tableBody.append($row); // Add row to new content

®

L

// Add the new content after the body of the page
® $('thead').after($tableBody);

1

// Add tbody after thead

FILTERING, SEARCHING & SORTING @

USING ARRAY METHODS
TO FILTER DATA

The array object has two methods that are very useful for filtering data.
Here you can see both used to filter the same set of data.
As they filter the data, the items that pass a test are added to a new array.

The two examples on the right both start with an
array of objects (shown on p534) and use a filter

to create a new array containing a subset of those
objects. The code then loops through the new array
to show the results (as you saw on the previous page).

® The first example uses the forEach() method.
® The second example uses the filter() method.

forEach()

The forEach() method loops through the array and
applies the same function to every item in it.
forEach() is very flexible because the function can
perform any kind of processing with the items in an
array (not just filtering as shown in this example).
The anonymous function acts as a filter because

it checks if a person’s rates are within a specified
range and, if so, adds them to a new array.

1. A new array is created to hold matching results.
2. The people array uses the forEach() method to
run the same anonymous function on each object
(that represents a person) in the people array.

3. If they match the criteria, they are added to the
results array using the push() method.

FILTERING, SEARCHING & SORTING

Note how person is used as a parameter name and

acts as a variable inside the functions:

@ Inthe forEach() exampleitis used as a
parameter of the anonymous function.

® Inthe filter() exampleitis used as a parameter
of the priceRange() function.

It corresponds to the current object from the people

array and is used to access that object's properties.

filter()

The filter() method also applies the same
function to each item in the array, but that function
only returns true or false. If it returns true, the
filter() method adds that item to a new array.

The syntax is slightly simpler than forEach(), but is
only meant to be used to filter data.

1. A function called priceRange() is declared; it

will return true if the person's wages are within the
specified range.

2. A new array is created to hold matching resuilts.

3. The filter() method applies the priceRange()
function to each item in the array. If priceRange()
returns true, that item is added to the results array.

STATIC FILTERING OF DATA

JAVASCRIPT cl2/js/filter-foreach.js

$(function() {
// DATA ABOUT PEOPLE GOES HERE (shown on p534)

// CHECKS EACH PERSON AND ADDS THOSE IN RANGE TO ARRAY

(@ var results = []; // Array for people in range
(@ people.forEach(function(person) { // For each person
if (person.rate >= 65 && person.rate <= 90) { // Is rate in range
results.push(person); // If yes add to array
}
1)
// LOOP THROUGH RESULTS ARRAY AND ADD MATCHING PEOPLE TO THE RESULTS TABLE
B H
c12/js/filter-filter.js

$(function() {
// DATA ABOUT PEOPLE GOES HERE (shown on p534)

ff THE FUNCTION ACTS AS A FILTER

(:}{ function priceRange(person) { // Declare priceRange()
@

®

return (person.rate >= 65) &% (person.rate <= 90); // In range returns true
}s
// FILTER THE PEOPLE ARRAY & ADD MATCHES TO THE RESULTS ARRAY
var results = []; // Array for matching people
results = people.filter(priceRange); // filter() calls priceRange()

// LOOP THROUGH RESULTS ARRAY AND ADD MATCHING PEOPLE TO THE RESULTS TABLE
1)s

The code that you saw on the p535 to show the table results could live in the . forEach() method, but it is
separated out here to illustrate the different approaches to filtering and how they can create new arrays.

FILTERING, SEARCHING & SORTING @

DYNAMIC FILTERING

If you let users filter the contents of a page, you can build all of the HTML
content, and then show and hide the relevant parts as the user interacts

with the filters.

Imagine that you were going to provide the user with
a slider so that they could update the price that they
were prepared to pay per hour. That slider would
automatically update the contents of the table based
upon the price range the user had specified.

If you built 2 new table every time the user interacts
with the slider (like the previous two examples that
showed filtering), it would involve creating and
deleting a lot of elements. Too much of this type of
DOM manipulation can slow down your scripts.

A far more efficient solution would be to:
1. Create a table row for every person.

2. Show the rows for the people that are within the
specified range, and hide the rows that are outside
the specified bounds.

Below, the range slider used is a jQuery plugin called
noUiSlider (written by Léon Gerson).
http://refreshless.com/nouislider/

CreativeFolk find talented people for your creative projects

Min: 65

NAME
Camille

Gordon

FILTERING, SEARCHING & SORTING

HOURLY RATE ($)
80
75

Before you see the code for this example, take a
moment to think about how to approach this script...
Here are the tasks that the script needs to perform:

i) It needs to go through each object in the array and
create a row for that person.

ii) Once the rows have been created, they need to be

added to the table.

iii) Each row needs to be shown / hidden depending
on whether that person is within the price range
shown on the slider. (This task happens each time
the slider is updated.)

In order to decide which rows to show / hide, the
code needs to cross-reference between:

® The person object in the people array
(to check how much that person charges)

® The row that corresponds to that person in the
table (which needs to be made visible or hidden)

To build this cross-reference we can create a new
array called rows. It will hold a series of objects with
two properties:

@ person: a reference to the object for this person
in the people array

® $element: ajQuery collection containing the
corresponding row in the table

In the code, we create a function to represent each
of the tasks identified on the left. The new cross-
reference array will be created in the first function:

makeRows () will create a row in the table for each
person and add the new object into the rows array

appendRows () loops through the rows array and
adds each of the rows to the table

update() will determine which rows are shown or
hidden based on data taken from the slider

In addition, we will add a fourth function: init()
This function contains all of the information that
needs to run when the page first loads (including
creating the slider using the plugin).

init is short for initialize; you will often see
programmers using this name for functions or
scripts that run when the page first loads.

Before looking at the script in detail, the next two
pages are going to explain a little more about the

rows array and how it creates the cross-reference
between the objects and the rows that represent

each person.

FILTERING, SEARCHING & SORTING

STORING REFERENCES TO
OBJECTS & DOM NODES

The rows array contains objects with two properties, which associate:
1: References to the objects that represent people in the people array
2: References to the row for those people in the table (jQuery collections)

You have seen examples in this book where ROWS ARRAY

variables were used to store a reference to a DOM
node or jQuery selection (rather than making the
same selection twice). This is known as caching. INDEX: OBJECT:

This example takes that idea further: as the code : person | people[0]
loops through each object in the people array ‘
creating a row in the table for that person, it also
creates a new object for that person and adds it
to an array called rows. Its purpose is to create an
association between:

$element i <tr>

person people[1]

$element { <tr>
@ The object for that person in the source data
® The row for that person in the table

person | people[2] |

When deciding which rows to show, the code can P4 | ¢element P <t
then loop through this new array checking the -
person's rate. If they are affordable, it can show the
row. If not, it can hide the row. : person people[3]

$element <tr>

This takes less resources than recreating the
contents of the table when the user changes the
rate they are willing to pay.

On the right, you can see the Array object's push() rows.push({

method creates a new entry in the rows array. The person: this, // person object
entry is an object literal, and it stores the person $element: $row // jQuery collection
object and the row being created for it in the table. 1)

FILTERING, SEARCHING & SORTING

PEOPLE ARRAY

INDEX: OBJECT:

HTML TABLE

i Camille

i 80

I i Gordon

P 75

The people array already holds information about
each person and the rates that they charge, so the
object in the rows array only needs to point to the

original object for that person (it does not copy it).

A“[g

r 4
‘ﬂ-m
Skl
)
gy

A jQuery object was used to create each row of
the table. The objects in the rows array store a
reference to each individual row of the table.
There is no need to select or create the row again.

FILTERING, SEARCHING & SORTING

DYNAMIC FILTERING

1. Place the script in an lIFE (not shown in flowchart).
The IIFE starts with the people array.

2. Next, four global variables are created as they are
used throughout the script:

rows holds the cross-referencing array .

$min holds the input to show the minimum rate.
$max holds the input to show the maximum rate.
$table holds the table for the results.

3. makeRows () loops through each person in the
people array calling an anonymous function for each
object in the array. Note how person is used as a
parameter name. This means that within the function,
person refers to the current object in the array.

4, For each person, a new jQuery object called $row
is created containing a <tr> element.

5. The person's name and rate are added in <td>s.

6. A new object with two properties is added to the
rows array: person stores a reference to their object,
$element stores a reference to their <tr> element.

7. appendRows () creates a new jQuery object called
$tbody containing a <tbody> element.

8. It then loops through all of the objects in the rows
array and adds their <tr>element to $thody.

9. The new $tbody selection is added to the <table>,

10. update() goes through each of the objects in
the rows array and checks if the rate that the person
charges is more than the minimum and less than the
maximum rate shown on the slider.

1. If it is, jQuery's show() method shows the row.
12. If not, jQuery's hide() method hides the row.

13. init() starts by creating the slide control.

14. Every time the slider is changed, the update()
function is called again.

15. Once the slider has been set up, the makeRows (),
appendRows (), update() functions are called.

16. The init() function is called (which will in turn
call the other code).

FILTERING, SEARCHING & SORTING

Create variables:

o rows: an array linking people with rows
$min & $max: minimum and maximum rate inputs
$table: stores the table that holds the results

e FUNCTION: makeRows ()
Creates table rows & populates the rows array

LOOP THROUGH OBJECTS IN people ARRAY

|

ANONYMOUS FUNCTION

Create $row holds <tr> element
e Add <td>s holding name & rate

e Add new object to rows array
Add references to person & $row

~— GO TO NEXT OBJECT IN peop] e ARRAY —)

FUNCTION: appendRows () adds rows to <tbody>

@ Create <thody> to hold <tr> elements
LOOP THROUGH OBJECTS IN rows ARRAY

Add $row to $tbody element

L GO TO NEXT OBJECT IN r'ows ARRAY —"')

(5] Add <tbody> to <table>

@ FUNCTION: update() updates table contents

LOOP THROUGH OBJECTS IN Irows ARRAY

00 %

Hide row Show row

Is rate >=min
& rate <= max?

GO TO NEXT OBJECT IN rows ARRAY ——

FUNCTION: init() sets up the script

Set up slider
Call makeRows (), appendRows (), update()

Call init() when the DOM has loaded

@ 60006

FILTERING AN ARRAY

JAVASCRIPT cl2/js/dynamic-filter.js

@ (function(){ // PEOPLE ARRAY GOES HERE
[var rows = [], // rows array

o $min = $('#value-min'), // Minimum text input
$max = $('#value-max'), // Maximum text input
$table = $('#rates'); // The table that shows results

function makeRows () { // Create table rows and the array
people.forkach(function(person) { // For each person object in people

var $row = $('<tr></tr>'); // Create a row for them

$row.append($('<td></td>').text(person.name)); // Add their name
8 $row.append($('<td></td>').text(person.rate)); // Add their rate
rows.push({ // Add object to cross-references between people and rows

© ©©0

person: person, // Reference to the person object
$element: $row // Reference to row as jQuery selection
| s
I E
}
(:}[function appendRows() { // Adds rows to the table
var $tbody = $('<tbody></tbody>'); // Create <tbody> element
rows. forEach (function(row) { // For each object in the rows array
® $tbody.append(row.$element); // Add the HTML for the row
})s
® $table.append($tbody); // Add the rows to the table
1
@ function update(min, max) { // Update the table content
rows . forEach (function(row) { // For each row in the rows array
(:}[if (row.person.rate >= min && row.person.rate <= max) { // If in range
row.$element.show(); // Show the row
(:}{ } else { // Otherwise
row.$element.hide(); // Hide the row
}
1)
}
(@ function init() { // Tasks when script first runs
$('#slider').noUiSTider({ // Set up the slide control

range: [0, 150], start: [65, 90], handles: 2, margin: 20, connect: true,
serialization: { to: [$min,$max], resolution: 1 }
&) }).change(function() { update($min.val(), $max.val()); });

makeRows () ; // Create table rows and rows array
appendRows () ; // Add the rows to the table
update($min.val(), $max.val()); // Update table to show matches
}
$(init); // Call init() when DOM is ready
10)s

FILTERING, SEARCHING & SORTING

FILTERED IMAGE GALLERY

In this example, a gallery of images are tagged.
Users click on filters to show matching images.

IMAGES ARE TAGGED

In this example, a series of
photos are tagged. The tags are
stored in an HTML attribute
called data-tags on each of the
 elements. HTML5 allows
you to store any data with an
element using an attribute that
starts with the word data-. The
tags are comma-separated.
(See right-hand page)

TAGGED OBJECT

The script creates an object
called tagged. The script then
goes through each of the images
looking at its tags. Each tag

is added as a property of the
tagged object. The value of that
property is an array holding a
reference to each element
that uses that tag.

(See p546-p547)

FILTER BUTTONS

By looping through each of the
keys on the tagged object, the
buttons can automatically be
generated. The tag counts come
from the 1ength of the array.
Each button is given an event
handler. When clicked, it filters
the images and only shows those
with the tag the user selected.
(See p548-p549)

@ (3) Photographers (3) Fil

FILTERING, SEARCHING & SORTING

TAGGED IMAGES

c12/filter-tags.html

<body>

<header>
<hl>CreativeFolk</h1>

</header>

<div id="buttons"></div>

<div id="gallery">

</div>

<script src="js/jquery.js"></script>

<script src="js/filter-tags.js"></script>

</body>
On the right, you can see the tagged object for the tagged = {
HTML sample used in this example. For each new animators: [pl.jpg, p6.jpg, p9.ipgl,
tagin the images' data-tags attribute, a property designers: [p4.jpg, p6.Jipg, p8.ipgl
is created on the tagged object. Here it has five filmmakers: [p2.jpg, p3.jpg, p5.Jpgl
properties: animators, designers, filmmakers, illustrators: [pl.jpg, p9.Jjpg]
illustrators, and photographers. The value is an photographers: [p2.jpg, p3.ipg, p8.Jjpg]
array of images that use that tag. }

FILTERING, SEARCHING & SORTING

PROCESSING THE TAGS

Here you can see how the script is set up. It loops
through the images and the tagged object is given

a new property for each tag. The value of each
property is an array holding the images with that tag.

1. Place the script in an |IFE (not shown in flowchart).
2. The $imgs variable holds a jQuery selection
containing the images.

3. The $buttons variable holds a jQuery selection
holding the container for the buttons.

4. The tagged object is created.

5. Loop through each of the images stored in $imgs
using jQuery's .each() method. For each one, run
the same anonymous function:

6. Store the current image in a variable called img.

7. Store the tags from the current image in a variable
called tags. (The tags are found in the image's
data-tags attribute.)

8. If the tags variable for this image has a value:

9. Use the String object's sp1it() method to create
an array of tags (splitting them at the comma).
Chaining the . forEach() method off the sp1it()
method lets you run an anonymous function for each
of the elements in the array (in this case, each of the
tags on the current image). For each tag:

10. Check if the tag is already a property of the
tagged object.

11. If not, add it as a new property whose value is an
empty array.

12. Then get the property of the tagged object that
matches this tag and add the image to the array that
is stored as the value of that property.

Then move onto the next tag (go back to step 10).
When all of the tags for that image have been
processed, move to the next image (step 5).

FILTERING, SEARCHING & SORTING

Create variables:
9 $imgs: all images
9 $buttons: element with id of buttons
|
Create object:
@) tagged: array of tags & tagged images

-

(5] LOOP THROUGH EACH IMAGE

TSI AL AT

ANONYMOUS FUNCTION:
Processes image f

0o Create variables:

.~ img: current image
0“ .~ tags: value of data-tags attribute
I +

]
Does the tags

0 variable have .

a value? i

1

LOOP THROUGH EACH TAG

Add tags & images to tagged object

= Is this tag
a property of the
tagged object?

E

o Add tag name as a property {1
of the tagged object {1

l !.
(12) Add image to array for this tag | |
| []
| N——— GoTONEXTTAG — j
ATy TR LA M| e T T T 148190 10001 1 A]

A GO TO NEXT IMAGE

THE TAGGED OBJECT

c12/js/filter-tags.js
(@ (function() {

® 0P 0L GBE

var $imgs = $('#gallery img'); // Store all images
var $buttons = $('#buttons'); // Store buttons element
var tagged = {}; // Create tagged object
$imgs.each(function() { // Loop through images and
var img = this; // Store img in variable
var tags = $(this).data('tags'); // Get this element's tags
if (tags) { // If the element had tags
tags.split(',').forEach(function(tagName) { // Split at comma and
if (tagged[tagName] == null) { // 1f object doesn't have tag
tagged[tagName] = []; // Add empty array to object
}
tagged[tagName] .push(img); // Add the image to the array

})3
}
1)

// Buttons, event handlers, and filters go here (see p549)

10)s

FILTERING, SEARCHING & SORTING

FILTERING THE GALLERY

The filter buttons are created and added by the
script. When a button is clicked, it triggers an
anonymous function, which will hide and show the
appropriate images for that tag.

1. The script lives in an IIFE (not shown in flowchart).
2. Create the button to show all images. The second
parameter is an object literal that sets its properties:
3. The text on the button is set to say 'Show A11".

4, A value of active is added to the class attribute.
5. When the user clicks on the button, an
anonymous function runs, When that happens:

6. This button is stored in a jQuery object and is
given a class of active.

7. Its siblings are selected, and the class of active
is removed from them.

8. The .show() method is called on all images.

9. The button is then appended to the button
container using the .appendTo() method. This is
chained off the jQuery object that was just created.
10. Next, the other filter buttons are created.
jQuery's $.each() method is used to loop through
each property (or each tag) in the tagged object.
The same anonymous function runs for each tag:

11. A button is created for the tag using the same
technique you saw for the 'Show All' button.

12. The text for the button is set to the tag name,
followed by the length of the array (which is the
number of images that have that tag).

13. The click event on that button triggers an
anonymous function:

14. This button is given a class of active.

15. active is removed from all of its siblings.

16. Then all of the images are hidden.

17. The jQuery . filter() method is used to select
the images that have the specified tag. It does a
similar job to the Array object's . filter() method,
but it returns a jQuery collection. It can also work
with an object or an element array (as shown here).
18. The .show() method is used to show the images
returned by the . filter() method.

19. The new button is added to the other filter
buttons using the .appendTo() method.

@ FILTERING, SEARCHING & SORTING

Create empty <button> element
Add text: Show All
Add class: active

v

Event: click on button
|

ANONYMOUS FUNCTION:
Shows all images

Add active class to this button &
v remove active class from siblings

-

I
Show all images

Add button to the filter buttons
-

LOOP THROUGH EACH PROPERTY
oF tagged OBJECT

® 0 o0 00

ANONYMOUS FUNCTION:
Makes button for tag

=)

Create empty <button> element
|
Add tag name & count to the button

-

@ 6

“Event: click on button

ANONYMOUS FUNCTION:
Shows images with selected tag

Add active class to this button
& remove active class from
siblings

*

Hide all photos
+

Filter for images with this tag
v

1
Show the matching images

@ © & 6 60

Add button to the filter buttons

N GO TO NEXT PROPERTY —)

THE FIRTER BLIETONS

JAVASCRIPT

(function() {

©

// Create variables (see p547)

// Create tagged object (see p547)

$('<button/>', {
text: 'Show All',
class: 'active',
click: function() {
$(this)
.addClass('active')
.siblings()
.removeClass('active');
$imgs.show();
}
}) .appendTo($buttons);

$('<button/>', |

click: function() {
$(this)
.addClass('active')
.siblings()
.removeClass('active');
$imgs
.hide()
.filter(tagged[tagName])
.show():
}
}) .appendTo($buttons);
¥
10)s

®@ GO0 @ @ R © ®Q © OO

$.each(tagged, function(tagName){

cl2/js/filter-tags.js

// Create empty button

// Add text 'show all'

// Make it active

// Add onclick handler to it
// Get the clicked on button
// Add the class of active
// Get its siblings

// Remove active from them
// Show all images

// Add to buttons

// For each tag name
// Create empty button

text: tagName + ' (' + tagged[tagName].length + ')', // Add tag name

// Add click handler

// The button clicked on

// Make clicked item active
// Get its siblings

// Remove active from them
// With all of the images
// Hide them

// Find ones with this tag
// Show just those images

// Add to the buttons

FILTERING, SEARCHING & SORTING

SEARCH

Search is like filtering but you show only results that match a search term.
In this example, you will see a technique known as livesearch.
The alt text for the image is used for the search instead of tags.

SEARCH LOOKS IN ALT IT USES INDEXOF() TO SEARCH A CUSTOM
TEXT OF IMAGES FIND A MATCH CACHE OBJECT
This example will use the same The index0f () method of the We do not want to do the case
set of photos that you saw in the String object is used to check conversion for each image every
last example, but will implement for the search term. If it is not time the search terms change, so
a livesearch feature. As you type, found, index0f() returns -1. an object called cache is created
the images are narrowed down Since index0f () is case- to store the text along with the
to match the search criteria. sensitive, it is important to image that uses that text.
convert all text (both the alt
The search looks at the alt text text and the search term) When the user enters something
on each image and shows only to lowercase (which is done into the search box, this object
 elements whose alt text using the String object'’s is checked rather than looking
contains the search term. toLowerCase() function). . through each of the images.

CreativeFolk find tatented g

NEW YORK CI'TY
STRERT MAP

FILTERING, SEARCHING & SORTING

SEARCHABLE IMAGES

HTML cl2/filter-search, htm]

<body>

<header>
<hl>CreativeFolk</h1l>

</header>

<div id="search">
<input type="text" placeholder="filter by search" id="filter-search" />

</div>

<div id="gallery">

</div>

<script src="js/jquery.js"></script>

<script src="js/filter-search.js"></script>

</body>
For each of the images, the cache = [
cache array is given a new {element: img, text: 'rabbit'},
object. The array for the HTML {element: img, text: 'sea'},
above would look like the one {element: img, text: 'deer'},
shown on the right (except {element: img, text: 'new york street map'},

where it says img, it stores a {element: img, text: 'trumpet player'},

reference to the corresponding {element: img, text: 'logo ident'},

 element). {element: img, text: 'bicycle japan'},
{element: img, text: 'aqua logo'},

When the user types in the {element: img, text: 'ghost'}

search box, the code will look in]

the text property of each object,

and if it finds a match, it will

show the corresponding image.

FILTERING, SEARCHING & SORTING @

SEARCH TEXT

This script can be divided into two key parts: e Create variables:
$imgs: all images
g $search: search input

SETTING UP THE CACHE OBJECT cache: array of objects (text / images)

1. Place the script in an 1IFE (not shown in flowchart). &

2. The $imgs variable holds a jQuery selection (5 OB THRGLGH EACIEIMAGE
containing the images.

3. $search holds search input. 6] Add object with two properties to cache array:
4. The cache array is 1‘:reated'. . ' o :lg:"‘-‘:ﬁo?::s’::‘;?[:‘::;tm?;e e

5. Loop through each image in $imgs using .each(), \
and run an anonymous function on each one: SR NELE e

6. Use push() to add an object to the cache array

representing that image. Does browser

7. The object's element property holds a reference © ? 5“”23;;;;""" ?

to the element.

8. Its text property holds the alt text. Note that 7) I

two methods process the text: o) Event: input on search input
.trim() removes spaces from the start and end.

.toLowerCase() converts it all to lowercase. E""T keyup on search input |
FILTERING IMAGES WHEN USER TYPES IN o Ehacka a]:;:f;l&zivfsilf:t’;(h)]ng i
SEARCH BOX

9, Declare a function called filter(). (10) Create variable: query to hold the query

10. Store the search text in a variable called query. B %

Use .trim() and .toLowerCase() to clean the text. o
11. Loop through each object in the cache array and OBJECT IN cache ARRAY

call the same anonymous function on each: 5

12. A variable called index is created and set to 0. @ Creatavariable: e pasition oftexy

13. If query has a value:

14. Use index0f () to check if the search term is in ©

Does query
the text property of this object. havegvalver ?
The result is stored in the index variable. If found, it |

will be a positive number. If not, it will be -1. Search for query within text using

(=)

15. If the value of index is -1, set the display 1| +index0f() & store position in index
property of the image to none. Otherwise, set %

display to a blank string (showing the image).

Move onto the next image (step 11). (1) Is value of

16. Check if the browser supports the input event. ? Thdex=dy

(It works well in modern browsers, but is not I

supported in IE8 or earlier.) Set display to '' to show image

17. If so, when it fires on the search box, call the

filter() function. Set display to none to hide image

18. Otherwise, use the input event to trigger it. \—————— GO TO NEXT IMAGE ———————~

@ FILTERING, SEARCHING & SORTING

@ (function()

®@ var $imgs
®
@ var cache = [];
® $imgs.each(function() {
cache. push({
@ element: this,
®
1)

e
function filter() {
@©

var index = 0;
if (query) {

}

PEEO

©)

1)s
}

{

= $('#gallery img');
var $search = $('#filter-search');

N

cache.forEach(function(img) {

index = img.text.indexOf (query);

if (‘oninput' in $search[0]) {
@ $search.on('input', filter);
} else {
$search.on('keyup', filter);
}
10)s

The alt text of every image and
the text that the user enters into
the search input are cleaned
using two jQuery methods.

Both are used on the same
selection and are chained after
each other.

LIVESEARCH

cl2/js/filter-search.js

// Lives in an IIFE

// Get the images

// Get the input element

// Create an array called cache

// For each image
// Add an object to the cache array
// This image

text: this.alt.trim().toLowerCase() // Its alt text (lowercase trimmed)

// Declare filter() function

var query = this.value.trim().toLowerCase(); // Get the query

// For each entry in cache pass image
// Set index to 0

// If there is some query text

// Find if query text is in there

img.element.style.display = index === -1 ? 'none' : ''; // Show / hide

// 1f browser supports input event
// Use input event to call filter()
// Otherwise

// Use keyup event to call filter()

METHOD USE
trim() Removes whitespace from start or end of string
toLowerCase() Converts string to lowercase letters because

index0f () is case-sensitive

FILTERING, SEARCHING & SORTING @

SORTING

Sorting involves taking a set of values and reordering them.
Computers often need detailed instructions about in order to sort data.
In this section, you meet the Array object's sort () method.

When you sort an array using
the sort () method, you change
the order of the items it holds.

Remember that the elements in
an array have an index number,
so sorting can be compared to
changing the index numbers of
the items in the array.

SORTING STRINGS

Take a look at the array on the
right, which contains names.
When the sort () method is
used upon the array, it changes
the order of the names.

SORTING NUMBERS

By default, numbers are also
sorted lexicographically, and
you can get some unexpected
results. To get around this you
would need to create a compare
function (see next page).

By default, the sort () method
orders items lexicographically.
It is the same order dictionaries
use, and it can lead to interesting
results (see the numbers below).

To sort items in a different
way, you can write a compare
function (see right-hand page).

Lexicographic order is as follows:
1. Look at the first letter, and
order words by the first letter.

2. If two words share the same
first letter, order those words by
the second letter.

3. If two words share the same
first two letters, order those
words by the third letter, etc.

var names = ['Alice', 'Ann', 'Andrew', 'Abe'l;

names.sort();

The array is now ordered as follows:

['Abe', 'Alice', 'Andrew', 'Ann'];

var prices = [1, 2, 125, 19, 14, 156];

prices.sort();

The array is now ordered as follows:

[1; 125, 34 158, 19, 2]

FILTERING, SEARCHING & SORTING

CHANGING ORDER USING
COMPARE FUNCTIONS

If you want to change the order of the sort, you write a compare function.
It compares two values at a time and returns a number.
The number it returns is then used to rearrange the items in the array.

The sort () method only ever
compares two values at a time
(you will see these referred to
as g and b), and it determines
whether value a should appear
before or after value b.

Because only two values are
compared at a time, the sort()
method may need to compare
each value in the array with
several other values in the array
(see diagram on the next page).

COMPARE FUNCTIONS MUST RETURN NUMBERS -

A compare function should
return a number. That number
indicates which of the two items
should come first.

<0

Indicates that it should
‘show a before b

The sort () method will
determine which values it needs
to compare to ensure the array is
ordered correctly.

0

Indicates that the items should
remain in the same order

sort () can have an anonymous
or a named function as a
parameter. This function is called
a compare function and it lets
you create rules to determine
whether value a should come
before or after value b.

You just write the compare
function so that it returns a
number that reflects the order in
which you want items to appear.

>()

Indicates that it should
show b beforea

To see the order in which the values are being compared, you can add the console. 1 og() method to the

compare function. For example: console.log(a + ' -

"+ b+ =t

+ (b -a));

FILTERING, SEARCHING & SORTING @

HOW SORTING WORKS

Here an array holds 5 numbers that will be sorted in ascending order.
You can see how two values (a and b) are compared against each other.
The compare function has rules to decide which of the two goes first.

(A
(A]
(2] o o

move don't move don't move

a should go before b a should go after b a should go after b
1-3 = -2 5-3 = 2 4-3 = 1
a-b =<0 a-b=>0 a-b =>0

It is up to the browser to decide which order to sort items in .
This illustrates the order used by Safari. Other browsers sort items in a different order.

FILTERING, SEARCHING & SORTING

return a - b;

};

(8]

A

move

a should go before b

4-5 = -1
a-bh =<0

var prices = [3, 1, 5, 4, 2];
prices.sort(function(a, b) {

c, III

// Numbers stored in an array
// Two values are compared

// Decides which goes first

T move

a should go before b

2-3 = -1
a-b =<0

Chrome compares this array in the following order:3-4,5-2,4-2,3-2,1-2.
Firefox compares this array in the following order:3-1,3-5,4-2,5-2,1-2,3-2,3-4,5-4.

III (AJ

0
: |!i

don't move

a should go after b

2-1= 1
a-b=>0

FILTERING, SEARCHING & SORTING @

SORTING NUMBERS

Here are some examples of compare functions that
can be used as a parameter of the sort () method.

ASCENDING var prices = [1, 2, 125, 2, 19, 14];
NUMERICAL ORDER prices.sort(function(a, b) {

To sort numbers in an ascending return a - b;

order, you subtract the value of s

the second number b from the 0 OPERATOR b RESULT ORDER

first number a. In the table on

i 1 - 2 -1 a comes before b
the right, you can see examples _
of how two values from the array 2 7 2 0 leave in same order
are compared. 2 - 1 1 b comes before @
DESCENDING var prices = [1, 2, 125, 2, 19, 14];
NUMERICAL ORDER prices.sort(function(a, b) {
To order numbers in a return b - a;
descending order, you subtract 1
the value of the first number a b OPERATOR o RESULT ORDER
from the second number b.
2 - 1 1 b comes before a
2 - 2 0 leave in same order
1 - 2 -1 a comes before b
RANDOM ORDER var prices = [1, 2, 125, 2, 19, 14];
This will randomly return a value prices.sort(function() {
between -1and 1 creating a return 0.5 - Math.random();
random order for the items. s

FILTERING, SEARCHING & SORTING

SORTING DATES

Dates need to be converted into a Date object so that
they can then be compared using < and > operators.

var holidays = [DATES IN ASCENDING
'2014-12-25", ORDER
'2014-01-01", If the dates are held as strings,
'2014-07-04", as they are in the array shown
'2014-11-28' on the left, the compare function
IH needs to create a Date object
from the string so that the two
holidays.sort(function(a, b){ dates can be compared.
var dateA = new Date(a);
var dateB = new Date(b); Once they have been converted
into a Date object, JavaScript
return dateA - dateB stores the date as the number
Dk - of milliseconds since the Tst
January 1970.

The array is now ordered as follows:
With the date stored as a

holidays = [number, two dates can be
'2014-01-01", compared in the same way that
'2014-07-04", numbers are compared on the
'2014-11-28", left-hand page.
'2014-12-25"

]

FILTERING, SEARCHING & SORTING

SORTING A TABLE

In this example, the contents of a table can be reordered.

Each row of the table is stored in an array.

The array is then sorted when the user clicks on a header.

SORT BY HEADER

When users click on a heading, it
triggers an anonymous function
to sort the contents of the array
(which contains the table rows).
The rows are sorted in ascending
order using data in that column.

Clicking the same header again
will show the same column
sorted in descending order.

DATA TYPES

Each column can contain one of
the following types of data:

® Strings

® Time durations (mins/secs)

® Dates

If you look at the <th> elements,
the type of data used is specified
in an attribute called data-sort.

CreativeFolk

COMPARE FUNCTIONS

Each type of data needs a
different compare function.

The compare functions will be
stored as three methods of an
object called compare, which you
create on p563:

® name() sorts strings
® duration() sorts mins/secs
® date() sorts dates

My Videos

GENRE
Film

Film
Animation
Animation

Animation

Wildfood

FILTERING, SEARCHING & SORTING

:40
2140
3:.47

2012-04-10
2007-04-12
2014-07-18

HTML TABLE STRUCTURE

1. The <table> element needs 2. Table headers have an attribute The value of the data-sort

to carry a class attribute whose called data-sort. It reflects the attribute corresponds with the

value contains sortable. type data in that column. methods of the compare object.
cl2/sort-table.html

<body>
(@ <table class="sortable">
<thead>
<tpr>

<th data-sort="name">Genre</th>
<th data-sort="name">Title</th>
<th data-sort="duration">Duration</th>
<th data-sort="date">Date</th>

</tr>
</thead>
<tbody>
<tr>
<td>Animation</td>
<td>Wildfood</td>
<td>3:47</td>
<td>2014-07-16</td>
</tr>
<tr=
<td>Film</td>
<td>The Deer</td>
<td>6:24</td>
<td>2012-02-28</td>
</tr>
<tr>
<td>Animation</td>
<td>The Ghost</td>
<td>11:40</td>
<td>2013-04-10</td>
2ftre.
</tbody>
</table>

<script src="js/jquery.js"></script>
<script src="js/sort-table.js"></script>
</body>

FILTERING, SEARCHING & SORTING

COMPARE FUNCTIONS

1. Declare the compare object. It has three methods
used to sort names, time durations, and dates.

THE name() METHOD

2. Add a method called name (). Like all compare
functions, it should take two parameters: a and b.

3. Use aregular expression to remove the word 'the’
from the beginning of both of the arguments that
have been passed into the function (for more on this
technique, see the bottom of the right-hand page).
4, If the value of a is lower than that of b:

5. Return -1 (indicating that a should come before b).
6. Otherwise, if a is greater than b, return 1. Or, if
they are the same, return 0. (See bottom of page.)

THE duration() METHOD

7. Add a method called duration(). Like all compare
functions, it should take two parameters: a and b.

8. Duration is stored in minutes and seconds: mm:ss.
The String object's sp1it () method splits the
string at the colon, and creates an array with
minutes and seconds as separate entries.

9. To get the total duration in seconds, Number ()
converts the strings in the arrays to numbers.

The minutes are multiplied by 60 and added to the
number of seconds.

10. The value of a - b is returned.

THE date() METHOD

11. Add a method called date(). Like all compare
functions, it should take two parameters: a and b.
12. Create a new Date object to represent each of
the arguments passed into the method.

13. Return the value of a minus b.

returna>b ?1:0

A shorthand for a conditional operator is the ternary
operator. It evaluates a condition and returns one of
two values. The condition is shown to the left of the

question mark.

FILTERING, SEARCHING & SORTING

o Create object: compare
<4
1
(2] DECLARE METHOD: name(a, b)
Replace any instances of the word the at
e the start of the parameter with a blank
string using a regular expression
+
||
o Is a less
than b?
)
(5] Return -1
Is a greater
than b?
I I
o Return 0 Return 1
-
]

DECLARE METHOD: duration(a, b)

Convert both parameters into arrays
|
Convert both parameters to seconds
5 |
Returna - b

® 0 09O

o

]
DECLARE METHOD: date(a, b)
Convert both parameters to Date objects

|
® Returna - b

® O

The two options are shown to the right separated by
a colon. If the condition returns a truthy value, the
first value is returned. If the value is falsy, the value
after the colon is returned.

THECOMPARE OBUECT

c12/js/sort-table.js

@ var compare = { // Declare compare object
® name: function(a, b) { // Add a method called name
@_[a = a.replace(/~the /i, ''); // Remove The from start of parameter
b = b.replace(/~the /i, ''); // Remove The from start of parameter
@ if (a <b) { // 1f value a is less than value b
® return -1; // Return -1
} else { // Otherwise
® return a > b ?2 1 : 0; // 1f a is greater than b return 1 OR
} // if they are the same return 0
b
(@ duration: function(a, b) { // Add a method called duration
® a = a.split('s:'); // Split the time at the colon
.{ b = b.split(':'): // Split the time at the colon
a = Number(a[0]) * 60 + Number(a[l]); // Convert the time to seconds
b = Number(b[0]) * 60 + Number(b[1]); // Convert the time to seconds
@© return a - b; // Return a minus b
}’
@) date: function(a, b) { // Add a method called date
@_[a = new Date(a); // New Date object to hold the date
b = new Date(b); // New Date object to hold the date
@ return a - b; // Return a minus b
}
b
as r‘ep] ace (/Athe /-| . I) : ® The string you are looking for is shown between
the forward slash characters.
The replace() method is used to remove any ® The caret ~indicates that the must be at the start
instances of The from the start of a string. replace() of the string.
works on any string and it takes one argument: a ® The space after the indicates there must be a
regular expression (see p612). It is helpful when space after it.
The is not always used in a name, e.g., for band @® The i indicates that the test is case insensitive.
names or film titles. The regular expression is the
first parameter of replace() method. When a match for the regular expression is found,

the second parameter specifies what should take its
place. In this case it is an empty string.

FILTERING, SEARCHING & SORTING

SORTING COLUMNS

1. For each element that has a cl1ass attribute with a
value of sortable, run the anonymous function.

2. Store the current <table>in $table.

3. Store the table body in $tbody.

4. Store the <th> elements in $controls.

5. Put each row in $tbody into an array called rows.
6. Add an event handler for when users click on a
header. It should call an anonymous function.

7. $header stores that element in a jQuery object.
8. Store the value of that heading's data-sort
attribute in an variable called order.

9, Declare a variable called column.

10. In the header the user clicked upon, if the class
attribute has a value of ascending or descending,
then it is already sorted by this column.

11. Toggle the value of that class attribute (so that it
shows the other value ascending/descending).

12. Reverse the rows (stored in the rows array) using
the reverse () method of the array.

13. Otherwise, if the row the user clicked on was not
selected, add a class of ascending to the header.
14. Remove the class of ascending or descending
from all other <th=> elements on this table.

15. If the compare object has a method that matches
the value of the data-type attribute for this column:
16. Get the column number using the index()
method (it returns the index number of the element
within a jQuery matched set). That value is stored in
the column variable.

17. The sort () method is applied to the array of
rows and will compare two rows at a time. As it
compares these values:

18. The values a and b are stored in variables:
.find() gets the <td> elements for that row.

.eq() looks for the cell in the row whose index
number matches the column variable.

.text() gets the text from that cell.

19. The compare object is used to compare a and b.
It will use the method specified in the type variable
(which was collected from the data-sort attribute
in step 6).

20. Append the rows (stored in the rows array) to
the table body.

FILTERING, SEARCHING & SORTING

(5

® © 6 © 6

LOOP THROUGH EACH SORTABLE TABLE

Create variables:

$table: <table> element
$tbody: <tbody> element
$controls: <th> elements
rows: array of <tr> elements

&

!
Event: click on <th> element
|

ANONYMOUS FUNCTION:
Sorts data based on header clicked

Create variables (from clicked header):
header: the header that was clicked on
order: value of data-sort attribute
column: will hold index of clicked header
&
1
Is class ascending
or descending?
Add class of 0 Toggle value of
ascending to <th> class attribute

Remove ascending
or descending from @
all other headers

—— Ll
column set to store index number of
<th> element clicked on
|
Sort rows using compare function

a is text from first row being compared
& b is text from second row

Use compare object to compare a and b
using method specified in order variable

|
Append array to <tbody> element

Reverse order
of rows in table

Does compare
have a value that matches
the order variable?

\————— GO TO NEXT SORTABLE TABLE ———’

SORTABLE TABLE SCRIPT

JAVASCRIPT c12/js/sort-table. js

(@ $('.sortable').each(function() {

var $table = $(this); // This sortable table
var $tbody = $table.find('tbody'); // Store table body
var $controls = $table.find('th'); // Store table headers
var rows = $tbody.find('tr').toArray(); // Store array containing rows
$controls.on('click', function() { // When user clicks on a header
var $header = $(this); // Get the header
var order = $header.data('sort'); // Get value of data-sort attribute
var column; // Declare variable called column

// 1f selected item has ascending or descending class, reverse contents
if ($header.is('.ascending') || $header.is('.descending')) {
$header.toggleClass('ascending descending'); // Toggle to other class

$tbody.append(rows.reverse()); // Reverse the array
} else { // Otherwise perform a sort

$header.addClass('ascending'); // Add class to header

// Remove asc or desc from all other headers

$header.siblings().removeClass('ascending descending');

if (compare.hasOwnProperty(order)) { // 1f compare object has method
column = $controls.index(this); // Search for column's index no
rows.sort(function(a, b) { °// Call sort() on rows array

a = $(a).find('td').eq(column).text();// Get text of column in row a
b =$(b).find('td').eq(column).text();// Get text of column in row b
return compare[order](a, b); // Call compare method

}s

® 00 00 @ G0 OO0 OO

$thody.append(rows);
}

s
1)s

FILTERING, SEARCHING & SORTING

SUMMARY

FILTERING, SEARCHING & SORTING

@ FILTERING, SEARCHING & SORTING

A

|

Forms allow you to collect information from visitors, and
JavaScript can help you get the right information from them.

Since JavaScript was created, it has been used to enhance and validate forms.
Enhancements make forms easier to use. Validation checks whether the user has provided
the right information before submitting the form (if not, it provides feedback to the user).
This chapter is divided into the following three sections:

FORM HTMLS FORM FORM

ENHANCEMENT ELEMENTS VALIDATION .
This section features HTML5 contains validation The final, and longest, |
many examples of form features that do not use example in the book shows 3
enhancement. Each one JavaScript. This section a script that validates (and

introduces the different addresses ways in which enhances) the registration .
properties and methods you you can offer validation to form that you can see on the 5
can use when working with old and new browsers in a right-hand page. It has over {
form elements. consistent way. 250 lines of code. 4
The first section of this chapter also drops jQuery in favor of plain JavaScript, because you A

should not always rely upon jQuery (especially for scripts that use little of its functionality).

B il N .

- —_ 3

i ol i

FORM ENHANCEMENT & VALIDATION

 Riz2oli

Pre"se_.ﬂte

Ao

HGTHE (ORI RS N
an 2 B

4 !

- -~ 1

LALIMRTATIN B0 BETUL [

Ll | [
Laiphbi

FORM ENHANCEMENT & VALIDATIO_:.“_r.

HELPER FUNCTIONS

The first section of this chapter uses plain JavaScript, no jQuery.
We will create our own JavaScript file to handle cross-browser issues,
it will contain one helper function to create events.

Forms use a lot of event handlers and (as you saw

in Chapter 6) |IE5-8 used a different event model
than other browsers. You can use jQuery to deal
with cross-browser event handling. But, if you do

not want to include the entire jQuery script just to
handle events in older version of IE, then you need to
write your own fallback code to handle the events.

Instead of writing the same fallback code every

time you need an event handler, you can write the
fallback code once in a helper function, and then call
that function every time you need to add an event
handler to a page.

On the right-hand page you can see a function called
addEvent (). It lives in a file called utilities.js.
Once that file has been included in the HTML page,
any scripts included after it will be able to use this
function to create cross-browser event handler:

addEvent(el, event, callback);
® ®

The function takes three parameters:

i) el is a DOM node representing the element that
the event will be added to or removed from.

ii) event is the type of event being listened for.

iii) cal lback is the function that is to be run when
the event is triggered on that element.

Theutilities.js file on the website also has a
method to remove events.

FORM ENHANCEMENT & VALIDATION

If you look inside the addEvent () method on the
right-hand page, a conditional statement checks
whether the browser supports addEventListener().
If it does, a standard event listener will be added.

If not, then the IE fallback will be created.

The fallback addresses three points:

@® |t uses |E'sthe attachEvent() method.

® InlE5-8, the event object is not automatically
passed into the event-handling function (and is
not available via the this keyword) see p264.
Instead it is available on the window object.
So the code must pass the event object
into the event handler as a parameter.

® When you pass parameters to an event-handling
function, the call must be wrapped in an
anonymous function see p256.

To achieve this, the fallback adds two methods to the
element the event handler will be placed upon (see
steps 5 and 6 on the right-hand page). It then uses
IE's attachEvent () method to add the event handler
code to the element.

The functions demonstrate two new techniques:
@ Adding new methods to DOM nodes:
You can add methods to DOM nodes because
they are just objects (that represent elements).
® Creating method names using a variable:
Square brackets can be used to set a property/
method, their content is evaluated into a string.

Here, you can see the addEvent () function that will
be used to create all of the event handlers in this
chapter. It lives in a file called utilities.js.

JAVASCRIPT

UEIEESES EILE

These reusable functions are often referred to as
helper functions. As you write more JavaScript, you
are increasingly likely to create this type of function.

cl3/js/utilities.js

// Helper function to add an event listener

if ('addEventListener' in el) {

} else {

@OOOOE

function addEvent(el, event, callback) {

el['e' + event + callback] = callback;
el [event + callback] = function() {

// If addEventListener works

el.addEventListener(event, callback, false);// Use it

// Otherwise
// Make callback a method of el
// Add second method

el['e' + event + callback] (window.event); // Use it to call prev func

}3

Q

el.attachEvent('on' + event, el[event + callback]); // Use attachEvent()

} // to call the second function, which then calls the first one

1. The addEvent () function is declared with three
parameters: element, event type, callback function.
2. A conditional statement checks if the element
supports the addEventListener() method.

3. If it does, then addEventListener() is used.

4. If not, the fallback code will run instead.

The fallback must add two methods to the element
the event handler will be placed upon. It then uses
Internet Explorer's attachEvent () method to call
them when the event occurs on that element.

5. The first method added to the element is the
code that should run when the event occurs on this
element (it was the third parameter of the function).
6. The second method calls the method from the
previous step. It is needed in order to pass the event
object to the function in step 5.

7. The attachEvent () method is used to listen for
the specified event, on the specified element. When
the event fires, it calls the method that it added in
step 6, which in turn calls the method in step 5 using
the correct reference to the event object.

In steps 5 and 6, square bracket notation is used to
add a method name to an element:

el['e' + event + callback]

@ L @_ |

i) The DOM node is stored in e1. The square

brackets add the method name to that node. That

method name must be unigue to that element, so it

is created using three pieces of information.

ii) The method names are made up of:

® The letter e (used for the first method in step 5
but not used in step 6)

@ The event type (e.g., click, blur, mouseover)

@ The code from the callback function

In the code on the right-hand page, the value of this
method is the callback function. (This could lead to a
long method name, but it serves the purpose.) This
function is based on one by John Resig, who created
jQuery (http://ejohn.org/projects/flexible-
Jjavascript-events/).

FORM ENHANCEMENT & VALIDATION @

THE FORM ELEMENT

DOM nodes for form controls have different properties, methods, and
events than some of the other elements you have met so far.
Here are some you should note for the <form> element.

PROPERTY DESCRIPTION

METHOD DESCRIPTION

action The URL the form is submitted to
method IfitistobesentviaGETorPOST
name | Rarely used, more common to selecta
form by the value of its id attribute
.;{;;énts A collection of the elemer.';;s in the

form that users can interact with. They
can be accessed via index numbers or
the values of their name attributes.

The DOM methods you saw in Chapter 5, such as
getElementById(), getElementsByTagName(), and
querySelector(), are the most popular techniques
for accessing both the <form> element and the form
controls within any form. However, the document
object also has something called the forms
collection. The forms collection holds a reference to
each of the <form> elements that appear on a page.

Each item in a collection is given an index number
(a number starting at O, like an array). This would
access the second form using its index number:
document.forms[1];

You can also access a form using the value of its
name attribute. The following would select a form
whose name attribute has a value of Togin:
document.forms.login

@ FORM ENHANCEMENT & VALIDATION

submit() This has the same effect as clicking the
submit button on a form

reset() Resets the form to the initial values it had
when the page loaded

EVENT DESCRIPTION

submit Fires when the form is submitted

reset Fires when the form is reset

Each <form=> element in the page also has an
elements collection. It holds all of the form controls
within that form. Each item in the elements
collection can also be accessed by index number or
by the value of its name attribute.

The following would access the second form on the
page and then select the first form control within it:
document.forms[1] .elements[0];

The following would access the second form on the
page, then select the element whose name attribute
had a value of password from that form:
document.forms[1] .elements.password;

Note: index numbers in a collection of elements can
change if the markup of a page is altered. So, use of
index numbers ties a script to the HTML markup (- it
does not achieve a separation of concerns).

FORM CONTROLS

Each type of form control uses a different combination of the properties,
methods, and events shown below. Note that the methods can be used to
simulate how a user would interact with the form controls.

PROPERTY DESCRIPTION

ua1 ue In a text input, it is the text the user entered otherwise, it is the value of the value attribute

type When a form control has been created using the <input> element, this defines the type of the
form element (e.g., text, password radio, checkbox)

name Gets or sets the value of the name attnbute

defaultValue The initial value of a text box or text area when the page is rendered

form The form that the control belongs to
disabled Dlsables the <form> element
checked Indlcates which checkbox or radio buttons have been checked.

This property is a Boolean; in JavaScript it will have a value of true if checked

defaultChecked Whether the checkbox or radio button was checked or not when the page loaded (Boolean)

selected Indicates that an item from a select box has been selected (Boolean - true if selected)
METHOD DESCRIPTION

focus () Gives an element focus

blur() B Removes focus from an elem.e;a‘{”

select () Selects and highlights text content of an element, (e.g,, text inputs, text areas, and passwords)
click() Triggers a click event upon buttons, checkboxes, and file up[oae

Also triggers a submit event on a submit button, and the reset event on a reset button

EVENT DESCRIPTION

blur When the user leaves a fleld

focus When the user enters a f|eld R

click When the user clicks on an element

change When the value of an element changes

input ’ When the value of an <i nput> or <textarea=> element changes

keydown, keyup, keypress When the userinteracts with a keyboard

FORM ENHANCEMENT & VALIDATION @

SUBMITTING FORMS

In this example, a basic login form lets users enter a
username and password. When the user submits the
form, a welcome message will replace the form.

On the right-hand page you can see both the HTML
and the JavaScript for this example.

Login

Username:;

Password

1. Place the script in an Immediately Invoked
Function Expression (lIFE see p97). (This is not
shown in the flowchart.)

2. A variable called formis created and it is set to
hold the <form= element. It is used in the event
listener in the next line of code.

3. An event listener triggers an anonymous function
when the form is submitted. Note how this is set
using the addEvent () function that was created in
theutilities.js file that you saw on p571.

4. To prevent the form being sent (and to allow

this example to show a message to the user) the
preventDefault () method is used on the form.

5. The collection of elements in this form is stored in
avariable called elements.

6. To get the username, first select the username
input from the elements collection using the value
of its name attribute. Then, to get the text the user
entered, the value property of that element is used.
7. A welcome message is created and stored in a
variable called msg; this message will incorporate the
username that the visitor entered.

8. The message replaces the form within the HTML.

FORM ENHANCEMENT & VALIDATION

Inthe HTML page, the utilities. js file you saw on
p571is included before the submit-event.js script
because its addEvent () function is used to create
the event handlers for this example. utilities.jsis
included for all examples in this section.

0 Create variable: form holds <form™> element

.

I
o Event: submit on form
|

ANONYMOUS FUNCTION:
Greets the user by username

Prevent default action of form submitting
|
Create variables:
elements: elements collection
username: username
msg: welcome message

-

1
Replace form with welcome message

The event listener waits for the submit event on the
form (rather than a c1ick on the submit button)
because the form can be submitted in other ways
than clicking on the submit button. For example, the
user might press the Enter key.

THE SEBMIFEEVENES
GETTING FORM VALUES

c13/submit-event.html

<form id="login" action="/login" method="post">...
<div class="two-thirds column” id="main">
<fieldset>
<legend>Login</1egend>
<label for="username">Username:</label>
<input type="text" id="username" name="username" />
<label for="pwd">Password:</label>
<input type="password" id="pwd" name="pwd" />
<input type="submit" value="Login" />
</fieldset>
</div> <l-- ,two-thirds -->
</form> ...
<script src="js/utilities.js"></script>
<script src="js/submit-event.js"></script>

JAVASCRIPT c13/js/submit-event.js
@ (function(){

var form = document.getElementById('login'); // Get form element
(® addEvent(form, 'submit', function(e) {) // When user submits form
@ e.preventDefault(); // Stop it being sent
® var elements = this.elements; // Get all form elements
® var username = elements.username.value; // Select username entered
@ var msg = 'Welcome ' + username; // Create welcome message
(D document.getElementById('main').textContent = msg; // Write welcome message
D
1))
When selecting a DOM node, if you are likely to var form = document.getElementById('login');
use it again, it should be cached. On the right, you var elements = form.elements;
can see a variation of the above code, where the var elUsername = elements.username;
username and the main element have both been var elMain = document.getElementById('main');
stored in variables outside of the event listener. ' addEvent (form, 'submit', function(e) {
If the user had to resubmit the form, the browser e.preventDefault();
would not have to make the same selections again. var msg = 'Welcome ' + elUsername.value;
elMain.textContent = msg;
1)s

FORM ENHANCEMENT & VALIDATION @

CHANGING TYPE OF INPUT

This example adds a checkbox under the password
input. If the user checks that box, their password
will become visible. It works by using JavaScript

to change the type property of the input from
password to text. (The type property in the DOM
corresponds to type attribute in the HTML.)

Changing the type property causes an error in |[E8
(and earlier), so this code is placed ina try...
catch statement. If the browser detects an error, the
script continues to run the second code block.

Login

Username:

Password

= show password

Login

1. Place the script in an IIFE (not shown in flowchart).
2. Put password input and checkbox in variables.

3. An event listener triggers an anonymous function
when the show password checkbox is changed.

4. The target of the event (the checkbox) is stored in
a variable called target. As you saw in Chapter 6,
e.target will retrieve this for most browsers.
e.srcElement is only used for old versions of IE.

5. Atry... catchstatement checks if an error is
caused when the type attribute is updated.

6. If the checkbox is selected:

7. The value of the password input’s type attribute is
set to text.

8. Otherwise, it is set to password.

9. If trying to change the type causes an error, the
catch clause runs another code block instead.

10. It shows a message to tell the user.

FORM ENHANCEMENT & VALIDATION

Create variables:
pwd: password input
chk: checkbox

<+

i
a Event: change on checkbox
|

i ANONYMOUS FUNCTION:
|| Changes value of password’s type attribute

(4] Get element clicked on
|

(5] Try to process following code block
¥

© ? Is it checked? ?

Set type to password Set type to text

L P
Bi]

o Catch:
Is there an error?

@ Display message: <=|E8 can’t switch types

Elsmtars

e

As you saw in Chapter 10, an error can stop a script
from running. If you know something may cause

an error for some browsers, placing that code in
atry... catchstatement lets the interpreter
continue with an alternative set of code.

SHOWING A PASSWORD

<fieldset>

<]legend>Login</1egend>

<label for="username">Username:</label>

c13/input-type.htmi

<input type="text" id="username" name="username" />

<label for="pwd">Password:</label>

<input type="password" id="pwd" name="pwd" />
<input type="checkbox" id="showPwd">

<label for="showPwd">show password</label>
<input type="submit" value="Login" />

</fieldset> ...

<script src="js/utilities.js"></script>
<script src="js/input-type.js"></script>

@ (function(){

(:}{ var pwd = document.getElementById('pwd');

c13/js/input-type.js

// Get password input

var chk = document.getElementById('showPwd');.// Get checkbox

(® addEvent(chk, 'change', function(e) {
D) var target = e.target || e.srcElement;
® try {
® if (target.checked) {
@ pwd.type = 'text';
} else {
pwd.type = 'password';
}
® } catch(error) {

// When user clicks on checkbox
// Get that element

// Try the following code block
// 1f the checkbox is checked
// Set pwd type to text

// Otherwise

// Set pwd type to password

// 1f this causes an error

alert('This browser cannot switch type'); // Say 'cannot switch type'

FORM ENHANCEMENT & VALIDATION @

SUBMIT BUTTONS

This script disables the submit button when:

® The script first loads. The change event then
checks when the password changes and enables
submit if the password is given a value.

® The form has been submitted (to prevent the
form being sent multiple times).

Reset password

submit

®

The button is disabled using the disabled property.
It corresponds with the HTML disabled attribute,
and can be used to disable any form elements that a
user can interact with. A value of true disables the
button; false lets the user click on it.

1. Place the script in an lIFE (not shown in flowchart).

2. Store the form, password input, and submit
button in variables.

3. The submitted variable is known as a flag; it
remembers if the form has been submitted yet.

4, The submit button is disabled at the start of the
script (rather than in the HTML) so that the form
can still be used if a visitor has JavaScript disabled.
5. An event listener waits for the input event on the
password input; it triggers an anonymous function.
6. Store the target of the event in target.

7. If the password input has a value, the submit
button is enabled, and (8) its style updated.

9. A second event listener checks for when the user

submits the form (and runs an anonymous function).

10. If the submit button is disabled, or the form has
been submitted, the subsequent code block is run.
11. The default action of the form (submitting) is
prevented, and return leaves the function.

12. If step 11 did not run, the form is submitted, the
submit button disabled, the submitted variable
updated with a value of true, and its class updated.

FORM ENHANCEMENT & VALIDATION

Create variables:

form: <form> element

password: password input

submi t: submit button

submi tted: set to false (form not yet submitted)

|
Disable submit button & set class to disabled

+

1
Event: input on password input
|

ANONYMOUS FUNCTION:
Checks if submit should be enabled

Get target element (password input)

v

I

Has form been
submitted?

e Set disabled Set disabled
property to false property to true

L P,
b g

Does target
have a value? ?

Set class Set class
to disabled to enabled

Event: submit on <form= input
|

ANONYMOUS FUNCTION:
Checks if form can be submitted

Is submit disabled
or has form been
submitted?

[: 0|

Let form submit, then: Prevent

= Disable form form

* Update variable that tracks submitting
if it has been submitted ¥

*» Set class to disabled

DISABLE SUBMIT BUTTON

c13/disable-submit.html

<label for="pwd">New password:</label>
<input type="password" id="pwd" />
<input type="submit" id="submit" value="submit" />

cl3/js/disable-submit.js
@ (function(){

var form document.getElementById('newPwd'); // The form
var password = document.getElementById('pwd'); // Password input

var submit = document.getElementById('submit'); // Submit button
® var submitted = false; // Has form been submitted?
@ submit.disabled = true; // Disable submit button
submit.className = 'disabled’; // Style submit button
// On input: Check whether or not to enable the submit button
(® addEvent(password, ‘input', function(e) { // On input of password
® var target = e.target || e.srcElement; // Target of event
@ submit.disabled = submitted || !target.value; // Set disabled property
// 1f form has been submitted or pwd has no value set CSS to disabled
® submit.className = (!target.value || submitted) ? 'disabled' : 'enabled';
13
// On submit: Disable the form so it cannot be submitted again
(® addEvent(form, 'submit', function(e) { // On submit
() if (submit.disabled || submitted) { // If disabled OR sent
e.preventDefault(); // Stop form submission
(:}[return; // Stop processing function
} // Otherwise continue...
submit.disabled = true; // Disable submit button
@D{ submitted = true; // Update submitted var
submit.className = 'disabled’; // Update style
// Demo purposes only: What would have been sent & show submit is disabled
e.preventDefault(); // Stop form submitting
alert('Password is ' + password.value); // Show the text
1)
H0)s

FORM ENHANCEMENT & VALIDATION

CHECKBOXES

This example asks users about their interests. It has

an option to select or deselect all of the checkboxes.

It has two event handlers:

® The first fires when the all checkbox is selected; it
loops through the options, updating them.

® The second fires when the options change; if one
is deselected, the all option must be deselected.

Genres

AN
T Animation
= Documentary

T Shorts

You can use the change event to detect when the
value of a checkbo, radio button, or select box
changes. Here, it is used to tell when the user
selects / deselects a checkbox. The checkboxes
can be updated using the checked property, which
corresponds with HTML's checked attribute.

1. Place the script in an IIFE (not shown in flowchart).
2. The form, all of the form elements, the options,
and the all checkbox are stored in variables.

3. The updateAl1() function is declared.

4. A loop runs through each of the options.

5. For each one, the checked property is set to the
same value as the checked property on the all option.
6. An event listener waits for the user to click on the
all checkbox, which fires a change event and calls the
updateAll() function.

7. The clearAl10ption() function is defined.

8. It gets the target of the option the user clicked on.
9. If that option is deselected, then the all option is
also deselected (as they are no longer all selected).
10. A loop runs through the options, adding an event
listener. When the change event happens on any of
them, clearAl10ption() is called.

FORM ENHANCEMENT & VALIDATION

Create variables:
form: <form> element

@ elements: elements contained in form
options: array of genre checkboxes
all: checkbox to turn all genres on/off

o Event: change on element with id of all
|
o FUNCTION: updateAll()

Checks or unchecks all checkboxes

(4] LOOP THROUGH EACH CHECKBOX

9 Set checked property to match
checked property of select all

GO TO NEXT CHECKBOX

o~ LOOP THROUGH EACH CHECKBOX

Event: change on genre checkboxes
|

o FUNCTION: clearAl10ption()
Unchecks the ‘all’ option
e Get element user clicked on
r S *
i
o 5 Is it not
checked? ?

Deselect the ‘all’ option

 S—— GO TO NEXT CHECKBOX il

<label><input type="checkbox"
<label><input type="checkbox"
<label><input type="checkbox"
<label><input type="checkbox"

(@ (function(){

© @©@Q ©® VO

®

var form
var elements =
var options
var all

form.elements;
elements.genre;
document.getElementById('all');

function updateAll() {
for (var i = 0; i < options.length; i++) {
options[i].checked = all.checked;
1

}
addEvent(all, ‘'change', updateAll);

function clearAll0ption(e) {
var target = e.target || e.srcElement;
if (ltarget.checked) {
all.checked = false;
}
}
for (var i = 0; i < options.length; i++) {
addEvent (options[i], 'change', clearAllOption);
1

HO)s

SELECT ALL CHECKEOXES

c13/all-checkboxes.html

value="all" id="all">Al1</label>

name="genre" value="animation">Animation</label>
name="genre" value="docs">Documentary</label>
name="genre" value="shorts">Shorts</label>

cl13/js/all-checkboxes. js

document.getElementById('interests'); // Get form

// A1l elements in form
// Array: genre checkboxes
// The 'all' checkbox

// Loop through checkboxes
// Update checked property

// Add event listener

// Get target of event
// If not checked
// Uncheck 'A11' checkbox

// Loop through checkboxes
// Add event listener

FORM ENHANCEMENT & VALIDATION

RADIO BUTTONS

This example lets users say how they heard about a

website. Every time the user selects a radio button,

the code checks if the user selected the option that

says other, and one of two things happens:

® |f other is selected, a text input is shown so they
can add further detail.

@ |f the first two options are selected, the text box
is hidden and its value is emptied.

How did you hear of us?

@ Search engine
® Newspaper or magazine

© Other

1. Place the script in an IIFE (not shown in flowchart).

2. The code starts out by setting up variables to hold
the form, all radio buttons, the radio button for the
other option, and the text input.

3. The text input is hidden. This uses JavaScript

to update the class attribute so that the form still
works if the user has JavaScript disabled.

4, Using a for loop, an event listener is added to
each of the radio buttons. When one of them is
clicked, the radioChanged() function is called.

5. The radioChanged() function is declared.

6. If other is checked, the value of the hide variable
is set to be a blank string, otherwise it is set to hide.
7. The hide variable is, in turn, used to set the value
of the class attribute on the text input. If it is blank,
the other option is shown; if it has a value of hide,
the text input is hidden.

8. If the hide attribute has a value of hide, then the
contents of the text input are emptied (so that the
text input is blank if it is shown).

FORM ENHANCEMENT & VALIDATION

Create variables:
form: the form
e options: all of the radio buttons
other: only the other radio button
otherText: the other-text input
hide: will store if other-text is hidden or not

+

1
3] Set class of other-text to hide

*

(4] LOOP THROUGH EACH RADIO BUTTON

Event: click on this radio element
|

o FUNCTION: radioChanged()
Shows/hides the hidden text input

Is the other
G ? option checked? ?

Set hide variable Clear hide
4 to hide variable
L)
L A
0 Set class to value of hide variable

+

- Is the hidden
9 ? variable truthy? ?

Clear text input

— GO TO NEXT RADIO BUTTON s’

RADIO BUTTONS

c13/show-option.html

<form id="how-heard" action="/heard" method="post">

<input type="radio" name="heard" value="search" id="search" />
<label for="search">Search engine</label>

<input type="radio" name="heard" value="print" id="print" />
<label for="print">Newspaper or magazine</label>

<input type="radio" name="heard" value="other" id="other" />
<label for="other">0ther</label>

<input type="text" name="other-input" id="other-text" />

<input id="submit" type="submit" value="submit" />

</form>

JAVASCRIPT c13/js/show-option.js
@ (function(){

var form, options, other, otherText, hide; // Declare variables
form = document.getElementById('how-heard!); // Get the form
options = form.elements.heard; // Get the radio buttons
other = document.getElementById('other'); // Other radio button
otherText = document.getElementById('other-text'); // Other text input
otherText.className = 'hide'; // Hide other text input
for (var i = [0]; i < options.length; i++) { // Loop through radios
addEvent (options[i], 'click', radioChanged); // Add event Tistener

}

function radioChanged() {

hide = other.checked ? '' : 'hide'; // 1s other checked?

otherText.className = hide; // Text input visibility

if (hide) { // If text input hidden
otherText.value = ''; // Empty its contents

@ e00 © ©

}
}
10)s

FORM ENHANCEMENT & VALIDATION

SELECT BOXES

The <select> element is more complex than the other form controls.
Its DOM node has a number of extra properties and methods.
Its <option> elements contain the values a user can select.

This example features two select boxes. When the user selects an option from the drop-
When the user selects an option from the first down list, the change event fires. This event is often
select box, the contents of the second select box are used to trigger scripts when the user changes the
updated with corresponding options. value of a select box.

In the first select box, users can choose to rent a The <select> element also has some extra
camera or a projector. When they make their choice, properties and methods that are specific to it;

a list of options are shown in the second select box. these are shown in the tables below.

Because this example is a bit more complex than the

ones you have seen so far in this chapter, the HTML If you want to work with the individual options
and screen shots are shown to the right, and the the user can select from, a collection of <option>
JavaScript file is discussed on p586-p587. elements is available.

PROPERTY DESCRIPTION

options A collection of all the <option>elements

selectedIndex Index number of the option that is currently option

Tength Number of options

multiple Allows users to select multiple options from the select box

(Rarely used because the user-experience is not very good)

selectedOptions A collection of all the selected <option> elements

METHOD DESCRIPTION

add(option, before) Adds an item to the list:
The first parameter is the new option; the second is the element it should go before
If no value is given, the item will be added to the end of the options

remove (index) Removes an item from the list:
Has only one parameter - the index number of the option to be removed

FORM ENHANCEMENT & VALIDATION

SEFECTBOXES

HTML cl3/populate-selectbox.html

<label for="equipmentType">type</label>

<select id="equipmentType" name="equipmentType">
<option value="choose">Please choose a type</option>
<gption value="cameras">camera</option>
<gption value="projectors">projector</option>

</select>

<label for="model">model</label>

<select id="model" name="model">
<option>Please choose a type first</option>

</select>

<input id="submit" type="submit" value="submit" />

Equipment hire Equipment hire

type type

model model e 3
e ———

Equipment hire Equipment hire

type OO camera ¢ |
model model
[R
Yashica 30
Pathescape Super-8 Relax
Canon 512

FORM ENHANCEMENT & VALIDATION

SELECT BOXES

1. Place the script in an IIFE (not shown in flowchart). [2) Create variables:

" type & model store the drop-down boxes
2. Variables hold the two select boxes. . P Closteohicin
3. Two objects are created; each one holds options cameras & projectors store the equipment lists

used to populate the second select box (one has *

types of cameras, the other has types of projectors). @ Event: change on equipment type select box
4. When the user changes the first select box, an |

event listener triggers an anonymOLfs function. ANONYMOUS FUNCTION:
5. The anonymous function checks if the first select Populates the drop-down box
box has a value of choose.

6. If so, the second select box is updated with just

e Is the value
one option, which tells the user to select a type. choose?
7. No further processing is needed, and the return | (6) |
keyword exits the _anonymous funct:(?n (until the Call getModels () & Add <options
user changes the first select box again). 0 o matching object 'Please choose
. . T '
8. If a type of equipment has been selected, the in models variable atype.. T“

anonymous function continues to run, and a models
variable is created. It will store one of the objects
defined in step 3 (cameras or projectors).
This correct object is retrieved using the
getModels() function declared at the end of the
script (9+10). The function takes one parameter
this.value, which corresponds to the value from
the option that was selected in first select box.
9. Inside the getModels () function, an if statement
checks if the value passed in was cameras; if so, it
returns the cameras object.
10. If not, it continues to run, checking to see if
the value was projectors, and if so, it returns the FUNCTION: getModels()

. . Get models for selected equipment type
projectors object.
11. A variable called options is created. It will hold
all the <option> elements for the second select box. (9] ? el ?

or cameras:

When this variable is created the first <option=>is
added to it; it tells users to choose a model. |
12. A for loop goes through the contents of the Return object: cameras
object that was placed in the models variable in step
(8-10). Inside the loop, key refers to the individual

items in the object. o) Is user looking

13. Another <option> element is created for every ? TOrpraIoEiors ?
item in the object. Its value attribute uses the |
property name from the object. The content that sits
between the <option> tags is that property's value.

14. The options are then added to the second select
box using the innerHTML property.

Create variable: options
Add <option> 'Please choose a model’

LOOP THROUGH EACH KEY IN OBJECT

Add <option> element

L GO TO NEXT KEY IN OBJECT

After loop: update <select> box

® 066 6

Return object: projectors

FORM ENHANCEMENT & VALIDATION

SELEC T BOXES

JAVASCRIPT c13/js/populate-selectbox.js

@ (function(){
(:}' var type = document.getElementById('equipmentType');// Type select box

| var model = document.getElementById('model'); // Model select box
[var cameras = { // Object stores cameras
bolex: 'Bolex Paillard H8',
yashica: 'Yashica 30°',
pathescape: 'Pathescape Super-8 Relax',
canon: 'Canon 512'

}s

® var projectors = |

kodak: 'Kodak Instamatic M55',

bolex: 'Bolex Sound 715',

eumig: 'Eumig Mark S',

sankyo: 'Sankyo Dualux'

// Store projectors

L 34

// WHEN THE USER CHANGES THE TYPE SELECT BOX

(@ addEvent(type, 'change', function() {
® if (this.value === 'choose') { // No selection made
® model.innerHTML = '<option>Please choose a type first</option>';
@ return; // No need to proceed further
}
® var models = getModels(this.value); s // Select the right object
// LOOP THROUGH THE OPTIONS IN THE OBJECT TO CREATE OPTIONS
(@) var options = '<option>Please choose a model</option>';
() for (var key in models) { // Loop through models
@ options += '<option value="' + key + '">' + models[key] + '</option>';
} // If an option could contain a quote, key should be escaped
model.innerHTML = options; // Update select box
s
function getModels(equipmentType) {
(:}[if (equipmentType === 'cameras') |{ // 1f type is cameras
return cameras; // Return cameras object
ﬂD{ } else if (equipmentType === 'projectors') { // If type is projectors
return projectors; // Return projectors object

FORM ENHANCEMENT & VALIDATION 3

588

TEXTAREA

In this example, users can enter a biography of up to
140 characters. When the cursor is in the textarea,
a element will be shown with a count of how
many characters the user has remaining. When the
textarea loses focus, this message is hidden.

Profile

Short bio (up to 140 characters)

I first discovered the art of Super 8 in a dusty old box in my father's attic. The
beautiful colors of his footage of New York in 1069

5 characters

1. Place the script in an IIFE (not shown in flowchart).

2. The script sets up two variables to hold:

a reference to the <textarea> element and

a reference to the that holds the message.
3. Two event listeners monitor the <textarea>.

The first checks for when the element gains focus;
the second checks for a input event. Both events
trigger a function called updateCounter() (6-11)
The input event does not work in IE8, but you can
use keyup to support older browsers.

4, A third event listener triggers an anonymous
function when the user leaves the <textarea>.

5. If the number of characters is less than or equal
to 140 characters, the length of the bio is okay, and
it hides the message (because it is not needed when
the user is not interacting with the element).

6. The updateCounter() function is declared.

7. It gets a reference to the element that called it.

8. A variable called count holds the number of
characters left to use (it does this by subtracting the
number of characters used from 140).

9.if... elsestatements are used to set the CSS
class for the element that holds the message (these
can also show the message if it was hidden).

10. A variable called charMsg is created to store the
message that will be shown to the user.

11. The message is added to the page.

FORM ENHANCEMENT & VALIDATION

Create variables:
bio: <textarea> element for bio
bioCount: element to show characters left

4

] I
Event: focus & input on bio <textarea>

I

FUNCTION: updateCounter()
Updates the count and/or message

Get target of event (<textarea>)
|

Create variable: count: result of
calculation (140 minus the length of
content in <textarea>)

4

? Is count < 0? ?

Add class: error

? Is count <= 15? ?

Add class: good Add class: warn
L J
X

Create variable: charMsg: message
containing number of characters left

-

I
Write message to screen

Event: blur on bio <textarea>

|

ANONYMOUS FUNCTION:
Hides the counter

? Is count <= 140? ?

Hide the counter .

CHARACTER COUNTER

cl3/textarea-counter.html
<label for="bio">Short Bio (up to 140 characters)</label>
<textarea name="bio" id="bio" rows="5" cols="30"></textarea>

<script src="js/utilities.js"></script>
<script src="js/textarea-counter.js"></script>

JAVASCRIPT c13/js/textarea-counter.js
@ (function () {

(:}[var bio
var bioCount

document.getElementById('bio'); // <textarea> element
document.getElementById('bio-count'); // Character count el

n

addEvent (bio, 'focus', updateCounter); // Call updateCounter() on focus
addEvent(bio, 'input', updateCounter); // Call updateCounter() on input
addEvent(bio, 'blur', function () { // On leaving the element
if (bio.value.length <= 140) { // If bio is not too long
bioCount.className = 'hide'; // Hide the counter
}

1)s

function updateCounter(e) {

@® 006 ©

var target = e.target || e.srcElement; // Get the target of the event
var count = 140 - target.value.length; // How many characters are left
if (count < 0) { // 1f less than O chars free
bioCount.className = 'error'; // Add class of error
} else if (count <= 15) { /] 1f less than 15 chars free
O} bioCount.className = 'warn'; // Add class of warn
} else { // Otherwise
bioCount.className = 'good'; // Add class of good
T
(©) var charMsg = '' + count + '' + ' characters'; // Message to display
() bioCount.innerHTML = charMsg; // Update the counter element
}
10);

FORM ENHANCEMENT & VALIDATION

HTMLS ELEMENTS

& ATTRIBUTES

HTMLS5 adds form elements and attributes to perform tasks that had
previously been performed by JavaScript. However, their appearance can
vary a lot between different browsers (especially their error messages).

SEARCH

<input type="search"
placeholder="Search...
autofocus>

SAFARI

 sheepdog

F oo
')

FIREFOX

! sheepdog !

CHROME

| sheepdog

Safari rounds the corners of

its search inputs to match the
user interface of the operating
system. When you enter text,

Safari shows a cross icon which,

when clicked or tapped, allows
the user to clear the text from
the field. Other browsers show

an input like any other text input.

EMAIL, URL, PHONE NUMBER
<input type="email"> <input type="number"
<input type="url"> min="0"
<input type="telephone"> max="10"
step="2"
value="6">
SAFARI SAFARI
[hello@iavascriptbook.com| CHEl
FIREFOX FIREFOX
| hello@javascriptbook.com | 6
CHROME CHROME
hello@javascriptbook.| 6]

Email, URL, and phone inputs all
look like text input fields, but the
browser performs checks on the
data entered into these inputs
to see if it is in the right format
to be an email address, URL, or
phone number, then shows a
message if it is not.

FORM ENHANCEMENT & VALIDATION

Number inputs sometimes add
arrows to increase or decrease
the number specified (also
known as spinboxes). You

can specify a minimum and

a maximum value, a step (or
increment), and an initial value.
The browser checks that the
user entered a number, and
shows a message if a number
was not entered.

ATTRIBUTE DESCRIPTION

autofocus

Gives focus to this element when the page is loaded

placeholder Content of this attrabute is shown in the <input> element as a hint (see p594)

required Checks that the field has a value - could be text entered or an option selected (see p606)

mm M ,n,mum < i o R B S st i AR
max Maxnmum permlttee..e;'mber --------
step |nterva[sbywh,ch numbe;;;ﬂ;;j[d e decrea;; ..
value Default value for a number when the contro} first Ioadsonthepage ..

novalidate

RANGE

<input type="range"
min="0"
max="10"
step="2"
value="6">

SAFARI
#’;F

FIREFOX

CHROME

mgmﬂ(‘ﬁm

The range input offers another
way to specify a number - this

time the control shows a slider.

As with the spinbox, you can
specify a minimum and a
maximum value, a step, and an
initial value.

COLOR PICKER

<input type="color">

CHROME

[

At the time of writing, Chrome
and Opera are the only browsers
to implement a color input. It
allows users to specify a color.
When they click on the control,
the browser will usually show the
operating system's default color
picker (except for Linux, which
offers a more basic palette). It
inserts a hex color value based
on the user's selection.

Used on the <form> element to disable the HTMLS5 built-in form validation (see p604)

DATE

<input type="date"> (below)
<input type="month">
<input type="week">

<input type="time">

<input type="datetime">

CHROME

| April 2015 [+]]e

Mon Tue Wed Thu Fri Sat Sun
) 1 2 3 4 5
6 7 8 9 10 11 12
13 214 15 (36 17 18 19
20 21 2 23 24 25 26
27 228 29 30 3

There are several different date
inputs available. At the time of
writing, Chrome was the only
browser to have implemented a
date picker.

FORM ENHANCEMENT & VALIDATION

SUPPORT & STYLING

HTML5 form elements are not supported in all browsers and, when they
are, the inputs and error messages can look very different.

DESKTOP BROWSERS

At the time of writing, many developers were still
using JavaScript instead of these new HTML5
features because:

@ Older browsers do not support the new input

types (they just show a text box in their place).

@ Different browsers present the elements and
their error messages in very different ways
(and designers often want to give users a
consistent experience across browsers).

Below, you can see how the error messages look

very different in two of the main browsers.

ERROR MESSAGE FOR AN EMAIL INPUT IN CHROME:

|hello] |

‘ n Please enter an email address. |

MOBILE

On mobile devices the situation is very different, as

most modern mobile browsers:

® Support the main HTML5 elements

® Show a keyboard that's adapted to the type:
email brings up a keyboard with the @ sign
number type brings up a number keyboard

® Give helpful versions of the date picker

Therefore, in mobile browsers, the new HTML5

types and elements make forms more accessible

and usable for your visitors.

DATE INPUT IN 10S:
*e0002UK 3G 4B T
javascriptbook com (]

22 Jon 2005 R4

ERROR MESSAGE FOR AN EMAIL INPUT IN FIREFOX:

hello

/7

Please enter an email address.

FORM ENHANCEMENT & VALIDATION

20 November 2013
21 December 2014
22 January 2015

23 February 2016
24 March 2017

CURRENT APPROACHES

Until more visitors' browsers support these new features, and do so in a
consistent way, developers will think carefully about how they use them.

POLYFILLS

A polyfill is a script that provides
functionality you may expect a
browser to support by default.
For example, because older
browsers do not support the new
HTMLS elements, polyfills can
be used to implement a similar
experience / functionality in
those older browsers. Typically
this is achieved using JavaScript
or a jQuery plugin.

Polyfills often come with CSS
files that are used to style the
functionality the script adds.

You can find a list of polyfills for
various features here:
http://html5please.com

There is an example of how to
use a polyfill on p594, where
you see how to get the HTML5S
placeholder attribute to show
up in older browsers.

FEATURE DETECTION

Feature detection means
checking whether a browser
supports a feature or not.

You can then decide what to do if
a feature is, or is not, supported.
On p415 you learned about

a script called modernizr. js,
which tests for browser features.

Commonly, if a feature is not
supported, a polyfill script will be
loaded to emulate that feature.
To save loading the polyfill script
into browsers that do not need it,
Modernizr includes a conditional
loader; it will only load a script if
the test indicates that the script
is needed.

Another popular conditional
loader is Require. js (available
from http://requirejs.org),
but it is a bit more complex when
you are first starting out because
it offers many other features.

FORM ENHANCEMENT & VALIDATION

CONSISTENCY

Many designers and developers
want to control the appearance
of form controls and error
messages to give a consistent
experience across all browsers.
(Consistency in error messages
is considered important
because different styles of error
messages can confuse users.)

Therefore, the long example
used at the end of this chapter
will disable HTMLS5 validation
and try to use JavaScript
validation as its first choice.
(HTML5 validation is only
shown if the user does not have
JavaScript enabled; it is used as a
fallback in modern browsers.)

In that example, you also see
iQuery Ul used to ensure that
the date picker is consistent
across all devices, with as little
code as possible.

PLACEHOLDER FALLBACK

The HTMLS placeholder attribute lets you put
words in text inputs (to replace labels or to add hints
about what to enter). When the input gains focus
and the user starts typing, the text disappears. But

it only works in modern browsers, so this script
ensures that the user sees placeholder text in older
browsers too. It is a basic example of a polyfill.

Username:

1. Place the script in an IIFE (not shown in flowchart).
2. Check if the browser supports the HTMLS
placeholder attribute. If it does, there is no need for
the fallback. Use return to exit the function.

3. Find out how many forms are on the page using
the 1ength property of the forms collection.

4. Loop through each <form=> element on the page
and call showPlaceholder() for each one, passing it
the collection of elements in that form.

5. The showPlaceholder() function is declared.

6. A for loop runs through elements in the collection.
7. An if statement checks each element to see if the
element has a placeholder attribute with a value.
8. If there is no placeholder attribute, continue
tells it to go on to the next element. Otherwise, it:

9. Changes the text color to gray, and sets the value
of the element to be the placeholder text.

10. An event listener triggers an anonymous
function when the element gains focus.

11. If the current value of the element matches the
placeholder text, the value is cleared (and color
changed to black).

12. An event listener triggers an anonymous function
when the element loses focus.

13. If the input is empty, the placeholder text is
added back in (and its color changed to gray).

FORM ENHANCEMENT & VALIDATION

Is placeholder
supported?

i

4

(3] Create variable: length: number of forms
+

LOOP THROUGH EACH <form> ELEMENT ON PAGE

Call function: showPlaceholder()

GO TO NEXT FORM

FUNCTION: showPlaceholder()
add placeholder to elements without one

(6] LOOP THROUGH EACH ELEMENT IN FORM

Create variable: el: current element
+
1

Set color to gray

Set placeholder text

Does it use
placeholder?

.

5 <
1
@ Event: focus on this element
| +
ANONYMOUS FUNCTION:
0 If placeholder text is in the
input, empty it & make text
black

Event: blur on this element
|
ANONYMOUS FUNCTION:

If the input is empty, show the
placeholder text in gray

GO TO NEXT ELEMENT ———

PLACEHOEDER POEYFILE

@ (function () {

// Test: Create an input element, and see if the placeholder is supported
@ if ('placeholder' in document.createElement('input')) {
return;

}

}

@0 00 © ©

© ® @

®

}
}
10)s

var length
for (Vari = 0’ :]]ength; i< -!; _i++) {
showPlaceholder(document.forms[i].elements);

document. forms.length;

function showPlaceholder(elements) {
for (var i = 0, 1 = elements.length; i < 1; i++) { // For each element

var el = elements[i];
if (lel.placeholder) {
continue;

}
el.style.color = '#666666';
el.value = el.placeholder;

addEvent(el, 'focus', function () {

if (this.value === this.placeholder) {

this.value = '';
this.style.color = '#000000';
}
1)

addEvent(el, 'blur', function () {
if (this.value === "'') {
this.value = this.placeholder;
this.style.color = '#666666';
1
s

c13/js/placeholder-polyfill.js

// Place code in an IIFE

// Get number of forms
// Loop through each one
// Call showPlaceholder()

// Declare function

// Store that element

// If no placeholder set
// Go to next element

// Otherwise

// Set text to gray

// Add placeholder text

J/ 1f it gains focus

// If value=placeholder
// Empty text input

// Make text black

// On blur event

// If the input is empty
// Make value placeholder
// Make text gray

// End of for loop
// End showPlaceholder()

There are a few differences from the HTML5's placeholder attribute: e.g., if the user deletes their text, the
placeholder only returns when the user leaves the input (not immediately - as with some browsers). It will not
submit text that has the same value as the placeholder. Placeholder values may be saved by autocomplete.

FORM ENHANCEMENT & VALIDATION ;

POLYFILL USING
MODERNIZR & YEPNOPE

You met Modernizr in Chapter S, here you can see it used with a
conditional loader so that it only loads a fallback script if one is needed.

Modernizr lets you test whether or not a browser
and device support certain features; this is known
as feature detection. You can then take different
courses of action depending on whether or not the
features were supported. For example, if an older
browser does not support a feature, you might
decide to use a polyfill.

Modernizr is sometimes included in the <head> of an
HTML page when it needs to perform checks before
the page has loaded (for example, some HTML5 /
CSS3 polyfills must be loaded before the page).

MODERNIZR ON ITS OWN

Each feature you test using Modernizr becomes

a property of the Modernizr object. If the feature
is supported, the property contains true; if not, it
contains false. You then use the properties of the
Modernizr object in a conditional statement as
shown below. Here, if Modernizr's cssanimations
property does not return true the code in the curly
braces runs.

if (IModernizr.cssanimations) {
// CSS animations are not supported
// Use jQuery animation instead

}

FORM ENHANCEMENT & VALIDATION

Rather than loading a polyfill script for everyone who
visits your site (even if they do not need to use it),
you can use something called a conditional loader,
which will let you load different files depending on
whether a condition returns true or false. Modernizr
is commonly used with a conditional loader called
YepNope. js, so polyfills are only loaded if needed.

Once you have included the YepNope script in your
page, you can call the yepnope() function. It uses
object literal syntax to indicate a condition to test,
and then what files to load depending on whether
the condition returned true or false.

MODERNIZR + YEPNOPE

YepNope is passed an object literal, which usually
contains a minimum of three properties:
® test is the a condition being checked.
Here Modernizr is used to check if
cssanimations are supported.
® yep is the file to load if the condition returns true.
@ nope is the file to load if the condition returns
false (here it loads two files using array syntax).

yepnope ({

test: Modernizr.cssanimations,

yep: 'css/animations.css’',

nope: ['js/jquery.js', 'js/animate.js']
s

CONDITIONAL LOADING
OF A POLYFEILL

This example tests if the browser
supports the <input> element
using a type attribute with a
value of number. Both Modernizr
and YepNope are included in the
<head> of the page so that the
fallback is shown correctly.

c13/number-polyfill.html

<head>
<script src="js/modernizr.js"></script>
<script src="js/yepnope.js"></script>
<script src="js/number-polyfill-eg.js"></script>
</head>
<body> The yepnope () function takes an
<label for="age">Enter your age:</label> object literal as a parameter. It's

<input type="number" id="age" /> properties include:
</body> ® test:the feature you are

checking for. In this case it

is checking Modernizr to

see if the number input is
c13/js/number-polyfill-eg.js supported.

@ yep: not used in this example
can load files if the feature js
supported.

® nope: what to do if feature is
not supported (you can load

| multiple files in an array).

b @ complete: can run a function

s when the checks are
complete, and any necessary
files have loaded. Here it adds

RESULT a message to the console to
demonstrate how it works.

yepnope ({
test: Modernizr.inputtypes.number,
nope: ['js/numPolyfill.js', 'css/number.css'],
complete: function() {
console.log('YepNope + Modernizr are done');

Note that Modernizr stores the
value of the <input> element's
type attribute, in a child object
called inputtypes. E.g., to check
if the HTMLS date selector is
supported, you use:
Modernizr.inputtypes.date
(not Modernizr.date).

Login

Enter your age:

21

FORM ENHANCEMENT & VALIDATION ,

FORM VALIDATION ,

The final section of this chapter uses one big script to discuss the topic of
form validation. It helps users give you responses in the format you need.
(The example also has some form enhancements, too.)

Validation is the process of checking whether a value In this section you see how to check the values a
meets certain rules (for example, that a password user enters into a form. These checks happen when
has a minimum number of characters). It lets you the form is submitted. To do this users could press
tell users if there is a problem with the values they submit or use the Enter on the keyboard, so the
entered so that they can correct the form before validation process will be triggered by the submit
they resubmit it. This has three key advantages: event (not the c1ick event of a submit button).
@ You are more likely to get the information you We will look at validation using one long example.
need in a format you can use. You can see the form below, and the HTML is shown
@ |tis faster to check values in the browser than it on the right. It uses HTMLS form controls, but the
is to send data to the server to be checked. validation is going to be done using JavaScript to 2
@ | saves resources on the server. make sure that the experience is consistent across

all browsers (even if they do support HTML5).

Profile

Birthday:

SUER [

FILNN SOCIETY

Confirm password: Register =

FORM ENHANCEMENT & VALIDATION

FORM HTML

This example uses HTML5 markup, but validation is Due to limited space, the code below only shows the
performed using JavaScript (not HTMLS validation). form inputs (not the markup for the columns).

cl3/validation.html

<form method="post" action="/register">
<l-- Column 1 -->
<div class="name">
<label for="name" class="required">Name:</1abel>
<input type="text" placeholder="Enter your name" name="name" id="name"
required title="Please enter your name">
</div>
<div class="email">
<label for="email" class="required">Email:</label>
<input type="email" placeholder="you@example.com" name="email" id="email"
required>
</div>
<div class="password">
<label for="password" class="required">Password:</1abel>
<input type="password" name="password" id="password" required>
</div>
<div class="password">
<label for="conf-password" class="required">Confirm password:</label>
<input type="password" name="conf-password" id="conf-password" required>
</div>
<l-- Column 2 -->
<div class="birthday">
<label for="birthday" class="required">Birthday:</1abel>
<input type="date" name="birthday" id="birthday" placeholder="yyyy-mm-dd"
required>
<div id="consent-container" class="hide">
<label for="parents-consent"> You need a parent's permission to join.
Tick here if your child can join:</label>
<input type="checkbox" name="parents-consent" id="parents-consent">
</div>
</div>
<div class="bio">
<label for="bio">Short Bio (max 140 characters):</label>
<textarea name="bio" id="bio" rows="5" cols="30"></textarea>
140
</div>
<div class="submit"><input type="submit"></div>
</form>

FORM ENHANCEMENT & VALIDATION E

VALIDATION OVERVIEW

This example has over 250 lines of code and will take 22 pages to explain.
The script starts by looping through each element on the page
performing two generic checks on every form control.

GENERIC CHECKS

First, the code loops through every element in the

form and performs two types of generic checks.

They are generic checks because they would work

on any element, and would work with any form.

1. Does the element have the required attribute?
If so, does it have a value?

2. Does the value match with the type attribute?
E.g., Does an email input hold an email address?

CHECKING EACH ELEMENT

To work through each element in the form, the
script makes use the form's elements collection
(which holds a reference to each form control). The
collection is stored in a variable called elements. In
this example, the elements collection will hold the
following form controls. The right-hand column tells
you which elements are required to have a value:

INDEX ELEMENT REQUIRED
0 elements.name Yes Confirm password:
1e]ementsema”Y%
2 ,,,,,,,,, e]ementspasswwd Yes
3 elements.conf-password Yes
...... 4e]ement5b1rthdayYes
"5 elements.parents-consent Ifunder13
6EIementSmeo

@ FORM ENHANCEMENT & VALIDATION

Some developers proactively cache form elements in
variables in case validation fails. This is a good idea,
but to keep this (already very long) example simpler,
the nodes for the form elements are not cached.

If you have not already done so, it would be helpful
to download the code for this example from the
website, javascriptbook.com, and have it ready when
you are reading through the following pages.

Once the generic checks have been performed, the script then makes
some checks that apply to individual elements on the form.
Some of these checks apply only to this specific form.

Profile

Birthday:

2006-01-24

You need a parent’s permisstion to
join. Tick here if your child can
join: m

Short Bio (max 140 characters):

| first discovered the art of Super 8 in a dusty old
box in my father's attic. The beautiful colors of his
footage of New York in 1969 made me wonder if

CUSTOM VALIDATION TASKS

Next the code performs checks that correspond with

specific elements in the form (not all elements):

® Do the passwords match?

@ |s the bio in the textarea under 140 characters?

@ |f the user is less than 13 years old, is the parental
consent checkbox selected?

These checks are specific to this form and only apply

to selected elements in the form (not all of them).

TRACKING VALID ELEMENTS

To keep track of errors, an object called valid is

created: As the code loops through each element

performing the generic checks, a property is added

to the valid object for each element:

@ The property name is the value of its id attribute.

@® The value is a Boolean. Whenever an error is
found on an element, this value is set to false.

PROPERTIES OF THE VALID OBJECT

valid.name

valid.email

valid.password

FORM ENHANCEMENT & VALIDATION

DEALING WITH ERRORS

If there are errors, the script needs to prevent the form being submitted
and tell the user what they need to do in order to correct their answers.

As the script checks each element, if an error is

found, two things happen:

@ The corresponding property of the valid object
is updated to indicate the content is not valid.

@ A function called setErrorMessage() is called.
This function uses jQuery's .data() method,
which allows you to store data with the element.
So the error message is stored in memory along
with the form element that has the problem.

Each time the user tries to submit the form, if an
error was not found on an element it is important
to remove any error messages from that element.
Consider the following scenario:

a) A user filled out a form with more than one error.
b) This triggered multiple error messages.

) The user fixes one problem, so its corresponding
message must be removed, while error message(s)
for problems that have not been fixed must remain
visible.

After each element has been checked, then error
messages can be shown using showErrorMessage().
It retrieves the error message and puts itin a
element, which is added after the form control.

Therefore, when each of the elements is looped
through, either an error message is set, or the error
message is removed.

form
|
elements

I
| [| 1 | 1 |

name email password conf-password birthday parents-consent bio
key/value

Above you can see a representation of the form and
its elements collection. There was a problem with
the email input, so the .data() method has stored a
key/value pair with that element.

FORM ENHANCEMENT & VALIDATION

This is how the setErrorMessage() function will
store the error messages to show to the user.

If the error is fixed, then the error value is cleared
(and the element with the error message removed).

SUBMITTING THE FORM

Before sending the form, the script checks whether there were any errors.
If there were, the script stops the file from being submitted.

In order to check whether any errors were found, a
variable called isFormValid is created and is given
a value of true. The script then loops through each
property of the valid object, and if there was an
error (if any property of that object has a value of
false), then there is an error in the form and the
isFormValid variable is also set to false.

So, isFormValid is being used as a flag (you can
think of it being like a master switch) if an error is
found, it is turned off. At the end of the script, if
isFormValidis false then an error must have been
found and the form should not be submitted (using
the preventDefault () method).

Create variable: isFormValid
+

LOOP THROUGH PROPERTIES OF valid oBJECT

? Is value false? ?

GO TO NEXT PROPERTY

Set isFormValid to false

|
Prevent default action of form submitting

It is important to check and process all of the
elements before deciding whether to submit the
form so that you can show all of the relevant error
messages in one go.

If every value has been checked, the user can be
shown all of the things they have to amend before
re-submitting the form.

If the form only showed the first error it came
across, and stopped, the user would only see one
error each time they submitted the form. This could
soon become frustrating for the user if they were to
keep trying to submit the form and see new errors.

Y ~
PROPERTIES OF valid OBJECT
valid.name true
valid.email true
valid.password true
valid.conf-password true
valid.birthday false —
valid.parents-consent false

= | valid.bio true

K y

The loop stops when the first error is found.
(Note that error messages are already visible.)

FORM ENHANCEMENT & VALIDATION

CODE OVERVIEW

On the right is an outline of the validation code, split into four sections.
On line 3, an anonymous function is called when the form is submitted.
It orchestrates the validation, in turn calling other functions (not all of
which are shown on the right-hand page, see further pages for more).

A: SET UP THE SCRIPT

1. The code lives inside an IIFE (creating function-
level scope).

2. This script uses JavaScript validation to ensure
that error messages look the same on all browsers,
so HTMLS validation is turned off by setting the
noValidate property of the form to true.

3. When the user submits the form, an anonymous
function is run (this contains the validation code).
4. elements holds a collection of all form elements.
5.valid is the object that keeps track of whether or
not each form control is valid. Each form control is
added as a property of the valid object.

6. 1sValid is a flag that is re-used to check whether
individual elements are valid.

7. isFormValidis a flag that is used as a master
switch to check whether the entire form is valid.

C: PERFORM CUSTOM VALIDATION

14. After the code has looped through every element
on the form, the custom validation can occur. There
are three types of custom validation occurring (each
one uses its own function):

i) Is the bio too long? See p615.

ii) Do passwords match?

iii) Is user old enough to join on own? If not, is the
parental approval checkbox selected? See p617.

15. If an element fails one of the custom validation
checks, showErrorMessage () will be called, and the
corresponding property in the valid object will be
set to false.

16. If the element passes the check,
removeErrorMessage() is called for that element.

@ FORM ENHANCEMENT & VALIDATION

B: PERFORM GENERIC CHECKS

8. The code loops through each form control.

9. It performs two generic checks on each one:

i) Is the element required? If so, does it have a
value? Uses validateRequired(). See p606.

ii) Does the value correspond with the type of data it
should hold? Uses validateTypes(). See p610.

If either of these functions does not return true,

then isValidis set to false.

10. Anif...else statement checks if that element

passed the tests (by checking if isValid is false).

1. If the control is not valid, showErrorMessage ()

shows an error message to the user. See p609.

12. If it is valid, removeErrorMessage() removes any

errors associated with that element.

13. The value of the element's id attribute is added

as a property valid object; its value is whether or

not the element was valid.

D: DID THE FORM PASS VALIDATION?

The valid object now has a property for each
element, and the value of that property states
whether or not the element was valid or not.

17. The code loops through each property in the
valid object.

18. An if statement checks to see if the element
was not valid.

19. If it was not valid, set isFormValid to false and
stop the loop.

20. Otherwise, isFormValid is set to true.

21. Finally, having looped through the valid object,
if isFormValid is not true, the preventDefault()
method prevents the form being submitted.
Otherwise, it is sent.

JAVASCRIPT cl13/js/validation.js

// SET UP THE SCRIPT
@ (function () {

@ document.forms.register.noValidate = true; // Disable HTML5 validation
® $('form').on('submit', function(e) { // When form is submitted
O) var elements = this.elements; // Collection of form controls
® var valid = {}; // Custom valid object
® var isValid; // isValid: checks form controls
@ var isFormValid; // isFormValid: checks entire form
// PERFORM GENERIC CHECKS (calls functions outside the event handler)
for (var i = 0, 1 = (elements.length - 1); i < 1; i++) {
// Next line calls validateRequired() see p606 & validateTypes() p610
® isValid = validateRequired(elements[i]) && validateTypes(elements[i]);
@) if (lisvalid) { // 1f it does not pass these two tests
@) showErrorMessage(elements[i]); // Show error messages (see p608)
} else { // Otherwise
® removeErrorMessage(elements[i]); // Remove error messages
} // End if statement
® valid[elements[i].id] = isValid; // Add element to the valid object
} // End for loop

// PERFORM CUSTOM VALIDATION (just 1 of 3 functions - see p614-p617)

if (lvalidateBio()) { // Call validateBio(), if not valid
showErrorMessage(document.getElementById('bio')); // Show error
valid.bio = false; // Update valid object-not valid

} else { // Otherwise
removeErrorMessage (document.getElementByld('bio')); // Remove error

} // two more functions follow here (see p614-p617)

®@ 9@

// DID IT PASS / CAN IT SUBMIT THE FORM?
// Loop through valid object, if there are errors set isFormValid to false

(@) for (var field in valid) { // Check properties of the valid object
@® if (tvalid[field]) { // If it is not valid
isFormValid = false; // Set isFormValid variable to false
@® break; // Stop the for loop, error was found
} // Otherwise
@ isFormValid = true; // The form is valid and OK to submit
}
// If the form did not validate, prevent it being submitted
if (lisFormValid) { // If isFormValid is not true
@ e.preventDefault(); // Prevent the form being submitted
}
1); // End event handler
v // Functions called above are here
10)s // End of IIFE

FORM ENHANCEMENT & VALIDATION

REQUIRED FORM

ELEMENTS

The HTML5 required attribute indicates a field must have a value.
Our validateRequired() function will first check for the attribute.
If present, it then checks whether or not it has a value.

validateRequired() is called for
each element individually (see
step 9, p605). Its one parameter
is the element it is checking.

In turn, it calls upon three other
named functions.,

i) isRequired() checks for the
required attribute.

ii) isEmpty() can check if the
element has a value.

iii) setErrorMessage() sets error
messages if there are problems.

function validateRequired(el) {
if (isRequired(el)) {
var valid = !isEmpty(el);
if (lvalid) {

setErrorMessage(el, 'Field is required');

}

return valid;

// Is this element required

// 1s value not empty (true/false)
// 1f valid variable holds false
// Set the error message

// Return valid variable (true/false)

}

return true;

}

®
@
®
@
®
O,

// If not required, all is okay

A: DOES IT HAVE A
REQUIRED ATTRIBUTE?

1. An if statement uses a
function called isRequired()
to check whether the element
carries the required attribute.
You can see the isRequired()
function on the right-hand page.
If the attribute is present, the
subsequent code block is run.

6. If not, the code skips to step to
step 6 to say this element is OK.

B: IF SO, DOES IT HAVE
A VALUE?

If the field is required, the next
step is to check whether or not

it has a value. This is done using
a function called isEmpty(), also
shown on the right-hand page.

2. The result from isEmpty () is
stored in a variable called valid.
If it is not empty, the valid
variable will hold a value of true.
If it is empty, it holds false.

606/ FORM ENHANCEMENT & VALIDATION

C: SHOULD AN ERROR
MESSAGE BE SET?

3. An i f statement checks if the
valid variable is not true.

4. If it is not true, an error
message is set using the
setErrorMessage() function,
which you meet on p608.

5. The valid variable is returned
on the next line, and that is
where this function ends.

validateRequired() uses two functions to perform checks:
1: isRequired() checks whether the element has a required attribute.
2: isEmpty () checks whether the element has a value.

isRequired()

The isRequired() function
takes an element as a parameter
and checks if the required
attribute is present on that
element. It returns a Boolean.

There are two types of check:
The first, in blue, is for browsers
that support the HTML5S
required attribute. The one in
orange is for older browsers.

To check if the required
attribute is present, the typeof
operator is used. It checks what
datatype the browser thinks the
required attribute is.

function isRequired(el) {
return ((typeof el.required

boolean') && el.required) ||
(typeof el.required === 'string');

MODERN BROWSERS

Modern browsers know the
required property is a Boolean,
so the first part of this check
tells us if it is a modern browser.
The second part checks if it is
present on this element.

If the attribute is present, it will
evaluate to true. If not, it returns
undefined, which is considered
a falsy value.

isEmpty()

The isEmpty() function (below)
takes an element as a parameter
and checks to seeifithasa
value. As with isRequired(),
two checks are used to handle
both new and older browsers.

OLDER BROWSERS

Browsers that do not know
HTMLS can still tell whether

or not an HTMLS5 attribute

is present on an element. In
those browsers, if the required
attribute is present, it gets
treated as a string, so the
condition would evaluate to
true. If not, the type would be
undefined, which is falsy.

ALL BROWSERS

The first check looks to see if the
element does not have a value.

If it has a value, the function
should return false. If it is
empty, it will return true.

WHAT IS VALIDATED

It is important to note that the
required attribute only indicates
that a value is required. It doesn't
stipulate how long the value
should be, nor does it perform
any other kind of validation.
Specific checks, such as these,
would have to be added in the
validateTypes () function or
the script's custom validation
section.

OLDER BROWSERS

If older browsers use a polyfill
for placeholder text, the value
would be the same as the
placeholder, so it is considered
empty if those values match.

function isEmpty(el) {
return lel.value || el.value

}

=== el.placeholder;

FORM ENHANCEMENT & VALIDATION

CREATING ERROR

MESSAGES

The validation code processes elements one by one;
any error messages are stored using jQuery's .data() method.

HOW ERRORS ARE SET

Throughout the validation code, whenever an
error is found, you will see calls to a function called
setErrorMessage(), which takes two parameters:
i) el: the element that the error message is for

i) message: the text the error message will display

For example, the following would add the message
'Field is required' to the element that is stored in

the el variable:

setErrorMessage(el, 'Field is required');

setErrorMessage()

HOW DATA IS STORED WITH NODES

Each error message is going to be stored with the
element node that it relates to using the jQuery
.data() method. When you have elementsin a
jQuery matched set, the .data() method allows
you to store information in key/value pairs for each
individual element.

The .data() method has two parameters:

i) The key, which is always going to be errorMessage
ii) The value, which is the text that the error
message will display

function setErrorMessage(el, message) {
$(el).data('errorMessage’, message);

}

// Store error message with element

FORM ENHANCEMENT & VALIDATION

DISPLAYING ERROR

MESSAGES

After each element has been checked, if one or more were not valid,
showErrorMessage () will display the error messages on the page.

HOW ERRORS ARE DISPLAYED

If an error message needs to be shown, first a
 element will be added to the page directly
after the form field with the error.

Next, the message is added into the element.

To get the text for the error message, the same
jQuery .data() method that set the message is
used again. This time, it only takes one parameter:
the key (which is always errorMessage).

This all happens within the function called
showErrorMessage () which is shown below.

showErrorMessage()

1. $el holds a jQuery selection containing the
element that the error message relates to.

2. $errorContainer looks for any existing errors

on this element by checking if it has any sibling
elements that have a class of error.

3. If the element does not have an error message
associated with it, the code in the curly braces runs.
4, $errorContainer is set to hold a element.
Then .insertAfter() adds the element into
the page after the element causing the error.

5. The content of the element is populated
with the error message for that element, which is
retrieved using the .data() method of the element.

function showErrorMessage(el) {
var $el = $(el);

if (!$errorContainer.length) {

}

O—E——EO

var $errorContainer = $el.siblings('.error');

$errorContainer.text($(el).data('errorMessage'));

// Find element with the error
// Does it have errors already

// If no errors found

// Create a to hold the error and add it after the element with the error
$errorContainer = §('').insertAfter($el);

// Add error message

FORM ENHANCEMENT & VALIDATION @

VALIDATING DIFFERENT
TYPES OF INPUT

HTML5's new types of input come with built-in validation.
This example uses HTMLS5 inputs, but validates them with JavaScript
to ensure that the experience is consistent across all browsers.

The validateTypes() function
is going to perform the validation
just like modern browsers do
with HTMLS elements, but it will
do it for all browsers. It needs to:
® Check what type of data the
form element should hold
® Ensure the contents of the
element matches that type

1. The first line in the function
checks if the element has
a value. If the user has not
entered any information, you

cannot validate the type of data.

Furthermore, it is not the wrong
type of data. So, if there is no
value, the function returns true
(and the rest of the function
does not need to run).

2. If there is a value, a variable
called type is created to hold the
value of the type attribute. First,
the code checks to see if jQuery
stored info about the type using
its .data() method (see why on
p618). If not, it gets the value

of the type attribute.

function validateTypes(el) {
if (lel.value) return true;

} else {
return true;
}
}

O—EWE—O

if (typeof validateType[type]
return validateType[type] (el);

// 1f elemént has no value, return true
// Otherwise get the value from .data()

=== 'function') {

var type = $(el).data('type') || el.getAttribute('type'); // or get the type of input

// 1s type a method of validate object?
// 1f yes, check if the value validates
// If not

// Return true as it cannot be tested

The getAttribute() method
is used rather than the DOM
property for type because all
browsers can return the value
of the type attribute, whereas
browsers that don't recognize
anew HTMLS5 DOM property
types would just return text.

3. This function uses an object
called validateType (shown
on the next page) to check the
content of the element. The
if statement checks if the
validateType object has a
method whose name matches
the value of the type attribute.

FORM ENHANCEMENT & VALIDATION

If it has a method name that
matches the type of form control:
4. The element is passed to the
object; it returns true or false.
5. If there is no matching
method, the object is not able to
validate the form control and no
error message should be set.

CREATING AN OBJECT TO
VALIDATE DATA TYPES

The validateType object
(outlined below) has three
methods:

var validateType = {
email: function(el) {
// Check email address
}’
number: function(el) {
// Check it is a number
}’
date: function(el) {
// Check date format
}

L

The code inside each method

is virtually identical. You can
see the format of the email()
method below. Each method
validates the data using
something called a regular
expression. The regular
expression is the only thing that
changes in each method to test
the different data types.

Regular expressions allow you
to check for patterns in strings,
and here they are used with a
method called test().

You can learn more about
regular expressions and their
syntax on the next two pages.
For now, you just need to know
that they are used to check the
data contains a specific pattern
of characters.

Storing these checks as methods
of an object makes it easy to
access each of the the different
checks when it comes time to
validate the different types of
input in a form.

/[re]+8[~@]+/.test (el.value);

TR | (i)

i) The regular expression is
[~e]+@[~@] + (it is between the
/ and / characters). It states a
pattern of characters that are
found in a typical email address.

O L2

ii) The test () method takes one
parameter (a string), and checks
whether the regular expression
can be found within the string.

It returns a Boolean.

iii) In this example, the test()
method is passed the value of
the element you want to check.
Below you can see the method to
test email addresses.

email: function (el) {

(1) var valid = /[*@]+@["@]+/.test(el.value);

// Create email method

// Store result of test in valid

(@) if (lvalid) { // If the value of valid is not true
(3) setErrorMessage(el, 'Please enter a valid email'); // Set error message

}
(4) return valid;

}’

// Return the valid variable

1. A variable called valid holds
the result of the test using the
regular expression.

2. If the string does not contain a
match for the regular expression,
3. an error message is set.

FORM ENHANCEMENT & VALIDATION

4, The function returns the value
of the valid variable (which is
true or false).

REGULAR EXPRESSIONS

Regular expressions search for characters that
form a pattern. They can also replace those
characters with new ones.

Regular expressions do not just
search for matching letters;
they can check for sequences
of upper/lowercase characters,
numbers, punctuation, and
other symbols.

The idea is similar to the
functionality of find and replace
features in text editors, but it
makes it possible to create far
more complicated searches for
combinations of characters.

Below you can see the building
blocks of regular expressions.
On the right-hand page, you can
see some examples of how they
are combined to create powerful
pattern-matching tools.

§ $

- 3L

any single single character single character the starting the ending position
character (except contained within not contained position in any line inany line
newline) brackets within brackets

() g \n fmnk \d

sub expressions
(sometimes called
a block or capturing
group)

\D

non-digit character

preceding element
zero or more times

whitespace
character

nth marked
subexpression
(nis digit 1-9)

5

anything but
whitespace

FORM ENHANCEMENT & VALIDATION

alphanumeric

(A-Z, a-z, 0-9)

preceding element digit
at least m, but no
more than n, times

\w AW

non-alphanumeric
character
(except _)

character

COMMON REGULAR
EXPRESSIONS

Here are a selection of regular expressions you
can use in your code. Some of these are more
powerful than those adopted by browsers.

At the time of writing, some of But regular expressions are not Also, bear in mind that there are
the validation rules applied by perfect. There are still strings many different ways to express
the major browsers were not that would not be valid data, but the same thing using regular
very strong. Some of the regular would pass these tests below. expressions. So you may see a
expressions shown below are very different regular expression
more stringent. that does something similar.

/~\d+$/

number

~L \sl+

whitespace at start of line

/["e]+e[~e]+/

email

/" #[a-fA-F0-9]{6}$/

hex color value

PU#S%R\ ' () *+,-./@:5<=>[\\]" _“{|}~

hex color value

/~(\d{2}\/\d{2}\/\d{4}) | (\d{4}-\d{2}-\d{2})$/

date yy-mm-dd

FORM ENHANCEMENT & VALIDATION

CUSTOM VALIDATION

The final part of the script performs three checks that apply to individual
form elements; each check lives in a named function.

On the next pages, you will see FUNCTION PURPOSE

these three functions. Each is validateBio() Check bio is 140 characters or less
called in the same manner as

the validateBio() function validatePassword() Check password is at least 8 characters

shown below, (The full code that
calls them is available from the
website, along with the code for

validateParentsConsent() If useris under 13, test if parental consent
box is checked

all examples from the book.) Each of these functions will return a value of true or false.
if (!validateBio()) { // Call validateBio(), if not valid
showErrorMessage (document.getElementById('bio')); // Show error message
valid.bio = false; // Update valid object - not valid
} else { // Otherwise remove error message

removeErrorMessage (document .getElementById('bio'));

}

1. The function is called as a

conditioninanif... else)
statement. This was shown in

steps 14-16 on p605.

Call function,

y d it ret
2. If the function returns false, ? oeiru:; e ?
an error message is shown and © l | o
the corresponding property of _

% . : Call function: Call fu on:
the valid object is set to false. showErrorMessage() removeErroriessagal)
& set cotrespon;:liizg

. property of va

3. If the function returns true, o

the error message is removed
from the corresponding element.

FORM ENHANCEMENT & VALIDATION

BIO & PASSWORD
VALIDATION

The validateBio() function: 2. If the length of the bio is less 4, The setErrorMessage()
1. Stores the form element than or equal to 140 characters, function is called (see p608).
containing the user's biography the valid variable is set to true 5. The valid attribute is
in a variable called bio. (otherwise, it is set to false). returned to the calling code,
3. If validis not true, then... which will show or hide the error.

JAVASCRIPT cl3/js/validation.js

function validateBio() {

(@) var bio = document.getElementById('bio'); // Store ref to bio text area
(2 var valid = bio.value.length <= 140; // Is bio <= 140 characters?

® if (lvalid) { // If not, set an error message
@ setErrorMessage(bio, 'Your bio should not exceed 140 characters');

}
® return valid; // Return Boolean value
}

The validatePassword() 2. If the length of the value in the 4. The setErrorMessage()
function starts by: password input is greater than or function is called.

1. Storing the element containing equal to 8, valid is set to true 5. The valid attribute is
the password in a variable called (otherwise, it is set to false). returned to the calling code,
password. 3. If validis not true, then... which will show or hide the error.

JAVASCRIPT cl3/js/validation.js

®O

® G

function validatePassword() {

var password = document.getElementById('password');// Store ref to element

var valid = password.value.length >= 8; // 1s its value >= 8 chars

if (lvalid) { // If not, set error msg
setErrorMessage (password, 'Password must be at least 8 characters');

}

return valids // Return true / false

FORM ENHANCEMENT & VALIDATION

CODE DEPENDENCIES

& REUSE

In any project, avoid writing two sets of code that perform the same task.
You can also try to reuse code across projects (for example, using utility
scripts or jQuery plugins). If you do, note any dependencies in your code.

DEPENDENCIES

Sometimes one script will
require another script to be
included in the page in order to
work. When you write a script
that relies on another script,
the other script is known as a
dependency.

For example, if you are writing

a script that uses jQuery, then
your script depends upon jQuery
being included in the page in
order to work; otherwise, you
would not be able to use its
selectors or methods.

CODE REUSE VS. DUPLICATION

When you have two sets of code
that do the same job, it is referred
to as code duplication. This is
usually considered bad practice.

The opposite is code reuse where
the same lines of code are used
in more than one part of a script
(functions are a good example of
code reuse).

You may hear programmers
refer to this as the DRY
principle: don't repeat yourself.
"Every piece of knowledge must
have a single, unambiguous,
authoritative representation
within a system.” It was
formulated by Andrew Hunt
and Dave Thomas in a book
called The Pragmatic Programmer
(Addison-Wesley, 1999).

FORM ENHANCEMENT & VALIDATION

It is a good idea to note
dependencies in a comment at
the top of the script so that they
are clear to others. The final
custom function in this example
depends on another script that
checks the user's age.

To encourage reuse,
programmers sometimes create
a set of smaller scripts (instead
of one big script). Therefore,
code reuse can lead to more
code dependencies. You have
already seen an example of this
with the helper functions for
event handling. You are about to
see another example...

When the validation script was
introduced, it was noted that
the form would use a couple of
scripts to enhance the page.
You start to see those scripts on
the next page, but one of them
needs to be noted now because
it hides the parental consent
checkbox when the page loads.

The validateParentsConsent()
function is called in the same
way as the other two custom
validation checks (see p614).
Inside the function:

1. It stores the checkbox

for parental consent and its
containing element in variables.
2. Sets avalid variable to true.

JAVASCRIPT

VALIDATING
PARENTAL CONSENT

That parental consent checkbox
is only shown again if the user
indicates that they are 13 years
old or younger.

The validation code to check
whether the parent has given
their consent will only run if that
checkbox is showing.

3. Anif statement checks
whether the container for the
checkbox is not hidden. It does
this by fetching the value of

its class attribute and using
the index0f() function (which
you saw on p128) to check

if it contains a value of hide..

If the value is not found, then
index0f () will return -1.

function validateParentsConsent() {

var parentsConsent
var consentContainer
var valid = true;

if (lvalid) {

}
}

return valid;

® 66 00

—

if (consentContainer.className.indexOf('hide')
valid = parentsConsent.checked;

So the code to check whether
the parent has given consent
depends upon (reuses) the
same code that checked if the
checkbox should be shown.

This works well as long as the
other script (to show/hide the
checkbox) is included in the
page before the validation script.

4. If it is not hidden, the user is
under 13. So, if the checkbox is
selected, the valid variable is
set to the true, and if it was not
selected, it will be set to false.
5. Ifit is not valid, an error
message is added to the element.
6. The function returns the value
of the valid variable to indicate
whether the consent was given.

cl3/js/validation.js

= document.getElementById('parents-consent');
document.getElementById('consent-container');

// Variable: valid set to true

1) { // If checkbox shown
// Update valid: is it checked/not

// If not, set the error message

setErrorMessage (parentsConsent, 'You need your parents\' consent');

// Return whether valid or not

FORM ENHANCEMENT & VALIDATION

HIDE PARENTAL CONSENT

As you saw on the previous page, the subscription

form uses two extra scripts to enhance the user @

experience. Here is the first; it does two things:

@® Uses the jQuery Ul date picker to show a
consistent date picker across browsers

@ Checks whether the parental consent checkbox
should be shown when the user leaves the date
input (it does this if they are under 13)

1. Place the script in an lIFE (not shown in flowchart).
2. Three jQuery selections store the input where
users enter their birthday, the consent checkbox,
and the container for the consent checkbox.

3. The jQuery selection for the date of birth input

is converted from a date input to a text input so

that it does not conflict with HTMLS5 date picker
functionality (done using the jQuery .prop()
method to alter the value of its type attribute). The
selection uses .data() to note that it is a date input
and jQuery Ul's .datepicker() method to create
the jQuery Ul date picker. o
4. When the user leaves the date input, the

checkDate() function is called.

5.The checkDate() function is declared.

6. A variable called dob is created to hold the date ©

the user selected. The date is converted into an array
of three values (month, day, and year) using the

split() method of the String object. Q .;

7.toggleParentsConsent () is called. It has one
parameter: the date of birth. It is passed into the
function as a Date object.

8. toggleParentsConsent () is declared.

9. Inside the function, it checks the date is a number.
If not, return indicates the function should stop.

10. The current time is obtained by creating a new
Date object (the current time is the default value of a
new Date object). It is stored in a variable called now.
11. To find the user's age, the date of birth is
subtracted from the current date. For simplicity, leap
years are ignored. If that is less than 13 years:

12. Show the container for the parental consent.

13. Otherwise, the container of the consent box is
hidden, and the checkbox is unchecked.

FORM ENHANCEMENT & VALIDATION

Create variables:

$birth: birthday text input
$parentsConsent: age consent checkbox
$consentContainer: age consent container

|
Create date picker using jQuery

v

]
Event: blur or change on birthday
!

FUNCTION: checkDate()
Checks user’s date of birth

Create variable: dob: the date of birth as
an array (split into year, month, & day at '~
characters)

Call function: toggleParentsConsent () &
pass it a Date object created using dob array

FUNCTION: toggleParentsConsent ()
Shows/hides parental consent based on age

Is date a
number?

Create a new Date object called now
(subtracting dob from now gives age)

-

? Was birthday ?
< 13 years ago?
|® 0|

Add hide class Remove hide class

to consent from consent
container container
|
Set checked on Give focus
consent checkbox to consent
to false checkbox

AGE CONFIRMATION

c13/js/birthday.js
(@ (function() {

var $birth = $('#birthday'); // D-0-B input
var $parentsConsent = §('#parents-consent'); // Consent checkbox
var $consentContainer = $('#consent-container'); // Checkbox container

// Create the date picker using jQuery UI
$birth.prop('type', 'text').data('type', 'date').datepicker({

dateFormat: 'yy-mm-dd' // Set date format
2 1
$birth.on('blur change', checkDate); // D-0-B loses focus
function checkDate() { // Declare checkDate()
var dob = this.value.split('-"'); // Array from date

// Pass toggleParentsConsent() the date of birth as a date object
toggleParentsConsent(new Date(dob[0], dob[1] - 1, dob[2]));
}

QL @ PLE © ©

function toggleParentsConsent(date) { // Declare function
if (isNaN(date)) return; // Stop if date invalid
var now = new Date(); // New date obj: today

// 1f difference (now minus date of birth, is less than 13 years
// show parents consent checkbox (does not account for leap years)
// To get 13 yrs ms * secs * mins * hrs * days * years

@ if ((now - date) < (1000 * 60 * 60 * 24 * 365 * 13)) {
(){ $consentContainer.removeClass('hide'); // Remove hide class
$parentsConsent.focus(); i // Give it focus
} else { // Otherwise
C){ $consentContainer.addClass('hide'); // Add hide to class
$parentsConsent.prop('checked', false); // Set checked to false
}
}
¥ s
When creating a date picker using jQuery Ul, you FORMAT RESULT
can specify the format in which you want the date to mm/dd /yy 12/20/1995
be written. On the right you can see several options
for the format of the date and what this would look yy-mm-dd 1995-12-20
like if the date were the 20th December 1995. In dm, y 20 Dec, 95
particular note that y gives you two digits for the
year, and yy gives you four digits for the year. mm d, yy December 20, 1995

DD, d mm, yy Saturday, 20 December, 1995

FORM ENHANCEMENT & VALIDATION 2

PASSWORD FEEDBACK

The second script designed to enhance the form
provides feedback to the users as they leave either
of the password inputs. It changes the value of the
class attribute for the password inputs, offering
feedback to show whether or not the password is
long enough and whether or not the value of the
password and its confirmation box match.

1. Place the script in an IIFE (not shown in flowchart).
2. Variables store references to the password input
and the password confirmation input.

3. setErrorHighlighter() function is declared.

4, |t retrieves the target of the event that called it.

5. An if statement checks the value of that element.
If it is less than 8 characters, that element's class
attribute is given a value of fail. Otherwise, it is
given a value of pass.

6. removeErrorHighlighter() is declared.

7. It retrieves the target of the event that called it.

8. If the value of the class attribute is fail, then the
value of the class attribute is set to a blank string
(clearing the error).

9. passwordsMatch () is declared (it is only called by
the password confirm box).

10. It retrieves the target of the event that called it.
1. If the value of that element is the same as the first
password input, its class attribute is given a value of
pass; otherwise, it is given a value of fail.

12. Event listeners are set up:

ELEMENT EVENT METHOD
password focus removeErrorHighlighter()
password blur setErrorHighlighter()

conf-password blur passwordsMatch()

This demonstrates how scripts often group all of the
functions and the event handlers together.

FORM ENHANCEMENT & VALIDATION

[12)
©

(5]

Create variables:
password: password input
passwordConfirm: confirmation input

+

I
Event: blur on password
|

FUNCTION: setErrorHighlighter()
Sets error highlighting

Get target element

-

Isit<8
characters?

$

Add class: pass Add class: fail

Event: focus on password or password confirm

|

FUNCTION: removeErrorHighlighter()
Removes error highlighting

Get target element

-

Does class
indicate an
error?

¢ -

I

Set class attribute to '’

Event: blur on password confirm
|

FUNCTION: passwordsMatch()
Checks both passwords match

Get target element

+

Do password &
passwordConfirm

i match? i

Add class: fail Add class: pass

PASSWORD SCRIPT

JAVASCRIPT cl3/js/password-signup.js
@ (function () {

@ var password = document.getElementById('password'); // Store password inputs
| var passwordConfirm = document.getElementById('conf-password');
® function setErrorHighlighter(e) {
@ var target = e.target || e.srcElement; // Get target element
§ if (target.value.length < 8) { // If its length is < 8
target.className = 'fail'; // Set class to fail
GH } else { // Otherwise
target.className = 'pass'; // Set class to pass
L}
}
(® function removeErrorHighlighter(e) {
@ var target = e.target || e.srcElement; // Get target element
if (target.className === 'fail') { // If class is fail
target.className = ''; // Clear class
}
}
(@ function passwordsMatch(e) {
var target = e.target || e.srcElement; // Get target element
// If value matches pwd and it is longer than 8 characters
i if ((password.value === target.value) && target.value.length >= 8){
target.className = 'pass'; // Set class to pass
(@3 } else {) // Otherwise
target.className = 'fail'; // Set class to fail
. 3

}
addEvent (password, 'focus', removeErrorHighlighter);
@A addEvent (password, 'blur', setErrorHighlighter);
addEvent (passwordConfirm, 'focus', removeErrorHighlighter);

addEvent (passwordConfirm, 'blur', passwordsMatch);

L
10)s

FORM ENHANCEMENT & VALIDATION

SUMMARY

FORM ENHANCEMENT & VALIDATION

FORM ENHANCEMENT & VALIDATION

INDEX

SYMBOLS

$() shortcut for jQuery() function 296, 299, 313, 361
$() conflicts with other scripts that use $() 361

$ (document) . ready(function(){...}) 312
$(function() { ... }) (shortcut) 313, 364-5
$(this) 324,549

[1 Array syntax 72

[] Accessing an object's properties 103

{} Code blocks 57

{} Code block (function) 90

(O Final parentheses (calling a function) 97

() Grouping operator 97

= Assignment operator 107

+= Operator (adding to a string) 117, 125

== Equal to (comparison operator) 150, 168

=== Strict equal to (comparison operator) 150, 168
= Not equal to (comparison operator) 150, 168

1== Strict not equal to (comparison operator) 150, 168
> Greater than (comparison operator) 151

>= Greater than or equal to (comparison operator) 151
< Less than (comparison operator) 151

<= Less than or equal to (comparison operator) 151
&& Logical and (logical operators) 157,158, 537

! Logical not (logical operators) 157, 159

| | Logical or (logical operators) 157, 159, 169

. Member operator 50,103

// (No http: inaurl) 355

A

.abort () method (jgXHR object) 389
Accessibility 46, 491
Accordion 430, 492-5,522-5
.accordion() (jQuery Ul method) 430
action (DOM property - forms) 572
add () (option to select box) 584
.add () (jQuery method) 531
.addClass () (jQuery method) 320, 498,
512-3, 519, 565
addEventListener() (DOM method) 254-5, 570-1
Adding or removing HTML Content
Comparing techniques 226-7
innerHTML & DOM manipulation 218-225, 240-1
Using jQuery 314-9,346-7

Addition 76-7, 181
.after() (jQuery method) 318-9
Age verification 617-9
Ajax
Introduction to 370-3
Data formats
HTML 374, 378-9, 390-1
JSON 374, 376-7,382-3,396-7
XML 374-5, 380-1
Forms 394-5
.serialize() (jQuery method) 394
JgXHR object (see) > jqXHR object)
JSON object (see) > JSON > JSON object)
Relative URLs 389
Requests (loading data):
CORS (Cross Origin Resource Sharing) 384
HTML 378-9
HTML (jQuery) 390-1,393
JSON 382-3
JSON/JSONP from a remote server 385-8
Proxy for loading remote content 384
XML 380-1
jQuery 388-9,392-3
.load() 390-1, 407, 427
$.ajax() 388,398-9 405
$.get() 392-3
$.getJSON() 392, 396-7
$.getScript() 392
$.post() 392,394-5
Responses 373-391
Update URL 424-7
URLs (maintaining) 424-7
XMLHttpRequest object
Methods
open(), send() 372-3
Properties
responseText 379,383, 389
responseXML 380-2, 389
status 373,378-9,389
XDomainRequest object (IE8-9) 384
Alert box 125
alert() (window object) 124-5
.always() (igXHR object) 389, 396-7
Angular)S 428, 434-9
.animate() (jQuery method) 332, 334-5,352-3,
493, 515, 520-1
Anonymous functions 88, 96

APls
Introduction to 410, 412
APl Keys 441
Console APl 470
HTML5 APIs 413
Geolocation APl 416-9
History APl 424-7
Web Storage APl 420-3
Platform APls 440
Google Maps APl 441-7
Scripts
Introduction to 428
AngularlS 434-9
jQuery Ul 429-433
.append() (jQuery method) 318, 565
.appendTo() (jQuery method) 318, 505, 519
appendChild() (DOM method) 222, 240
Arguments 93,109
Arithmetic operators 76-7
Arrays
Introduction to 70-3
Adding and removing items 530, 536-7, 540-3
Creating 72
split () method (String object)
to create arrays 128-130, 546-7, 563, 618-9
Looping through an array 174-5, 535
Methods
concat() 530
every() 530
filter() 530, 536-7
forEach() 530, 536-7
map() 530
pop() 530
push() 530, 536-7,540-3
reverse() 530, 564-5
shift() 530
some() 530
sort() 530, 554-9, 564-5
unshift() 530
Properties
length property 72,118-9
Arrays and objects
Arrays are objects 118-9
Array-like objects (jQuery) 308, 340
Arrays of objects 119, 533-5
Multiple return values from a function 95
vs variables and objects 116-7

Assignment operator 61,107
Asynchronous loading (images) 509
Asynchronous processing 371
attachEvent() (IE8 event model) 255, 258-9, 570-1
Cross-browser solution 570-1
Attributes
.attr() (jQuery method) 320-1
Creating / removing (DOM method) 232-5
Autocomplete (live search) 370

B

back() (history object) 426
.before() (jQuery method) 318
beforeunload event 286-7
Behavior layer 44
Binding events 248, 250
blur() (DOM method) 573
blur event 247, 274-5, 282, 573, 588-9
Boolean data type 62, 66
break keyword 174
Browsers
Developer tools
Debugging 464-7
Examining DOM 236-7
Dimensions 124-5, 350
Feature detection (see F > Feature detection)
JavaScript console 464-79 (see also C > Console)
Rendering engine 40
Scrollbars 350
Support in examples 10
Browser Object Model
Introduction to 121-2
history object 122, 124-5, 424-7
location object 122
navigator object 122
screen object 122,124-5
window object 122, 124-5
Bubbling (event flow) 260-1
Built-in objects 120-7
:button (jQuery selector) 342

C

Caching
Cross-references 540-1
DOM queries 190-1, 575
Images (in custom object) 509-511
jQuery selections 308-9, 540-1
Object references 540-1
Calling a function 91
cancelable property (event object) 262
Capturing (event flow) 260-1
Case sensitivity 56
catch (error handling) 480-1,576-7
CDN 354-5
ceil() (Math object) 134
Centering images 511
Chaining (jQuery methods) 311
change event 247,282,573, 576-7, 586-7
Character count 588-9
charAt() (String object) 128-130
Checkboxes 580-1
:checkbox (jQuery selector) 342
:checked (jQuery selector) 342
checked (DOM property - forms) 573, 580-1
.children() (jQuery method) 336
clearTimeout () (window object) 517-9
.click() (jQuery method) 512-3
click() (DOM methad) 573
click event 39, 246, 276-7,573
clientX, clientY (event object) 278-9
.clone() (jQuery method) 346-7
.closest() (jQuery method) 336
Code blocks 56, 90
Code dependencies 616
Code reuse 616
Collections
elements (nodelLists) 196-9
elements (form) 572, 600
Color picker 591
Comments 57
Compare functions (sorting) 555-9
Comparison operators 150-9
Checking equality 168
Comparing expressions 154-5
Operands 152
Truthy and falsy values 167
concat() (array object) 530

Conditional loading 596-7
Conditional statements 149
if 160-1,181
if...else 162-3
switch 164-5, 291
Conditions (loops) 170-1
Console
Breakpoints 476-8
console.assert() 475
console.errar() 472
console.group() 473
console.groupEnd() 473
console.info() 472
console.log() 470-1
console.table() 474
console.warn() 472
debugger keyword 479
Constructor notation 106-111, 113
:contains() (jQuery selector) 338
Content layer 44
Content panels
Accordion 492-5,522-5
Modal window 500-5
Photo viewer 506-513
Slider 515-520
Tabs 496-9
continue keyword 174, 594-5
Coordinates (geolocation APl) 417-9
copy event 247
CORS (Cross Origin Resource Sharing) 384
Create attributes (DOM) 234
Create elements (DOM) 126, 222-3, 240
Create text nodes (DOM) 126, 222-3, 240
Cross-Site Scripting (XSS) Attacks 228-231
.css() (jQuery method) 322-3, 504-5, 510-1, 521
Css
Box dimensions 348
CSS-style selectors in jQuery 302-3
Properties and values 9
Selectors to find elements (DOM) 193, 197, 202
Updating class names 189, 195, 232
Updating id attributes 189, 232
Updating styles (DOM) 195, 232
Updating styles (jQuery) 320-3, 497-9
Cut, copy, paste element (jQuery) 346-7
cut event 247

D

.data() (jQuery method) 546-7, 565, 602, 608-9
data-* attributes (HTML5) 289-90, 544-6, 608
Data binding (Angular) 437
Data models
Introduction to 26-7
Comparing techniques 116-7
Arrays and objects 118-9, 533
Objects and properties 28, 102-5, 142
Data types
Complex data types
Objects (Arrays and functions) 131
Simple (primitive) data types
Boolean 62,131,167
Number 62,131-5
Null 131
String 62,128-130, 131
Undefined 131
Type coercion and weak typing 166-7
Dates / Date object
Introduction to 136-9
Comparing 618-9
Creating / Constructor 136, 138, 143
Date formats 136-9
Date pickers 432-3, 591, 618-9
Day & month names 137,143
Difference between two dates 139, 143
Sorting 559, 562-3
Methods
getTime(), getMilliseconds(), getSeconds (),

getMinutes (), getHours (), getDate(), getDay(),

getMonth(), getFullYear(),
getTimeZoneOffset () 137
setTime(), setMilliseconds(), setSeconds(),
setMinutes(), setHours (), setDate(),
setMonth(), setFullYear(), toString(),
toTimeString(), toDateString() 137
dblclick event 246
Debugging
Errors and a debugging workflow 462-3
Tips 484
(see also Console and Troubleshooting)
Declare a variable 60-1
Declaring an array 71-3
Declaring a function 90, 92
defaultChecked (DOM property - forms) 573
defaultValue (DOM property - forms) 573

Delays
clearTimeout () 517-9
.delay() (jQuery method) 311, 332-3, 364
setTimeout() 517-9
Delegating events 266-70, 290-1, 331
delete keyword 107,112, 533
Deserializing JSON data 382-3
Design patterns 501
.detach() (jQuery method) 346, 502-3, 505
Developer tools 236-7, 464-5
:disabled (jQuery selector) 342
disabled (DOM property - forms) 573,578
disabled (JavaScript is disabled) 491
document object
Introduction to 36-9,123,126-7
Events
load 39, 246, 272-3
Methods
getElementByld() 39,126,193-195
createElement (), createTextNode() 126,222-3
querySelectorAl1() 126,193,197, 202, 204-5
write() 39, 49,126, 226
Properties
domain 126
lastModified 36, 39, 126-7
title 36,39,126-7
URL 126-7
DOMContentLoaded event 286-7
DOM (document object model)
Introduction to 121,126-7, 184, 186-7
Elements
Accessing
getElementById() 193-5
getElementsByClassName() 193,197-9, 200
getElementsByTagName() 193,197, 201
querySelector() 193-4, 202-3
querySelectorAl1() 193,197, 202-3, 204-5
Adding
appendChild() 222-3
insertBefore() 222,240
Creating
createElement() 222-3
Updating
DOM manipulation 219, 222-5, 227
innerHTML 218, 220-1, 227, 228-31
textContent and innerText 216

Attributes
class attribute/className property 195, 232
getting and updating 232-5
id property 232
Text nodes
createTextNode() 222
nodeValue 214-5
textContent and innerText 216-7
Document nodes 186
document object (see D > document object)
DOM queries
Performance (fastest route) 192
Caching DOM queries 190-1, 575
DOM tree
Introduction to 40-1,186-7
Inspecting (exploring - browser tools) 236-7
Traversing the DOM 208, 210-11
Updating 212-3
Events (see E > Events)
Event handlers 250, 252-3
Event listeners 250, 254-5, 263, 265
Nodes 40, 186-9
Whitespace 209-211
Nodelist 192, 196-9, 202-205
length property 196
Live and static NodelLists 196
Looping through 204-5
Selecting items from a NodelList 198-9
.done() (jgXHR object) 389, 405
Dot notation 103 (see also member operator)
Do while loops 170, 177
Drop-down boxes 584-7
DRY principle (don't repeat yourself) 616
Dynamic filtering 538-43

E

.each() (jQuery method) 324-5, 333, 339, 498-9,
519, 531, 546-7

ECMAScript 532

Elements (see D> DOM > Elements and J > jQuery)
Dimensions (jQuery) 348-9
Finding elements (DOM) 192-203
Finding elements (jQuery) 296, 302-3, 336, 342
Form element content (jQuery) 342-5
Hiding/showing 332-3, 582-3, 618-9
Inserting new elements (jQuery) 318-9

Updating elements (DOM) 212-3
Updating elements (jQuery) 313
elements collection (DOM property) 572, 574-5
.empty() (jQuery method) 346, 504-5
:enabled (jQuery selector) 342
.eq() (jQuery method) 340-1,512-3, 521
Equality 150-1,168
equals sign (assignment operator) 61
Errors
Common errors 460-1, 485
Debugging workflow 462-3 (and tips 484-5)
error event 246, 272
Error handling 480-1, 576-7
Error objects 459, 461, 481
EvalError 459-460
RangeError 459, 461
ReferenceError 459-60
SyntaxError 459-60
TypeError 459, 461
URIError 459-60
Exceptions 458, 480-1
NaN 461
Understanding errors 458
e (shorthand: event or error object) 328
EvalError 459-460
Evaluating conditions 149-59
Events
Introduction to 5,30-31, 244-50
All events
beforeunload 286-7
blur 247, 274-5, 282
change 282-3, 586-7
click 260-1, 268-9, 276-7
dblclick 246, 276
DOMContentLoaded 286-7
DOMNodeInserted 284, 285
DOMNodeInsertedIntoDocument 284
DOMNodeRemoved 284
DOMNodeRemovedFromDocument 284
DOMSubtreeModified 284
error 246,272
focus 274-5, 282, 588-9, 594-5
focusin 274
focusout 274
hashchange 286, 426-7
input 247,271, 280-2, 552-3, 573, 588-9

Events continued.
keydown 280
keypress 280-1
keyup 280
Toad 39, 246, 272-3
mousedown 276
mousemove 276, 279
mouseout 276
mouseover 276
mouseup 276
resize 272,504-5
scroll 272
submit 282-3,572, 574-5
unload 272
binding 248, 250
Delegation (DOM) 266, 268-71, 290-1
Delegation (jQuery) 330-1, 365
Determining position 278-9
Event flow (bubbling and capturing) 260-1
Event handlers
Cross browser 570-1
DOM Event handlers 250, 252-3
DOM Event listeners 250, 254-5
Removing event listeners 255
Using parameters with events 256-7, 263
HTML event handlers 250-1
event object DOM 262-3, 265-70
Methods
preventDefault() 262, 267, 283
stopPropagation() 262, 267
Properties

cancelable, clientX, clientY, pageX, pageY,

screenX, screenY, target, type 262, 278-9
event object (jQuery) 328-9, 331
Methods
.preventDefault() 328
.stopPropagation() 328
Properties
data, pageX, pageY, target, timeStamp,
type, which 328
|E8 event model
attachEvent() 255, 258-9, 290
Cross-browser helper function 570-1
event object 264-5, 570-1
Property and method equivalents 262
Fallback example 258-9
jQuery (consider as alternative) 300-1

jQuery events 326-331, 343
Performance (delegation) 266, 268-9, 290, 331
Terminology (fired, raised, triggered) 247
Types of event 246-7, 271
W3CDOM 271-286
HTMLS 286-7
jQuery events 326-331, 343-5
Which element user interacted with 262-70
every() (array object) 530
Exceptions (see Errors)
Execution contexts 453-6
Expressions 74-6
Comparing expressions 154
Function expressions 96-7

F

.fadeIn() (jQuery method) 298, 311, 332-7, 365
.fadeOut () (jQuery method) 332-3, 337, 510-11
.fadeTo() (jQuery method) 510-11
.fail() method (jgXHR object) 389, 396-7, 405
Falsy and truthy values 167-9
Feature detection
Feature detection (in jQuery) 301
Modernizr 414-5, 417, 419, 593, 596-7
:file (jQuery selector) 342
File extension
.Js 46
.min.js 298
Filtering
Introduction to 534
filter() (array object) 530, 536-7
.filter() (jQuery method) 338-9, 343, 531,
548-9
Tags 544-9
Text / live search 550-3
finally (error handling) 480-1
Final parentheses 97
.find() (jQuery method) 336-7, 518-9, 564-5
Firebug 237
firstChild (DOM property) 188-9, 208-9, 211
Flags 578-9
floor() (Math object) 134-5, 139
Flowcharts 18, 23,148, 494
fn object (jQuery) 523-5
focus () (DOM method) 273, 573
.focus() (jQuery method) 326, 619
: focus (jQuery selector) 342

focus event 274-5, 282,573, 588-9
focusinevent 247
focusout event 247
forEach() (array object) 530, 536-7, 542-3
forloop 172-3,175, 207
Forms
Controls (types of) 573
Changing type of form control 576-7
Checkboxes 580-1
Date picker (HTML5) 591
Date picker (jQuery) 432-3, 619-9
Email 590, 61
Radio buttons 582-3
Range inputs 591
Select boxes 584-7
Submit button 578-9
Text input 576-7, 594-5
Textareas 588-9
elements collection 600
Enhancement
Introduction to 568
jQuery Ul (Date picker & slider) 432-3
Password length and match 620-1
Show or hide based on other form input 618-9
Giving focus to an element 273, 326, 573, 619
Methods 343, 572-3,584
Properties 343,572-3, 584
Submitting forms 574-5, 578-9
Validation 282, 598-619
Introduction to 568, 598
Age 617-9
Character count 588-9
Checkbox selected 580-1
Checking for a value 606-7
Checking length of text input 615
Dates 617-9
Email 611
HTML5 form validation 590-1, 604-5
Length of text/password input 588-9, 620-1
Numbers 132, 343
Password length and match 615
Radio button selected 582-3
Regular expressions 612-3
Required elements 606-7
test() and regular expressions 611-3
Turn off HTML5 validation 591
URL 590

Which element the user interacted with 576-7
(see also Event object)
forward() (history object) 426
Function-level scope 98
Functions
Introduction to 88-9
Anonymous functions 88
Arguments 92-3
Calling 91, 93
Code block 90
Declaring 90, 92, 96
Final parentheses 97
Function expressions 96-7
Helper functions 570-571
initialize / init() 539, 542-3
Parameters 88, 92-3
return 92, 94-7, 578-9, 586-7, 594-5
this (scope of keyword) 270
(see also this keyword)

G

Geolocation APl 416-9

$.get() (jQuery method) 388, 392-3

getAttribute() (DOM method) 232-3

getCurrentPosition() (Geolocation API) 417-9

getDate() (Date object) 137

getDay() (Date object) 137

getElementByld() (DOM method) 126,192-5

getElementsByClassName() (DOM method) 193,
197, 200

getElementsByTagName() (DOM method) 193, 197,
201, 240

getFullYear() (Date object) 137-8

getHours() (Date object) 137

getItem() (storage API) 421-3

$.9etJdSON() (jQuery method) 388, 392, 396-7, 405

getMillseconds () (Date object) 137

getMinutes() (Date object) 137

getMonth() (Date object) 137

$.getScript() (jQuery method) 388, 392

getSeconds () (Date object) 137

getTime() (Date object) 137

getTimezoneOffset() (Date object) 137

Global JavaScript Objects
Introduction to 121,124-139
Boolean object 123
Date object 123,136-9
Math object 123,134-5
Number object 123,132-3
Regex object 123
String object 123,128-130

Global scope 98

go() (history object) 426

Google Maps APl 441-7

Grouping operator 97

:gt() (jQuery selector) 340-1

H

:has() (jQuery selector) 338-9
hasAttribute() (DOM method) 232-3, 235
.hasClass () (jQuery method) 365
hashchange event 286, 426-7
.height() (jQuery methods) 348-9, 350, 353
height (screen object) 124-5
Helper functions 570-571
.hide() (jQuery method) 332-3, 512-3, 582-3,
618-9
History APl 424-7
history object (Browser Object Model) 124-5,
424-7
Methods
back(), forward(), go(),
pushState(), replaceState() 426
Properties
length 426
History stack 424
Hoisting 456
How many characters in a string 128-130
.html () (jQuery method) 314-7
HTMLS
APls 413
Geolocation APl 416-9
History APl 424-7
Web Storage APl 420-3
Attributes
data-* attributes 289-90, 544-6, 608
required 591, 607
Events 286-7
Form controls (support, polyfills, styling) 590-2
placeholder fallback 594-7

id (DOM property) 189, 232
if...else 148-9,162-3

if statements 148-9, 160-3, 181
:image (jQuery selector) 342
Images centering 511

Immediately Invoked Function Expressions (IIFE) 97,

142, 504, 523

Implicit iteration 310
Increment in loops 170-3
.index() (jQuery method) 565
Index numbers 129
index0f () (String object) 128-130, 550-3
Initialize / init() (functions) 539, 542-3
Inline scripts 49
.innerHeight () (jQuery methods) 348
innerHeight (window object) 124-5
innerHTML (DOM property) 218, 220-1, 227

Security risks 228
innerText (DOM property) 216-7
.innerWidth() (jQuery methods) 348
innerWidth (window object) 124-5
:input (jQuery selector) 342
input event 247, 271, 280-2, 552-3, 573, 588-9
insertBefore() (DOM method) 240
Instances (of objects) 109-11
Interpreter

Definition 40

How it works"452-7
.is() (jQuery method) 343, 521, 565
isNaN() (Number object) 132
$.isNumeric() 343
item() (Array) 71
item() (NodelLists) 196,198

J

JavaScript console 462-79
JavaScript History / Standards 532
JavaScript libraries 360-1, 428
JavaScript not enabled 491
iQuery
Introduction to 294, 296, 298-9
$() shortcut for jQuery() 296, 299, 313, 361
$(function() { ... }); 313
Advantages 300
Ajax (see Ajax)

API 358
Caching selections 308-9
Chaining methods 311
Conflicts with other scripts 361
document.ready() 312-13
Documentation 358
Elements 302-3, 314-6, 318-9, 336-9,342-7
Events object 326-331
.fn object 523-5
Forms (.serialize()) 394
Global methods
$.ajax() 388,398-9,405
$.get() 388,392-3
$.9etJSON() 388,392, 396-7, 405
$.getScript() 388
$.isNumeric() 343
$.post() 388,394-5
How to include 298, 354-5
Implicit iteration 310
jQuery () function (seealso $()) 296, 299, 313, 361

jQuery methods: full list of methods 304-5

jQuery selection (matched set) 296-7, 306
Adding to / filtering selection 338-341
Caching 308-9
Number of elements (1ength property) 364

jQuery selectors 296, 300, 302-3

JQuery Selectors: full list of selectors 302-3

jQuery Ul 429
Accordion 430
Date picker 432-33, 618-9
Form enhancements 432-3
Tabs 431
Looping
Through elements (implicit iteration) 310
Through elements .each() (see E> .each())
Matched set (see J > jQuery > jQuery selection)
Page is ready to work with 312-3
Plugins 359, 428
Creating your own 522-5
Date picker 619
jQuery Ul 429-434, 618-9
noUlSlider 5328
Versions 298, 301
Where to get / download 298, 354-5

Where to place script 313, 354-7
JgXHR object 389, 405
Methods
.abort(), .always().
.done(), .fail() 389, 396-7
.overrideMimeType() 405
Properties
responseText, responseXML,
status, statusText 389
JSON
Introduction to 376-7
As an Ajax data format 374
Debugging JSON 474
Displaying JSON 382-3
JSON object
parse() & stringify() methods 377, 382-3
Serializing and deserializing data 382-3
JSONP 385-7

K

Keyboard events 246-7, 280-1
keydown, keypress, keyup, input event 246-7
keys (objects) 101, 533, key/value pairs 118
Keywords

break 164-5,174

case 164-5

catch 480-1,576-7

continue 174, 595

debugger 479

delete 107, 112, 533

finally 480-1

new (array) 71

new (object) 106,109

return 92, 94-7,578-9, 586-7, 594-5

switch 164-5

this 102-9, 114-5, 270, 324

throw 482

try 480-1,576-7

var 60, 63-8

L

lastChild (DOM property) 208, 211
lastIndex0f () (String object) 128-130
length (history object) 124, 426

length (items in a select box) 584

Tength (String object) 128-130, 588-9, 620-1

Length of text input 588-9
Lexical scope 457
Lexicographic sort 554
Libraries 360-1, 428
Linking to a JavaScript file 47, 51, 298, 313, 354-7
Links
Get value of href attribute 407
Which link was clicked 498-9
Literal notation 102, 104-5, 113, 142
(see also O > Objects > Creating your own objects)
Livesearch (autocomplete) 370
load event 246, 272-3, 286-7
.1oad() (jQuery method - Ajax) 388, 390-1, 407
Local scope 98-9 (see also p456-7)
Locale 137
localStorage 420-3
location property (window object) 124-5
Logical operators 156-9, 169
Logical and 157-8, 537
Logical not 157,159
Logical OR 157,159
Short-circuit evaluation 157, 169
Looking for text 550-3
Loops
Introduction to 170-7
break keyword 174 (see also Keywords > break)
Conditions 170-3
continue keyword 174, 595
Counters 171-4, 181
do while loop 170,177
for loop 175
Introduction to 170,175
Diagram 172-3
Looping through elements 204-7
Increment (++) 171
Infinite loop 174
jQuery implicit iteration 310
jQuery .each() method 324
Looping through
an array 175,530, 534-7,542-3
checkboxes 580-1
DOM elements (nodelist) 204-7, 594-5
properties of an object 533, 605
radio buttons 582-3
Performance 174
while loop 170,176, 181
Lowercase 128-130
:1t() (jQuery selector) 340

M

map() (array object) 530
Maps (Google maps) 441-7
Matched set (jQuery) 296-7, 306-9, 338-41, 364
Math object 134-5

Methods

ceil(), floor(), random(),

round(), sqrt() 134

Properties

PI 134
Member operator 50, 103
method property (DOM property - forms) 572
Methods

Introduction to 32-3, 100-11

Calling a method 50,103
Minification (.min. js extension) 298
Modal window 500-5
Modernizr 414-5, 417, 419, 593, 596~7
Module pattern 501
mousedown, mousemove, mouseout,
mouseover, mouseup event 246, 276-7
multiple (DOM property - forms) 584
Multiplication 76-7,176-7, 181
Mutation events 247, 284-5
MVC/ MV* 360, 434-9

N

name (DOM prdperty - forms) 572-3

Name/value pairs 28, 88-9, 101, 113, 116-8, 131

Naming conflicts (collisions) 97, 99, 361

NaN 78,132, 461, 483

navigator object (Browser Object Model) 122, 414,
417-9

new keyword 71,106, 109

.next() (jQuery method) 336-7, 495

.nextA11() (jQuery method) 336

nextSibling (DOM property) 208, 210, 214

Nodelists 196-9

Nodes (introduction to) 40, 186-7

nodeValue (DOM property) 184, 214-5, 241

No JavaScript 491

Non-blocking processing 371

.not () (jQuery method) 338, 494-5, 531

:not () (jQuery selectors) 338-9

noUiSlider 538, 542-3

novalidate property (HTMLS forms) 591, 604-5

Number object (Built-in Objects)
Methods
isNan(), toExponential(),
toFixed(), toPrecision() 132-3
Rounding numbers 132-3
Numbers 62-3
Random numbers 135
Rounding 132-3
Sorting 558
Numeric data type 62 (see also D > Data types)

O

Objects
Introduction to 26-9, 34-5, 100-1
Accessing properties and methods
Dot notation 103-5, 110
Square brackets 103, 107
Adding and removing properties 112
Arrays and objects 118-9, 308, 340, 533
Built-in objects 120-3
Creating
Comparison of techniques 113
Constructor notation 106, 108-111, 113
Literal notation 102, 104-5, 113, 142
Instances of 109-11
Multiple objects 105, 108-111
Creating your own objects (examples of)
Compare functions for sorting 562-3

Custom object for valid elements 601, 604-5

Data: cameras and projectors 586-7
Data: people for filtering 533-4
Image cache 509-13
Modal window 501-5
Tags 544-9
keys 101-2, 113, 117-8, 131,533
Methods 32-5, 38-9,100-1
Properties 28-9, 34-5,100-12
this 114-5
Updating properties 107
vs variables and arrays 116-7
Object models (introduction to) 121
.off () (jQuery method) 505
.offset() (jQuery methods) 357, 353
.on() (jQuery method) 326-31, 343-5, 365
onpopstate property (window object) 426-7

.open() (XMLHttpRequest object) 373, 379, 381, 383

Operators

+= adding to a string 111, 125, 127,130, 133
Comparison operators 148-56

> greater than, >= greater than or equal to 151-5
() grouping operator 97

< less than, <= less than or equal to 151

. Member operator 50, 103

== is equal to, != is not equal to 150

=== strict equal to, !== strict not equal to 150

? : Ternary operator 562, 579, 583

Unary operator 168

<pption>elements 584-7

options (DOM property - forms) 584
Order of execution 452

.outerHeight (), (jQuery method) 348
.outerWidth() (jQuery method) 348
.overrideMimeType() (jgXHR method) 405

P

Page loads - run script 273, 312-3

pageX0ffset, pageYOffset (window object) 124-5
pageX, pageY (window object) 124, 278-9
Parameters 50, 88, 92-3

With event listeners 256-7

.parent() (jQuery method) 336, 498-9
.parents() (jQuery method) 336
parentNode (DOM property) 208, 224-5
:password (jQuery selector) 342

paste event 247

Performance

Caching
DOM queries 190-1, 575
Images (custom object) 509-11
jQuery selections 308-9, 540-1
Object references 540-1
Text (custom object) 551
Event delegation 266, 268-71, 290-1, 330-1, 365
Global vs Local variables 98-9
Selecting class and id attributes (jQuery vs
DOM) 324
Where to place scripts 356-7

PI property (Math object) 134

placeholder (and its fallback) 590-1, 594-5
Polyfills 593-7

pop() (array object) 530

.position() (jQuery method) 351

Position object (geolocation API) 418-9

PositionError object (geolocation API) 418-9

Position of items on page 351-3

$.post() (jQuery method) 388,392, 394-6

.prepend() & .prependTo() (jQuery methods) 318

Presentation layer 44

preventDefault() (event object) 262, 267, 283,

.preventDefault() (jQuery method) 328,345,
365, 494-5, 504-5

previousSibling (DOM property) 208-10

Primitive data types (see Data types)

Progressive enhancement 45

.prop() (jQuery method) 618-9

Properties 28-9, 34-5,100-12

Protocol relative URL 355

Proxy (Ajax) 384

push() (array object) 519, 530, 536-7, 540, 542-3

pushState() (history object) 424-7 426

Q

querySelector() (DOM method) 193-6, 202, 241
querySelectorAll() (DOM method) 126,193,197

R

:radio (jQuery selector) 342

random() (Math object) 134-5

Random numbers 135

RangeError 459, 461

Range slider 432-3, 538, 542-3

.ready() (jQuery method) 312-3, 361, 364

Reference
To an element DOM 190-1, 575
To an element jQuery 308-9, 540-1
To an object 540-1

ReferenceError 459-60

Regular expressions 563, 611-3

Relative URLs (Ajax) 389

Removing content:
.remove() (jQuery method) 299, 316-7, 346, 584
.removeAttr() (jQuery method) 320
removeAttribute() (DOM method) 232, 235
removeChild() (DOM method) 224-5
.removeClass() (jQuery method) 320-1, 339,

341,512-3

removeEventListener() (DOM method) 255
(see also innerHTML an(d detach())

replace() (String object) 128-130, 406-7, 562-3
replaceState() method (history object) 424-6
.replaceWith() (jQuery method) 316

Require.js 593

:reset (jQuery selector) 342

reset () (DOM method - forms) 572

reset event 247,572

resize event 246, 272, 504-5

responseText (XMLHttpRequest object) 379, 383,389
responseXML (XMLHttpRequest object) 380, 38%
return keyword 92, 94-7, 578-9, 586-7, 594-5
reverse() (Array object) 530, 564-5
RangeError 459, 461

Rounding numbers 132-5

round() (Math object) 134

5

Same origin policy 420
Saving a script 46
Scope 98-9, 457
Global scope 98-9, 453-7
1IFEs 97
Lexical scope 457
Local (function-level) scope 98-9, 453
Naming collisions and namespaces 99, 523
Screen dimensions 124-125, 278, 350
screen object (Browser Object Model) 124-5
Properties
height, width 124
screenX, screenY (window object) 124, 278
<script>element 47
Conditional loader for scripts 596-597
When to load 596-7
Where to place <script>tag 48, 51, 313, 354-7
Scripts
Approach to writing 16-23
Definition 14-7
scroll event 246, 272
.scrollLeft() (jQuery method) 350
.scrol1Top() (jQuery method) 350, 353
Search 550-553
Security: Cross Site Scripting (CSS) Attack 228-231

. Select boxes 584-7

select() (DOM method) 573

:selected (jQuery selector) 342

selected (DOM property - forms) 573, 580-3
selectedIndex (DOM property - forms) 584

selectedOptions (DOM property - forms) 584 String object

select event 247 Methods
send() (XMLHttpRequest object) 373, 379, 381, 383 charAt(), index0f(), 1astIndex0f(),
Separation of concerns 490 replace(), split(), substring(), trim(),
.serialize() (jQuery method - forms) 394-5 toLowerCase(), toUpperCase() 128-130
Serializing JSON data 382 Properties
sessionStorage 420-3 length 128-130
setAttribute() (DOM method) 232, 234 :submit (jQuery selector) 342
setDate() (Date object) 137 submit() (DOM method - forms) 572
setFullYear() (Date object) 137 Submit buttons 578-9
setHours () (Date object) 137 submit event 247, 271, 282,572
setItem() (storage API) 421-3 substring() (String object) 128-130
setTime() (Date object) 137 .complete() (jQuery method) 396
setTimeout () (window object) 517-9 .error() (jQuery method) 396
setMillseconds() (Date object) 137 .success() (jQuery method) 396
setMinutes() (Date object) 137 switch statements 164-165, 291
setMonth() (Date object) 137 Switch value 165
setSeconds () (Date object) 137 Synchronous processing 371
shift() (array object) 530 SyntaxError 459-460
Short-circuit evaluation 157, 169
.show() (jQuery method) 332-3, 344, 364 T
.siblings() (jQuery method) 336, 548-9
Slider (content panel) 515-520 Tables
.slideToggle() (jQuery method) 494-5 Adding rows 542-3
some () (array object) 530 Sorting a table 560-5
sort() (array object) 530, 533, 554-65 .tabs() (jQuery Ul method) 431
Sorting 555-6 Tabs 431, 496-9
Dates 559 target property (event object) 262-3, 268-9
Lexicographic sort 554 Templates 360, 434-9
Numbers 554, 558 Ternary operator 562-3, 579, 583
Random order 558 Testing for features (see Feature detection)
Sorting a table 561-6 test () method 611
split() (String object) 128-130, 546-7, 563, 618-9 .text() (jQuery method) 314-7, 364-5, 535
sqrt() (Math object) 134 :text (jQuery selector) 342
src attribute 47 <textarea> 588-9
Stack 454-5 textContent (DOM property) 216-7
Statements 56 this 102-6, 114-5, 270, 324
.stop() (jQuery method) 332, 353, 510-1 throw (error handling) 481-3
stopPropagation() (DOM event object) 262, 267 Timers (see Delays)
.stopPropagation() (jQuery method) 328 .toArray() (jQuery method) 531
Storage objects (storage API) 420-3 toDateString() (Date object) 137
Storing data (compare techniques) 116-7 toExponential () (Number object) 132
String data type 62, 64-5 toFixed() (Number object) 132
Checking for text 552-3 .toggle() (jQuery method) 332, 493

.toggleClass() (jQuery method) 565
toLowerCase() (String object) 128-130, 550-3
toPrecision() (Number object) 132
toString() (Date object) 137

toTimeString() (Date object) 137 Variables

toUpperCase() (String object) 128-130, 406 Assign a value / assignment operator 61
Traversing the DOM 208-11 Declaration 60
trim() (String object) 128-130, 552-3 Definition 58-9
Troubleshooting Naming 60, 69
Ajax not working in Chrome (locally) 378 Naming conflicts and collisions 97, 99
Ajax requests: assets not showing up 389 Scope 98, 453
Common errors 485 (see also 460-1) undefined 61, 485
Console 464-474 vs arrays and objects 116-7
Debugging JSON data and objects 474 var keyword 60, 63-8
Debugging tips 462-3, 484
Equivalent values do not match 166 W
Events firing more than once 260-1 :
IE will not run script locally 47 Weak typing 166-7
jQuery object only returns data from first Web Storage APl 420-3
element in selection 307 Where to place your scripts 356
NaN 78, 461 while loop 170,176, 181
try... catch 480-1,576-7 Whitespace (DOM) 209-211, 237
Truthy and falsy values 167-9 width (screen object) 124-5
try (error handling) 480-1, 576-7 .width() (jQuery methods) 348-50
type (DOM property - forms) 573 . window object (Browser Object Model) 36-7,124-5
type (event object) 262 ' Introduction to 36-7
Type coercion 166, 168 Methods
TypeError 459, 461 alert(), open(), print() 124
Properties
U innerHeight, innerWidth 124-5
location property 36,124
UML (Unified Modeling Language) 494 onpopstate 426
undefined 61, 485 pageXOffset, pageYOffset 124
Unix time 136-7 screenX, screenY 124-5
unload event 246, 272 (see also beforeunload) write() (document object) 126, 226
unshift() (array object) 530
Untrusted data (XSS) 228-31
.unwrap() (jQuery method) 346 - X ¥ Z
Updating content (see DOM and jQuery) XDomainRequest object (IE8-9) 384
Updating page without refreshing (see Ajax) XML 374-5, 380-81
Uppercase 128-130, 406 XMLHttpRequest object
URIError 459-460 Methods
URL (get current) 36-9,124 open(), send() 372-3
Properties
V responseText 379, 383, 389
responseXML 380-2, 389
.val() (jQuery method) 343, 345, 365, 542-3 status 373, 378-9,389
Validation (definition) 282, 568 XSS (Cross Site Scripting) Attacks 228-231

value (DOM property - forms) 573, 574-5,578-9

LEARN HOW TO

Read and write JavaScript

Make your sites more interactive
Use jQuery to simplify your code

Recreate popular web techniques

TECHNIQUES INCLUDE

Slideshows and lightboxes
Improved forms and validation
Using Ajax, APIs, and JSON
Filtering, searching, and sorting

ONLINE SUPPORT

Code samples and practical
exercises available online at:
www.javascriptbook.com

Plus bonus reference materials

4
)
4 %
pe=—Ct =t
e & (J
“ () &
Of 4‘0/ (] 06
b %, & % %
) G
R Rmm e RS
% 7. &6 6 “a,
C, (e} o, ”~ A S
K Y, e e
'V// 400 S 2 ‘z’o 6 A) @0
> L e, - & o e TR
4;5‘ o 64,(4 .—3) %0@ Ox ’{6
s &
"’66 % 6 b %% & 0 U
/(. O @, L (25 s “ (// (o)
R oSl A e %
R e s, 5 o, % % 9 D
e o@ g < % . 9, (g
Ty, S, x B % G T % <.
/Q(, '7"0, % %, 7 QOQ, . 6 *, % 9 J'o(, /o(,
M % % S e
% © 4 c
b G TG0 Y R e e e oS
T N e e e g A G e
s ¢ S; % Yo, % %, o s N
o S %, %, % ¢ 4 %o, % €3 4 ok
o/) O‘?& d}‘of G,) o‘g, ’5’).. %:;\ ‘9@/ 3 /}J" Q
o, o T,y o
/’),F ‘OO/ (@ Q"b /'%,. % f:)o 4 O
% >4 e % YA %
) S %% % 9, %, G
(o8 /5 2, %, @ Ny
G 0% &(3 0'0 % ¢
q -
o, % B So. Yy #
B % G, B
s Y M
— Z
[e} (J 6¢
ﬁ%ﬁe O (v 4
2. %
%
.~

WILEY

FROM THE AUTHOR OF THE BEST-SELLING
HTML & CSS: Design and Build Websites
www.htmlandcssbook.com

Web Programming / JavaScript
USA $39.99 / CAN $47.99

ISBN 978-L-118-531b4-8

il

ol7811181531648

