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[1 PREFACE

This Student Solutions Manual contains strategies for solving and solutions to selected exercises
in the text Single Variable Calenlus, Early Transcendentals, Eighth Edition, by James Stewart. It
contains solutions to the odd-numbered exercises 1n each section, the review sections, the True-
False Quizzes, and the Problem Solving sections.

This manual is a text supplement and should be read along with the text. You should read all
exercise solutions in this manual because many concept explanations are given and then used in
subsequent solutions. All concepts necessary to solve a particular problem are not reviewed for
every exercise. If you are having difficulty with a previously covered concept, refer back to the
section where it was covered for more complete help.

A significant number of today’s students are involved in various outside activities, and find it
difficult, if not impossible, to attend all class sessions; this manual should help meet the needs of
these students. In addition, it is our hope that this manual’s solutions will enhance the understand-
ing of all readers of the material and provide insights to solving other exercises.

We use some nonstandard notation in order to save space. If you see a symbol that you don’t
recognize, refer to the Table of Abbreviations and Symbols on page v.

We appreciate feedback concerning errors, solution correctness or style, and manual style. Any
comments may be sent directly to jeff-cole @ comeast.net, or in care of the publisher: Cengage
Learning, 20 Channel Center Street, Boston MA 02210,

We would like to thank Kira Abdallah, Kristina Elliott, Stephanie Kuhns, and Kathi Townes,
of TECHarts, for their production services; and Samantha Lugtu, of Cengage Learning, for her
patience and support. All of these people have provided invaluable help in creating this manual.

Jeffery A. Cole
Anoka-Ramsey Community College

James Stewart
McMaster University

Daniel Drucker
Wayne State University

Daniel Anderson
University of lowa
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[1 ABBREVIATIONS AND SYMBOLS

CD concave downward

cu concave upward

D the domain of

FDT First Derivative Test
HA horizontal asymptote(s)
I interval of convergence
IF inflection point(s)

R radius of convergence
VA vertical asymplote(s)

X

indicates the use of a computer algebra system.

indicates the use of the Product Rule.

indicates the use of the Quotient Rule.

indicates the use of the Chain Rule.

indicates the use of I'Hospitals Rule.

indicates the use of Formula j in the Table of Integrals in the back endpapers.

indicates the use of the substitution {u = sin x, du = cos x dr}.

n= e - nz LR LE 1% ¢

indicates the use of the substitution {u = cos x, du = —sin x dx}.
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[1 DIAGNOSTIC TESTS

Test A Algebra
1. (a) (=3)" = (=3)(=3)(=3)(=3) =81 (b) =3% = —(3)(3)(3)(3) = —81
-4 1 1 5 23=21 2
{cy3 =w =5 {d}52|:5 =5 =25
- 2 - 1 1 1 1
@@ == 016 = o = TR =B 7

2. (a) Note that /200 = /100 - 2 = 10 /T and v32 = /16 - 2 = 4 /7. Thus /200 = V32 = 102 = 4T =62

{b) (3a?6*)(4ab®)? = 3a®H*16a"b? = 48a°H7

32y =1 phy=t2 2 (z2y=t12)r Py £ -
(c) (Ezy-ljz) = (3,_.3;2”3) T (Bx3yd) T 0oyt Oxiyby  OyT
3 (a) 3{I+ﬁ}+4[2z—5]=3:5+18+S.I—2\']': 1lx =2

(b) (z+ 3)(4x = 5) =4z =52 4+ 12z = 15 =4z" + T = 15
© (Va+ve) (Va-vB) = (va) ~vavi+vave—(vB) =a=b
Or: Use the formula for the difference of two squares to see that (x-G+ v’i}('v"a_- 1.-“5) = (v“'a_)j - (JE )2 =a="h

() (2z+3) =(2c+3)(2c +3) =4 + bz + 6r + 9 =4 + 12r + 0.
Note: A quicker way to expand this binomial is to use the formula (a + b)* = a® + 2ab + b with a = 2r and b = 3:
(2 + 37 =(22)* +2(2)(3) + 3" = 4" + 120 4+ 9

(e) See Reference Page 1 for the binomial formula (a 4 5)* = a® + 3a®b 4+ 3ab® + b*. Using it, we get
(z+2P =2 +3222) +32(2Y) + P =P + 62 + 120 4 8.

4. (a) Using the difference of two squares formula, a® — & = (a + b){a = b), we have

4z = 25 = (22)* = 5" = (22 4 5)(2z = 5).

(b} Factoring by trial and error, we get 22° 4 52 = 12 = {2z = 3)(x + 4).

(c) Using factoring by grouping and the difference of two squares formula, we have
2 — 32" — 4z 412 =J:2{z =3 =4z =-3)= f_.i:2 —4)(x =3) = (x =2}z + 2)(z - 3).

(et +2Tr=a( +27)=x{c + (z? =32 +9)
This last expression was obtained using the sum of two cubes formula, ® 4+ b* = (a 4 b)(a® = ab + b*) witha = =
and b = 3. [See Reference Page 1 in the textbook.

(e) The smallest exponent on = is —%, so we will factor out ==/,
282 _ g2 + Be™ 12 _ 31_—1!2{12 —3r+ 2] — 3.:'-1‘”{:5 - l:ll{.r - 2}

(f) 2y = day = zy(a”® = 4) = zy(z = 2)(z + 2)
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2 0O DIAGNOSTIC TESTS

.'L{]I +3.r+2 I[.I+l:|-{1'+2:|_.r+2
= _I[I+l:|-{1'—2:|_.z—2

2’ —x=1 x+3 (Zr+1)(z=1) z+3 zx-=1

b . = . =
(&) =1 Zr 41 (r=3)zx4+3) 2r41 =3
(©) x? I+.'|._ * I+l_ = 41 I—-Z_IE—II‘{‘-J.}I{I—E}
el | I+2_{I—2]{I+2} I+ﬂ_{.‘:—2}|{.r+2:l- 42 =2 {I-Z]I[I-{-E}
_Iz—l::J.'z—I—E:I 42 1
(x+2)z—-2) I:I-I-E:II[.I—E:]- -3
) T u I
- - = -— z 2
z y_r y T _y=x (y=z)y+z]_ y+=z
(d) —3 P = —3 = ={T 4y
T 1T 1'n~ 2-y  —G-n -1 Y
T - y
110 410 + 2 Vol 4+ 210 + 2,10
6. (a) = V32 - _ 52 5vI+2./10
VE—2 5-2 542 (vV3) =22 5—4
(b) 4+h-2 vi+h-2 Vit+h+2 d4h=4 h _ 1
h h Vith+2 h{\.f4+h+2}_h{v’4+h+2]_v“=l+.f:'+2

T. {a]Iz+I+l:{12+I+%]+l—%:[I+%]2+§
:b]ﬂ.rz—121'+11:2{;2—ﬂ;:}+11=2{_-;2_ﬁ_;+g_g}+11 :2{-12—ﬂ1+ﬂ]—13+11=2{1—3]2—'}'

ﬂ.{a]x-l-—a—lai——: [ :—14—:: = %I:Q (= I:%-ﬂ & =06

= Zzlz{ﬂr—l}{z-i-l:} = =0t pr—1 & xr=1

J:+_'l=
(C)a” =z=12=0 & (z+3)(c=4)=0 & z+3=00rxz=-4=0 & z==-3orr=4
{d) By the quadratic formula, 2:° +4r 4+ 1=0 <«

=T AE)1)  —4xE 4227 2(-2%42) 2% 1
T 2(2) -1 T 1 " 1 =—g =-1#iv2

ey =322 4+2=0 & (Z=1)(z"=2)=0 & 2P*=1=00rz"=2=0 & £ =loz’=2 =
r=xlorr =22

fi3lz=4=10 & |z=4]|= 1|:| o I—4=—'u—ﬂnr.:—4=%? & z=zoz=3F

(2) Multiplying through 2r(4 = £}~/ =3/ Tz =0by (4 =) gives 2r = 3(4=2) =0 &
2z —12+3x=0 < 5r—12=0 & 5r=12 & =11
9. (a) =4 <5=-3c<17T & —-09<=3:<12 & 3>z>—dor —4<r<3
In interval notation, the answer is [—4, 3).
b)x* <2z +8 & ' =2r=8<0 & (zr+2)(x—4) <0 Now,(z+ 2}z —4) will change sign at the cntical
values x = =2 and x = 4. Thus the possible intervals of solution are {—oo, =2, (=2, 4), and {4, =c). By choosing a

single test value from each interval, we see that (=2, 4) is the only interval that satisfies the inequality.
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TESTB AMALYTIC GEOMETRY O 3

ic) The inequality =(x — 1){x + 2) > 0 has critical values of =2, 0, and 1. The corresponding possible intervals of solution
are | =oo, =2, (=2,0), (0, 1) and (1, oc). By choosing a single test value from each interval, we see that both intervals

(=2,0) and (1, oc) satisfy the inequality. Thus, the solution is the union of these two ntervals: (=2,0) U (1, =2).

d)[r=4|<3 & =3<z—=4<3 < 1<x<T Ininterval notation, the answer is (1, 7).

2% =3 2 =3 2 =3 1 PP G | -4
el —=<1 & —1<0 & ==3_ITHlog o ZEoETIZl g o P2
41 FXal r41 r41 o | T4 1

Mow, the expression I—:_‘ll may change signs at the critical values £ = —1 and = = 4, so the possible intervals of solution
I

are (—oa, =1}, (=1, 4], and [4, =), By choosing a single test value from each interval, we see that (-1, 4] is the only
interval that satisfies the inequality.

10. {a) False. In order for the statement to be true, it must hold for all real numbers, so, to show that the statement is false, pick
p=1and g = 2 and observe that (1 + 2)? # 1% 4 2% In general, (p + ¢)* =p* + 2pg + ¢~

(b) True as long as a and b are nonnegative real numbers. To see this, think in terms of the laws of exponents:
Vab = (ab)* = a*/%5* = /a /B,

(c) False. To see this, let p=1and g = 2, then /17 + 27 £ 1 4+ 2,

{d}FaIse.Tnseeﬂ*ns,leiT:lamiﬂ:lﬂbenl+TI[E:';él+l.

(e) False. To see this, let # = 2 and y = 3, then —— ! ;El !
S et v T-373i”%

1/x o
afr —bfz =z -

(f) True since b,aslnngas:;f':ﬂanda.-b;éﬂ.

TestB Analytic Geometry

1. (a) Using the point {2, —=5) and m = =3 in the point-slope equation of a line, y — y, = m(x — x,), we get
y—(-5)=-3(x—-2) = y+5=-3x+6 = y=-3z+1
(b) A line parallel to the x-axis must be horizontal and thus have a slope of 0. Since the line passes through the point (2, =5,
the y-coordinate of every point on the line is =5, so the equation is y = =5.

ic) A line parallel to the y-axis is vertical with undefined slope. So the r-coordinate of every point on the line is 2 and so the
equation is = = 2,

(d) Note that 2x =4y =3 = =dy==2r4+3 = y= E""_ Thus the slope of the given line is m = §. Hence, the
slope of the line we're looking for 1s also $ (since the line we're looking for is required to be parallel to the given line).
S0 the equation of the line sy — (—5) = 3(x —2) = y+5=3x-1 = y=izr—6
2. First we’ll find the distance between the two given points in order to obtain the radius, r, of the circle:
r=/B=(-DF+(-2-1)2 = /2% + (=6)? = +/51. Next use the standard equation of a circle,

(x = h)* + (y = k)* =, where (h, k) is the center, to get (z + 1)* + (y — 4)* =52,
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O DIAGNOSTIC TESTS

3. We must rewrite the equation in standard form in order to identify the center and radius. Mote that
P4y =B+ 10y +9=0 = z* —6zx+ 94y + 10y =0. For the lefi-hand side of the latter equation, we
factor the first three terms and complete the square on the last two terms as follows: z° =6z 494+ 3° + 10y =0 =

(=3P 4+ " +10y+25=25 = (z—3)+ (y+5)° =25 Thus, the center of the circle is (3, =5) and the radius is 5.

-12—-4 =16 _ 4

4 (a) A(=T7.4)and B(5,=12) = m,g= e Rale vl

{h}y—ti:—%[.r—l{—?]] == y—4=—%r—% = Jy=12==dx =28 = dr+3y+ 16 =0 Puttingy =10,

we get 4r + 16 = 0, so the z-intercept is —4, and substituting 0 for = results in a y-intercept of — 3.

{c) The midpoint is obtained by averaging the corresponding coordinates of both points: {:'—7}'—“‘ ﬁ'{;ﬂl) =(=1,—4).

(d)d = /5=(=T)F + (=12 =4)F = /127 4 (=16)* = /TH + 256 = V400 = 20

(&) The perpendicular bisector is the line that intersects the line segment ABata right angle through its midpoint. Thus the

perpendicular bisector passes through (=1, —4) and has slope 2 [the slope is obtained by taking the negative reciprocal of

the answer from part (a)]. So the perpendicular bisector is given by y 4 4 = 2[z = (=1)] or 3z = 4y = 13.

(f) The center of the required circle is the midpoint of AE, and the radius is half the length of A8, which is 10. Thus, the

equation is (z 4 1)? + (v + 4)* = 100.

5. (a) Graph the corresponding horizontal lines { given by the equations y = =1 and
w = 3) as solid lines. The inequality y > =1 describes the points (x, y) that lie

on or above the line y = =1. The inequality y < 3 describes the points (z, y) I I

that lie on or below the line y = 3. So the pair of inequalities =1 < y < 3

describes the points that lie on or between the linesy = =l and y = 3.

(b) Mote that the given inequalities can be written as =4 < < 4and =2 < y < 2,

respectively. So the region lies between the vertical lines x = =4 and = = 4 and

between the horizontal lines y = =2 and y = 2. As shown in the graph, the =3 | dr

region common to both graphs is a rectangle (minus its edges) centered at the -

origin,

(c) We first graph y = 1 — . as a dotted line. Since y < 1 — 2, the points in the :

1
~~ =1—tx
region lie befow this line, Tl ! Tt

b

1] 2-"""-;1'.
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TESTC FUNCTIONS O 5

(d) We first graph the parabola y = =1 using a solid curve. Since y > x* = 1, ¥
the points in the region lie on or above the parabola.
it
R
- ¥y=x —1
{e) We graph the circle = + y* = 4 using a dotted curve. Sincey/== + y* < 2, the .
region consists of points whose distance from the origin is less than 2, that is, '}_'-'_ _:- ty =4
the points that lie imside the circle. =+
L P '

() The equation 9z° 4 16y” = 144 is an ellipse centered at (0, 0). We put it in

.172 2
standard form by dividing by 144 and get T % = 1. The r-intercepts are

e
N

located at a distance of +/16 = 4 from the center while the y-intercepts are a

distance of /8 = 3 from the center (see the graph).

TestC Functions

1. (a) Locate —1 on the z-axis and then go down to the point on the graph with an x-coordinate of —1. The comesponding
y-coordinate is the value of the function at = = =1, which is =2. So, f(=1) = =2.

(b) Using the same technique as in part (a), we get f(2) = 2.8,

ic) Locate 2 on the y-axis and then go left and nght to find all points on the graph with a y-coordinate of 2. The corresponding

z-coordinates are the r-values we are searching for. Sox = =3and x = 1.
(d) Using the same technique as in part (c), we get r == <2.5and r = 0.3
(&) The domain is all the x-values for which the graph exists, and the range is all the y-values for which the graph exists.
Thus, the domain is [=3, 3], and the range is [-2, 3].
2. Note that f(2 4+ h) = (2 + h)? and f(2) = 2* = 8. So the difference quotient becomes

f(24h)=F(2) _(2+4h)* =8 _ 8+ 12h4+6h" +h* =8 _ 12h 46" + h* _ h{124 6h + h*) _
h - h - h - h - h -

12 4 Gh 4+ A%

3. (a) Set the denominator equal to 0 and solve to find restrictions on the domairn: Frr—2=0 =
(x=1){x+2)=0 = x=1o0rzr= =2 Thus, the domain is all real numbers except 1 or =2 or, in interval
notation, (—oo, =2) U (=2, 1) U1, 2<).

(b) Note that the denominator is always greater than or equal to 1, and the numerator is defined for all real numbers. Thus, the

domain is {—o, og).

(c) Mote that the function i 15 the sum of two root functions. So h is defined on the intersection of the domains of these two
root functions, The domain of a square root function is found by setting its radicand greater than or equal to 0. Now,
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O DIAGNOSTIC TESTS
1—z2>0 = r<4amdz*-12>0 = (z=1){z+1) 20 = =x<-=lorz> 1 Thus, the domain of
hois (=oc, =1] UL, 4]
4. (a) Reflect the graph of [ about the z-axis.
i) Stretch the graph of f vertically by a factor of 2, then shift 1 unit downward.

{c) Shift the graph of f right 3 units, then up 2 units.

4 (a) Make a table and then connect the points with a smooth curve: ¥
z|l=2|=-1]|0f1]2 il
y|=8]=1L]|0]|1|8& ol r

() Shift the graph from part (a) left 1 unit. ¥ /
l.
—
—1 | ¥
{c) Shift the graph from part (a) right 2 units and up 3 units. s
2, %

{d) First plot y = =*. Next, to get the graph of f(z) =4 =z, ¥

reflect [ about the x-axis and then shift it upward 4 units.
ol 2 X
P
L
L Ly

(e) Make a table and then connect the points with a smooth curve: i

z (D1 [4]9 1

(f) Stretch the graph from part (e) vertically by a factor of two.

]
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TESTD TRIGONOMETRY 0O 7

¥

(2) First plot y = 2%, Next, get the graph of y = —2% by reflecting the graph of
y = 2 about the r-axis.

-9,
—-_._hﬁ.\I "

(h) Note that y = 1 4 =% = 1 4 1fx. Sofirst plot y = 1/ and then shift it 4
upward 1 unit. 1 k

[ {a}f{—E]: 1 —{—2}2 :—ﬂﬂtﬂf{l]:2{l]+ 1=3

(b) For x < 0 plot f{x) = 1 =" and, on the same plane, for = > 0 plot the graph
of flz) =2= 4+ 1. 1

T (foge)=flolz))=fl2e=3)=(2e =3P + 222 =3) =1 =4’ = 120 4 94 dxr = 6=1 =dx" = Bxr 4+ 2
b (ge Niz)=g(fiz)) =g(z® +22=1)=2{z? + 26 = 1) =3 =22" + dr =2 =3 =2+ 4+ 42 =5

() (gogog)(x) =g(ala(x))) = glg(2r = 3)) = g(2(22 = 3) = 3) = g(4x = 9) =2(4x = 9) =3

=Br=18=3=Rr=21

TestD Trigonometry

. _ 3007 _ 5% o qgef o 18T _ _ 7
1- (a) 300" = 300 (13{:5)— 180 3 (b) —18° = —18 (1305)_ 180 10
2 (@@ =57 13’“) = 150° {b}z_z(m’") _(E) = 114.6°
G G ® T T

3. We will use the arc length formula, s = rff, where s is arc Iength, r 15 the radius of the circle, and & is the measure of the

central angle in radians. First, note that 30° —ﬂﬂu(lgﬂﬂ) z- ‘bﬂs—{lﬂj(ﬁ) = 27 cm.

4. (a) tan(n/3) =3 [You can read the value from a right triangle with sides 1, 2, and /3

(b) Note that 7= /6 can be thought of as an angle in the third quadrant with reference angle = /6. Thus, sin(7x/6) =

h.ll-l

since the sine function is negative in the third quadrant.

ic) Mote that 5= /3 can be thought of as an angle in the fourth quadrant with reference angle = /3. Thus,

1 1

=73 = G 12

= 2, since the cosine function is positive in the fourth quadrant.
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8 O DIAGNOSTIC TESTS

iﬁillﬂ‘:u,n"ﬂ-‘i = a=24sind and cmﬂ:bf24 = b=Meosf

&hul.r:landmn r+emir=1 = cosr=,/1=1 —Also,&.my:% =" 5iny:1fl—%:%.

So, using the sum identity for the sine, we have

1 4 22 3 4462 1
ﬁin{:s+y}=tii||.rcmy+u.m::ﬁiny=E-E+%’_-E=+l—;f'_=ﬁ{4+ﬁﬁ}
) ‘e o] 1
7. (a) tan & sinf 4 cosf = - sin sulﬂ+cmﬂ—“n +cuh = = ser il
cos eos @ cos B cos
2tan 2s 1%
(b) f = mnrfl[tm:]zzl.mm cos” = PsinT cosr = sin2x
1+ tan*x socd 1 ©0s T

B sin2r =sinr < 2sinreowr—sinr <& 2sinrowr-—sinr=0 <& shlrl[ﬂcmz:—ljzﬂ =

Hi.llI:DOIEUHI:% =3 .r_ﬂ,z, ,55,2#

9. We first graph y = sin 2z (by compressing the graph of sin =

by a factor of 2) and then shift it upward 1 unit. \/.\/I/\/\

I.I|
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1 [ FUNCTIONS AND MODELS

1.1 Four Ways to Represent a Function

1. The functions f{z) = = + /2 = zand g(u) = u + 2 = u give exactly the same output values for every input value, so f
and g are equal.
3. (a) The point (1, 3) is on the graph of [, s0 (1) = 3.
(b) When x = =1, i is about =0.2, so f(=1) = =0.2.
ic) flz) =lisequivalenttoy = 1. Wheny = 1, we have r =0 and = = 3.
(d) A reasonable estimate for x wheny =015 r = =0.8
(e} The domain of f consists of all z-values on the graph of f. For this function, the domain is =2 < = < 4, or [—2,4].
The range of f consists of all y-values on the graph of f. For this function, the range is =1 <y < 3, or [-1,3].
(f) As x increases from —2 to 1, y increases from —1 to 3. Thus, [ is increasing on the interval [-2, 1].

5. From Figure 1 in the text, the lowest point oceurs at about (i, a) = (12, —85). The highest point oceurs at about (17, 115).

Thus, the range of the vertical ground acceleration i1s —85 < a < 115. Written in interval notation, we get [—-85, 115].

T. Mo, the curve is not the graph of a function because a vertical line intersects the curve more than once. Hence, the curve fails
the Vertical Line Test
9. Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is [=3, 2] and the range
is [=3,=2)u[-1,3].
1. (a) When t = 1950, T" == 13.8%C, so the global average temperature in 1950 was about 13.58°C.
(b) When T = 14.2°C, t == 1990
() The global average temperature was smallest in 1910 (the vear corresponding to the lowest point on the graph) and largest
in 2005 (the vear corresponding to the highest point on the graph).

(d) When ¢ = 1910, T' = 13.5°C, and when ¢ = 2005, T = 14.5°C. Thus, the range of T is about [13.5, 14.5].

13. The water will cool down almost to freezing as the ice melts. Then, when T

the 1ce has melted, the water will slowly warm up to room temperature,

{JI t

15 (a) The power consumption at 6 AM is 500 MW, which is obtained by reading the value of power P when | = & from the
graph. At 6 PM we read the value of P when £ = 18, obtaining approximately 730 MW,
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10 O CHAPTER1 FUMNCTIONS AND MODELS

(b) The minimum power consumption is determined by finding the time for the lowest point on the graph, £ = 4, or 4 AM. The
maximum power consumption corresponds to the highest point on the graph, which occurs just before £ = 12, or right

before noon. These times are reasonable, considering the power consumption schedules of most individuals and

businesses.
17. Of course, this graph depends strongly on the 19. As the price increases, the amount sold decreases.
geographical location!
amaount
T
mid‘ni;_:lu nodn 1
L price
. Hedght
of grass P
Wed, "Frl.n:l "Fﬂ.-:l "Fﬂ.u:l l'
23. (a) THiF (b) 9:00 AM corresponds to £ = 9. When § = 9, the
8T temperature T' is about T4°F.
a0t
7
0T
A5 T
of % & ¢ & 10 2o
(hours)

2. f(x) =3z —x 4+ 2.
f(2)=3(2)*—=242=12-242=12
f=2)=3(=2"=(=2)+2=124242=16.
fla) =3a" —a+2.
f(=a) =3(=a)’ = (=a) + 2=3a" +a + 2.
flat)=3(a+1) =(a+1)+2=3a’+2a+1)=a=142=3a’+6a+3=-a+1=3a" +5a+ 4.
2f(a) =2 fla) =2(3a" —a +2) =6a” =20 + 4.
f(2a) = 3(2a)* = (2a) + 2 =3(4a) =2a + 2 = 120" = 2a + 2.

£(a*) = 3(a”)* = (a®) + 2 = 3(a") —a® + 2= 30’ —a® + 2.
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FOURWAYSTOREPRESENTAFUNCTION 0O 11

SECTION 1.1

[F|I"'|,:|':.|.:l]2=[.."n’]i—-*1+2]2 =(332—ﬂ+2}(3&2—ﬂ+2}
Oa* —3e® + 6 —3a* 40— Za+ 6a” —Za 4+ 4= 0a® —Ga® + 130” —da + 4.

flakh)=3a+h) =(a+h)+2=3a" +2ah+ ") =a=h+2=3a" +Gah +3h* =a=h+ 2

7 flr)=d+3r=2" 50 f(34+h) =4+33+h)=(3+h)" =44 94+3h = (D4 6h 4+ h*) =4 =3 =h",
3 =h.

f(3+h)=f(3) (4=3h=h*)=4 h(=3=h) _
and h - b - A -
1

1 1 =
f@)=f@ "2 _ =  a-z _-lE-a)_ 1
5. T r=a r=a zalr=a) za(r=a)  az
= =3 or 3, so the

H

I =dl
M. f(x) = (x4 4)/(z* = 9) is defined forall z exceptwhen0 =2 =9 & 0=(r+3)(z=3) = =

domainis {x E R |z # =3.3} = (=00, =3) U [=3,3) U (3, ).
33. f(t) = /2t =1 is defined for all real numbers, In fact /p(t), where p(t) is a polynomial, is defined for all real numbers.
Thus, the domain is B, or (=oc, 0o).
a{x = 5) > 0. Note that z* = 5z # 0 since that would result in

35 hiz) =1/ V=" =5z isdefined whenz* =52 >0 &
division by zero. The expression ={x — 5) is positive if = < Dor = > 5. (See Appendix A for methods for solving

inequalities.) Thus, the domain is {—oo, 0) U (5, o).
. Fp) = /2= pisdefinedwhenp > 0and 2 = JF > 0. Since 2= JF =0 = 2> & Jp<2 &
0 < p < 4, the domain is [0, 4].
39, The domain of f{x) = 1.6z — 2.4 is the set of all real numbers, denoted by & or !

{=oe, =c). The graph of f is a line with slope 1.6 and y-intercept —2.4
L4 x

f r+2 ifx<0
. fix) =
(=) l=x ifx>=0
o,z
e

fi=3)==3+4+2==-1L f(0)=1-0=1and f(2)=1=-2= 1.

r+1 ifx=<=1

8 fl=) = {;l:2 if &> =1
—lf{ﬂ}:ﬂz ={:|,531:\»|:|_F'll,rLE:I-=E2 =4

f{—E]:—ﬂ-}-l:
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12 O CHAPTER1 FUMNCTIONS AND MODELS

x if =0 ;
4. |x| = )
-r if x<0
f 2r x>0 |
=0 == =
() =z + =l 0 if <0

Giraph the line y = 2z for = > 0 and graph y = 0 (the z-axus) for = < 0. T

]

1-3t if1=3t>0 ;
. gt =1=3t = r
—(1=3t) if1=3t<0
1-3t ift<d
T lat-1 ift>d
o| § : '
=] if |z =1 .
49. To graph f(x) = , graph y = |z| (Figure 16) ’
1 if |z =1
I
for =1 < = < 1and graph y = 1 for = > 1 and for = < =1 —
- I v
1 if <=1
f =z if =1<x<0
We could rewrite /" as f{x) =
Sas f(z) fo<z<1
1 if =1
51. Recall that the slope m of a line between the two points (xy, i, ) and (zg, y2) 18m = uaﬂdanequatmnafﬂm line
Iy = iy

connecting those two points is y = g, = mz = ;). The slope of the line segment joining the points (1, =3) and (5, 7) is
?5-—[-13} = %,suanequamn isy=(=3) = 3{x=1). The function is f(r) = xr =4t 1 <x <5

53. We need to solve the given equation fory. =+ (y—1)"=0 = (y=-1)=-2z = y-1=%,/"7 =
y = 1% /== The expression with the positive radical represents the top half of the parabola, and the one with the negative
radical represents the bottom half. Hence, we want f{x) = 1 — /==z. Note that the domain is = < 0.

55. For 0 < x < 3, the graph is the line with slope =1 and y-intercept 3, that is, y = =z 4 3. For 3 < z < 5, the graph is the line
with slope 2 passing through (3, 0); that is, y — 0 = 2(z — 3), or y = 2x — 6. S0 the function is

i) —x4+3 f0<x<3
T l2r=6 f3<xr<5h

57. Let the length and width of the rectangle be L and 1. Then the perimeter is 2L 4 2W = 20 and the area is A = LW,

20 = 2L

Solving the first equation for W in terms of L gives W = =10 = L. Thus, A(L) = L{10 = L} = 10L = L*. Since

lengths are positive, the domain of A is 0 < L < 10. If we further restrict L to be larger than W, then 5 <0 L <2 10 would be
the domain.
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SECTION 1.4 FOURWAYS TO REPRESENTAFUNCTION O 13

59. Let the length of a side of the equilateral triangle be =. Then by the Pythagorean Theorem, the height y of the triangle satisfies

v+ [%.r]?: , sothaty” = =° = —.1:2 = “:‘!andy_ £.17 Using the formula for the area A of a tnangle,

A = L(base)(height), we obtain A(z) = 4(z) (s?;) = 2342 with domain x > 0.

61. Let each side of the base of the box have length =, and let the height of the box be h. Since the volume is 2, we know that
2 =ha”, sothat h = 2;’:?, and the surface area is § = x° + 4zh, Thus, S(z)= & + -LI{ZII?} ==+ (8/ ), with
domain = > 0.

63. The height of the box is = and the length and width are L = 20 = 2, W = 12 = 2z Then V = LWz and so
Viz) = (20 = 22)(12 = 2x)(x) = 4(10 = )(6 = £)(x) = 4=(60 = 16 4 =°) = 45* = 6427 + 240z
The sides L, W, and = must be positive. Thus, L >0 < 20=2x >0 < <10
W=0 < 12=2:>0 < < 6;andx > 0. Combining these restrictions gives us the domain 0 < = < 6.

65 We can summarize the amount of the fine with a 1

piecewise defined function. o {100, 525
15(40 —x) if 0<x <40
Flr)=40 if 40 < r < 65
15[1 - E-E} if > 65
u a0

IIII(I T

BT. (a) M%) {b) On $14,000, tax is assessed on $4000, and 10%($4000) = $400.
154 —_— On $26,000, tax is assessed on 516,000, and
10t o— 10%($10,000) + 15%($6000) = $1000 + $000 = $1900.
H |1:nj:-:u_| 2n.:r.ur| ¥ i dollars)

ic) As in part (b), there is $1000 tax assessed on $20,000 of income, so T i dollars)
the graph of T" 15 a line segment from {10,000, 0) to (20,000, 1000). s
The tax on $30,000 s $2500, so the graph of T for = > 20,000 is

LIS
the ray with initial point (20,000, 1000) that passes through

Al jogo0 20000 30,000 1 G dollars)

(30,000, 2500).
69. [ is an odd function because its graph is symmetric about the origin. g is an even function because its graph is symmetric with
respect o the y-axis.
Ti. (a) Because an even function is symmetric with respect to the y-axis, and the point (5, 3) is on the graph of this even function,
the point (=5, 3) must also be on its graph.

(b) Because an odd function is symmetric with respect to the origin, and the point (5, 3) is on the graph of this odd function,

the point (=5, —3) must also be on its graph.
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14 O CHAPTER1 FUMNCTIONS AND MODELS

n;{;}:zjil_ Ts,f{.z}——snf{—}— :+1 Iil.
fl-z) = - —f(z). Since this is neither f{x) nor = f{x), the function f is

-} _1 ] 1 2 1
{ I} + = * + neither even nor odd.

Since f{—x) = —f(x), f is an odd function. 3

| 1 ___/

. fl::.r:l-=1+312—1:‘. 4

f(=2) = 143(=2)* = (=2)" = 143" =" = f(2). [/\/\‘
Since f{=x) = f(z), [ is an even function. . . . s

7. (i) If f and g are both even functions, then f({—z) = f(x) and g(—z) = g(x). Now
(f + g)(—=) = f(—x) + g(—x) = f(x) + g(x) = (f + g)(x), s0 f + g is an even function.
(ii) If f and g are both odd functions, then f(—z) = —f(z) and g{—z) = —g(z). Now
(f + g)(==) = f(-=2) + g(-2) = = f(z) + [-g(=]] = =[f(z) + g(=)] = =(f + g)(z), 50 f + g is an odd function.
(iii) If f is an even function and g is an odd function, then (f + g)(—z) = f(—z) + g(—z) = f(z) + [-g(=)] = f(z) — o).
which is not (f + g)(x) nor —=(f + g)(x), 5o f + g is neither even nor odd. (Exception: if f is the zero function, then

f 4+ g will be odd. If g i1s the zero function, then | + g will be even.)

1.2 Mathematical Models: A Catalog of Essential Functions

1. (a) f(z) = log, x is a logarthmic function.

ib) g{x) = 4% is a root function with n = 4.

2
{c)hix) = : = — 15 a rational function because it is a ratio of polynomials.
=T

{d) u(t) = 1 = 1.1¢ 4 2.54¢* is a polynomial of degree 2 (also called a quadratic function).
() v(t) = 5" is an exponential function.

() w(fl) = sin # cos’# is a trigonometric function.
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SECTION1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIALFUNCTIONS O 15

3. We notice from the figure that g and k are even functions (svmmetric with respect to the y-axis) and that f is an odd function

(symmetrnic with respect to the origin). So (b) [y = z"'] must be f. Since g is flatter than & near the origin, we must have
{c) [y = «°] matched with g and (a) [y = =*] matched with k.

5. The denominator cannot equal 0, 50 1 =sinzr # 0 < sinr# 1 < x# § <4 2nr Thus, the domain of

LLNhI

flz) = T {x |z # % + 2nx, nan integer}.

T. (a) An equation for the family of linear functions with slope 2
By = flx) = 2x 4+ b, where b is the y-intercept.

(b) f(2) =1 means that the point (2, 1) is on the graph of f. We can use the
point-slope form of a line to obtain an equation for the family of linear

functions through the point (2,1). y — 1 = m(x — 2}, which is equivalent

oy = iz + (1 — 2m) in slope-intercept form.

/_'r—l mix— 2}

ic) To belong to both families, an equation must have slope s = 2, so the equation in part (b), y = mz 4 (1 = 2m),

becomes y = 2 — 3. It is the onfy function that belongs to both families.

9. All members of the family of linear functions f{x) = ¢ — = have graphs ¥

that are lines with slope =1. The y-intercept 15 c. \

l.'—.}-
=1
=10

A

1. Since f{—=1) = f{0) = f{2) =0, f has zeros of =1, 0, and 2, s0 an equation for f is f{z) = a[z — (=1)){z — 0){z — 2),
of f{z) = ax(x 4+ 1)(x — 2). Because f(1) = 6, we’ll substitute 1 for xand 6 for f(z).
6=all}{2)(=1) = =2a=6 = a=-=3,s0anequationfor fis f(z) = =3z(z 4+ 1)(z = 2).
13 (a) D =200, 50 c = 0.0417Da 4+ 1) = 0LM417(200)(a + 1) = 8.34a + 8.34. The slope is 8.34, which represents the
change in mg of the dosage for a child for each change of 1 vear in age.

(b) For a newhom, a = 0, so ¢ = 8.34 mg.
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16 O CHAPTER1 FUMNCTIONS AND MODELS

15. {a) F (b) The slope of 2 means that F increases 2 degrees for each increase

i, 212)
of 1°C._ (Equivalently, F increases by 9 when (' increases by 5
. ]
FezC+il and F decreases by 9 when C' decreases by 5.) The F-intercept of

32 is the Fahrenheit temperature corresponding to a Celsius

temperature of (.

Ty =T, B0 =70 1w 1
17. (a) Using NV in place of = and T" in place of i, we find the slope 1o be _-\’: —-'\:1 = IR T S0 alinear

equationis T —80= £(N —173) & T-80=3iN-12 & T=IiN4+2 [Z =511
{b) The slope of 3 means that the temperature in Fahrenheit degrees increases one-sixth as rapidly as the number of cricket
chirps per minute. Said differently, each increase of 6 cricket chirps per minute corresponds to an increase of 19F.
r_ i . _ an O
(c) When V = 150, the temperature is given approximately by T = $(150) + % = T6.16 °F == T6°F.

change in pressure  4.34
10 feet change in depth 10

19. (a) We are given = 0.434. Using I for pressure and 4 for depth with the point
(e, ) = (0, 15), we have the slope-intercept form of the line, P = 0.4344d 4 15,
(b) When P = 100, then 100 = 0.434d 4+ 15 = 043d =85 < d= FTE =z 195.85 feet. Thus, the pressure is
100 1b/in® at a depth of approximately 196 feet.
21. (a) The data appear to be periodic and a sine or cosine function would make the best model. A model of the form
flz) = acos(br) + c seems appropriate.
ib) The data appear o be decreasing in a linear fashion. A model of the form f{z) = mx + b seems appropriate.

Exercises 23— 28: Some values are given to many decimal places. These are the results given by several computer algebra systems — rounding is beft
to the: reader.

n(a) 5 (b) Using the points (4000, 14.1) and (60,000, 8.2), we obtain
.- B2=141
. . yv—14.1= m [I — 4[!]{!} Or, equ.u%alentl},

y A= =0.00010535Tr 4 14.521429.

15

0 " " n L " BN

A linear model does seem appropriate.

RLLY

{c) Using a computing device, we obtain the least squares regression line y = —0.0000997855x 4 13.950764.

The following commands and screens illustrate how to find the least squares regression line on a T1-84 Plus.
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SECTION1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS O

Enter the data into list one (L1) and list two (L2). Press [STAT) E| to enter the editor.

L] Lz L3 1 L1 Lz Ly 2
L D] 191 | e 120 1z E
B000 3 18000 i
i34 o000 | 124
izo0n | 43E 0000 | 105
Sl 1% LTt
LTI e | 0000
soono (108 | 0 | | coeao.
L1 ={48068, 6888, 5... LECI =

Find the regession line and store it in Y1. Press [2nd| [QUIT] [STATI [v] (2] [VARS] [v] 3] (1] [ENTERI.

LinRegCax+b) Y18 |[LinReg AME Fletz_ Plets
g=ax+b NE -9, IFE040E618
a=-9.978546e -5 TE9ZE-SM+13.95087
b=13.95876488 6$B??985

Y e=
W=
AN y=
[ | mMes

Mote from the last figure that the regression line has been stored in Y, and that Plot] kas been turned on (Plotl is

highlighted). You can turn on Plot] from the Y= menu by placing the cursor on Plot] and pressing |[ENTER| or by

pressing [2nd][STAT PLOT][1][ENTER] .

Flstz  Plotz
AR Eﬂr
L L1 Lz 2=H - E @

o FTot2 O0FF

[ I 41 ;5L=L1
SiP1ot3. O0ff Wlistilz
i n Mark: B +

(BN L
4LF1ots0ff

Mow press |§| to produce a graph of the data and the regression
line. Note that choice 9 of the ZOOM menu automatically selects a window
that displays all of the data.

(d) When £ = 25,000, y == 11.456; or about 11.5 per 100 population.
(e) When x = 80,000, y == 5.968; or about a 65 chance.

(f) When £ = 200,000, y is negative, so the model does not apply.

25. (a) 18t 0 (b) Using a computing device, we obtain the regression line
i * y = LARDT4x 4 82.64074.
B -
= .
z - 180
-

R 55
Femur length {cm)

Height {em)

{c) Whenz =53 cm, y = 182.3 cm. 33

Femur length {cm)
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18 O CHAPTER1 FUNCTIONS AND MODELS

27. (a) See the scatter plot in part (b). A linear model seems appropriate.

(b) Using a computing device, we obtain the regression line :.E* S000
y = 1116.64x + 6G0,185.33. 2
e
{c) For 2002, £ = 17 and i == 79,171 thousands of barrels per day. g =
For 2012, = = 27 and i == 90,338 thousands of barrels per day. . 5500 i

Tears since 1985

29. If « is the original distance from the source, then the illumination is f{x) = kr=? = k/z”. Moving halfiway to the lamp gives

us an illumination of f (1) = k(1) ™" = k(2/x)* = 4(k/z*), so the light is 4 times as bright.
3. (a) Using a computing device, we obtain a power function N = cA®, where ¢ = 3.1046 and b = 0.308.

{b) If A = 201, then N = eA® = 17.8, s0 you would expect to find 18 species of reptiles and amphibians on Dominica.

1.3 New Functions from Old Functions

1. (a) If the graph of [ is shifted 3 units upward, its equation becomes y = f(z) + 3.
ib) If the graph of [ is shifted 3 units downward, its equation becomes y = fz) = 3.
{c) If the graph of f is shifted 3 units to the right, its equation becomes y = f(x = 3).
(d) If the graph of f is shifted 3 units to the left, its equation becomes y = fix + 3).
{e) If' the graph of [ is reflected about the x-axis, its equation becomes y = — f{z).
(f) If the graph of f is reflected about the y-axis, its equation becomes y = fi{—x).
() If the graph of f is stretched vertically by a factor of 3, its equation becomes y = 3 ().

{h) If the graph of f is shrunk vertically by a factor of 3, its equation becomes y = 3 f(z).

3. (a) (zraph 3) The graph of f is shified 4 units to the right and has equation y = f(x — 4).
(b) (zraph 1) The graph of [ is shifted 3 units upward and has equation y = f(x) + 3.
(c) (zraph 4) The graph of f is shrunk vertically by a factor of 3 and has equation y = 2 f{z).
(d) (graph 5) The graph of f is shifted 4 units to the left and reflected about the r-axis. Its equation is y = = f(x + 4).

{e) (graph 2) The graph of [ is shifted 6 units to the left and stretched vertically by a factor of 2. Its equation is

v =2f(z +6).
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SECTION 1.3 NEW FUNCTIOMS FROMOLD FUNCTIONS O 19

5. {a) To graph y = f(2x) we shrink the graph of f (b) To graph y = f(3x) we stretch the graph of f
horizontally by a factor of 2, horizontally by a factor of 2.
! "
: e
i 0 1 Pl |
0 Y

The point (4, —1) on the graph of [ corresponds to the
The point (4, —1) on the graph of f corresponds to the point (2 -4, =1) = (8, =1).
point (£ -4, =1) = (2. =1).

ic) To graph y = f({—x) we reflect the graph of f about (d) To graph y = = f{—x) we reflect the graph of f about
the y-axis. the y-axis, then about the r-axis.

¥ i

Poe ] x iy X

The point (4, =1) on the graph of f corresponds to the

point (=14, 1) = (=4, —1). The point (4, —1) on the graph of [ corresponds to the

point (=14, =1+ =1} = (=4, 1).

7. The graph of y = f{x) = +/3x — = has been shifted 4 units to the left, reflected about the x-axis, and shifted downward
1 unit. Thus, a function describing the graph is

Y= =] _f {I‘l‘ 4} -1
o e e— e e—
reflect shift shift

ahout r-axis 4 units left 1 unit left

This function can be written as

y= =[x+ 4) —1:—\,-(3{.174‘4}—[14‘4]2-1

==+ 12-(FF + 82+ 16) - 1l==y=2T =Gz —-4-1

9. y= —x*: Start with the graph of y = z* ¥ s

and reflect about the c-axis.

3 1
y=i Nk
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20 O CHAPTER1 FUNCTIONS AND MODELS

M. y = =" 4 1; Start with the graph of

y = =" and shift upward 1 unit.

of 2.

y=ons 3

1 ,
/' y=x+1

13. y = 2 cos 3z Start with the graph of y = cos x, compress honzontally by a factor of 3, and then stretch vertically by a factor

y=2cos di

\AARAN
VVVIV TV

5. y=x" =4r+ 5= (' =4 + 4) + 1 = (x = 2)* + 1: Start with the graph of y = =*, shift 2 units to the right, and then

shift upward 1 wmit.

¥

¥

v

19. y = sin(xz,/2): Start with the graph of

y = sinx and stretch horizontally by a

factor of 2.

rd

Y=sinx

1

y=sin(x/2)

i
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SECTION 1.3 NEWFUNCTIONS FROMOLD FUMCTIONS O 21

M. y = |z — 2| Start with the graph of

y = |x| and shift 2 units to the night.

23 y = |/ — 1|: Stant with the graph of y = /£, shift it 1 unit downward, and then reflect the portion of the graph below the

a-axis about the x-axis.

¥ W T

25 This is just like the solution to Example 4 except the amplitude of the curve (the 30°N curve in Figure 9 on June 21} is
14 = 12 = 2. So the function is L(t) = 12 + 2sin[ £5(t = 80)]. March 31 is the 90th day of the year, so the model gives
L{90) == 12.34 h. The daylight time (5:51 AM to 6:18 PM) is 12 hours and 27 minutes, or 12.45 h. The model value differs

from the actual value by 1248=1234 - ) (09, less than 1%.

12-2 = 5 m, average magnitude 1242 _,

5 m,

27. The water depth D{t) can be modeled by a cosine function with amplitude

and period 12 hours. High tide occurred at time 6:45 aM (£ = 6.75 h), so the curve begins a cycle at time £ = 6.75 h (shift
6.75 units to the right). Thus, D(t) = 5eos [35(t = 6.75)] + 7 = 5cos [F(t = 6.75)] 4 7, where D is in meters and ¢ is the

number of hours after midnight.
29. {a) To obtain y = f{|x|). the portion of the graph of y = f(x) to the right of the y-axis is reflected about the y-axis.

(b) y =sin|z| chy= \.-"'m

v s x|

. f{r}:za+2z2; g{r}:ﬂrj—l. D = & for both  and g.
{a]{f+y]{z]={r1+212]+{312— ]—r + 5" =1, D= (=o0,x),or K.
b (f=glx)=(r*+22Y) = (3’ - 1) =L =-2"+1, D=R

ic) {f‘-’!}{I]_{I' +2I£H l]—E:E + Gzt = 2® —E.I D=R.

m]( ){ }_%, D:{x|:;ﬁi%}snm&h”-l;ﬂl
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22 0O CHAPTER1 FUNCTIONS AMD MODELS
3. f(z) =3c+5 g{zr) ==+ =z D =R forboth f and g, and hence for their composites.
(a) (feg)(z) = flg(z)) = flz* + 2) =3(z* + 2) + 5=32" 4 3245 D=R
(b) (ge f)(z) = g(f()) = 93z + 5) = (3z + 5)* + (3= + 5)
=0z’ +30x + 25+ 3r+5=9" +33r + 30, D=R.
© (fof)=Ff(flz))=f(3z+5) =33t +5)+5=9x+15+5=9:+20, D=R.

(d) (geoglz) = glg(z)) = g(=* + ) = (2% + =) + (=" 4+ 2)
=ttt it =0t 42 L 22 4, D=R.

3/ flz)=yz+LD={z|z>=1}; g(z) =4z -3 D=R.
(@) (feg)(z) = flo(x)) = f(4x = 3) = /(4z =3) + 1 = Az =2
“Edﬂmalnuf_fﬂg]s{.r|4.r—32—l]-:{:s|4.r§2}={I|IE%}=[s},-::c].
b (go fi(z)=g(f(z)) =g(vT+ 1) =4y + 1=

The domain of g & f s {x | z is in the domain of f and f(x) is in the domain of g}. This is the domain of f, that is,

[z|z4+120}={z|z > -1} =[-1,=a).

©(feflz)=Ffflz)=Fflve+1)=+vvr+1+1
For the domain, we need x 4 1 > 0, which is equivalent to = > =1, and +/x 4 1 > =1, which is true for all real values

of . Thus, the domain of f e fis [—-1, o).

di(gog)lz)=glglz)) =g(dr=3) =4{dr=3) =3 =1l =12 =3=16cx =15 D=FR.

. f(e)=x+ =, D={z|z#0}, q(}_% D={z|z#-2)
R Sy

r+2

D+ +(z+2E+2) _ (P 42e4+1) + (2P +dr44) 2 46245
- (z+2)(z+1) - (x4 2)(z + 1) T x4+ 2z +1)

Since g(x) is not defined for z = =2 and f({g(zx)) is not defined forx = =2 and = = —

the domain of ([ o g){z) is D = {z |« # =2, =1}.

1 3
- 1 FE R o
(I+I)+ - _:52-+-I+1_:52+I+1

1 =7 T +iz+1 1)2
(H_)H F4142r T2+l (z+])
xI

r

(b) (g0 £)(z) = g(f(x)) = g(.—,+ l) -
Since f{x) is not defined for = = 0 and g{f{x)) is not defined for = = =1,

the domain of (g o f)(x) is D = {z |z # =1.0}.

EWEIEC:HL_:‘.AII#I::—v:d.M:;u-tk.:qzd.:-d.-hh—ﬂ.nuhtnml-tn:hrhﬂ—r#—HWM:—;&WE—&:M-&I—-ML
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SECTION 1.3 NEW FUNCTIOMS FROMOLD FUNCTIONS O 23

© en@=1U@) =f(z+3)=(s+1)+ g =2+ ‘+;,1+—1— .

x

_I{I}{Ij+l}+l{f+1]+r{x} _.1:"+Ij+_1;2+ 1+ z*

{zt 4 1) - z(z2 4 1)
2 3" 1
=TT, = 0
(zt +1) {z |z #0}
I+1+1 r4+ 141z +2)
41 x4 2 x4 2 E4+l4+x42 2r 43
d = = = —3 = =
(@) (90 9)(z) = olo(=)) g(;+2) 4l T Ed142ct?)  r4142r+44 3245
42 42

Since g(x) is not defined for £ = —2 and g(g(z)) is not defined for z = — 3,
ﬂwdﬂmnaf{’qﬁg}{rljsﬂz{z|z 2 =3, ——}
3. (fegoh)(z) = f(g(h(z))) = f(a(z")) = f(sin(z")) = 3sin(z") - 2

4. (fogoh)(z) = f(a(h(x))) = fla(z" +2)) = fl(=" + 2)*]
=fle"+42" +4) = /(z" + 422 + 4) -3 =zl + 43 + 1

43. Let g(x) = 2z + ” and f(x) = 2*. Then (f o g)(z) = f(g(x)) = f(2r + =% ) = (2x + ) = F(x).

E

45. Let g(x) = T and fix) = T Then (f o g)(x) = flg(z)) = f(§=) = 1+ \-"'— F(z).

47. Let g(t) = t* and f(t) = secttant. Then (f o g)(t) = f(a(t)) = f(t*) = sec(t”) tan(t*) = v(t).
4. Let hx) = /7, g(z) = = = 1, and f(z) = y=. Then
(fogoh)(z) = fla(h(x))) = fla(vE) = f(VE=1) = /JE=1= R(z).
51. Let h(t) = cost, g(t) = sint, and f(t) = *. Then
(fegoh)(t) = fla(h(t))) = f(g(cost)) = f(sinfcost)) = [sin(cost)]” = sin®(cost) = S(t).
53. (a) g(2) = 5, because the point (2, 5) is on the graph of g. Thus, f(g(2)) = f(5) = 4, because the point (5, 4) is on the
graph of f.
(b} g(f(0)) = g(0) =3
(c) (f o 0)(0) = f(g(0)) = f(3) =

(d) (ge f)6) = g(f(6)) = g(B). This value s not defined, because there is no point on the graph of g that has
r-coordinate 6.

(e) (geg)(=2) =glog(=2)) =g(1) =4
) (Fe ) =Ff))=f2)==-

rwmlucmwh_q.um#wm“h_pd.gﬁ._w--u.u,mn.mu_.#—H,-qm_rh-n._ﬁ_ha.*_u.mp
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24 O CHAPTER1 FUNCTIONS AND MODELS

55. (a) Using the relationship distance = rate - time with the radius r as the distance, we have r{f) = 60L.

() A== = (Aor)(t)= A(r(t)) = 7(60t)* = 3600xt*. This formula gives us the extent of the rippled area

{in em?) at any time ¢.

57. (a) From the figure, we have a right triangle with legs 6 and d, and hypotenuse s. ""-'E' o
By the Pythagorean Theorem, d” + 6° = 5° = s = f(d) = vd? + 36. /

i(b) Using o = i, we get o = (30 kmy/h)(f hours) = 30¢ (in km). Thus,

[=.1
Y

N\

d = g(t) = 30¢. lighthouse shorelme

(e} (fog)(t) = fle(t)) = f(30t) = /(30¢)% 4 36 = /D002 4 36. This function represents the distance between the

lighthouse and the ship as a function of the time elapsed since noon.

58. (a) H () v
| = ]H]F

{ ! UI t
0 ift<o ) 0 ift<0 )
H[t:]- — V {t] = 50 V [I:l- = 120H {f-]
1 ift=0 120 if t >0
ic) ¥ Starting with the formula in part (b), we replace 120 with 240 to reflect the
2441 A —
different voltage. Also, because we are starting 5 units to the right of £ = 0,
we replace ¢ with ¢ — 5. Thus, the formula is V(1) = 240H(t — 5).

T I '
61. If f(x) = myx + by and g(x) = myx 4+ by, then
(f o g)(x) = flg(z)) = f(max + ba) = my(mazx + ba) + by = mamax + mbs + by.
So f o g is a linear function with slope my mz.
63. (a) By examining the variable terms in g and &, we deduce that we must square g to get the terms 4z and 4z in b 1f we let
f(z) = 2 + e then (f 0 g)(x) = f(g()) = f(22 + 1) = (2 + 1)* + e = 42" 4 4z + (1 + c). Since
h(r) =4z” + 4x + 7, we musthave 1 + ¢ = 7. Soc = 6 and f(z) = z” + 6.
(b) We need a function g so that f(g(x)) = 3(g(z)) + 5 = h(z). But
hir) =3z +32+2=3(z" +z) +2=3(x* + z = 1) + 5,sowe seethat g(x) = z” + z = 1.
85. We need to examine h(—z).
h(—z) = (f o g)(—x) = flg(~x)) = f(g(z)) [because giseven] = h(x)

Because h{=x) = h{x), h is an even function
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14

Exponential Functions

SECTION 1.4 EXPOMENTIALFUNCTIONS O

25

1. {a]%:-

3. (a) 6*(26)* =

5 (a) flz) =6, b0

T. All of these graphs approach 0 as © — =oo, all of them pass through the point
(0, 1), and all of them are increasing and approach oc as @ — oo, The larger the
base, the faster the function increases for = 2= 0, and the faster it approaches 0 as

L = =00

Nove: The notation “z — oo™ can be thought of as “z becomes large™ at this point.

=" . 2% =

2 2 =t
(223 28
lﬁb:u
(R

1

o2 — 4 (b) —— u’_ == p=4/3
(6y")' _ 6'wh) _ 1206y _ s
b = 645
©) 2yt 2yt 2y® v
(c) (0, 22) id) See Figures 4(c), 4(b), and 4(a), respectively.
§y=20" y= 5 y= "

More details on this notation are grven in Chapter 2.

9. The functions with bases greater than 1 (3™ and 10°) are increasing, while those
with bases less than 1 [(1)* and ()*] are decreasing. The graph of (1)" is the
reflection of that of 3% about the y-axis, and the graph of {ﬁ]’ is the reflection of

that of 10" about the y-axis. The graph of 10° increases more quickly than that of

3* for x = 0, and approaches 0 faster as © — —oo.

1. We start with the graph of' y = 4* (Figure 3) and shift it 1 unit

down to obtain the graph of y = 4% — 1.

13. We start with the graph of y = 2*

(Figure 16), reflect it about the y-axis, and
then about the z-axis (o just rotate 1807 to
handle both reflections) to obtain the graph of

y = =27*, Ineach graph, y =0 is the
horizontal asymptote.

¥
=__J_,-/J
]

y=2

= =3=T
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26 O CHAPTER1 FUMNCTIONS AND MODELS

15. We start with the graph of y = e (Figure 16) and reflect about the y-axis to get the graph of y = ™*. Then we compress

the graph vertically by a factor of 2 to obtain the graph of y = 7™ and then reflect about the z-axis to get the graph of

y = =2e™*. Finally, we shifi the graph upward one unit to get the graph of y = 1 = e

Y

/ \

i

r i

v

=

|
ra]—
-
1
=

-1

17. (a) To find the equation of the graph that results from shifting the graph of y = ¢ 2 units downward, we subtract 2 from the

origiral function to gety = e = 2.

(b} To find the equation of the graph that results from shifting the graph of y = ™ 2 units to the right, we replace « withx — 2

in the oniginal function to get y = *=%),

{c) To find the equation of the graph that results from reflecting the graph of y = ¢ about the z-axis, we multiply the original

function by =1 to get y = =—e™.

(d) To find the equation of the graph that results from reflecting the graph of y = ¢* about the y-axis, we replace = with —z in

the original function to gety = e~ .

{e) To find the equation of the graph that results from reflecting the graph of y = &* about the z-axis and then about the

y-axis, we first multiply the original function by —1 (to get y = —e™ ) and then replace = with —z in this equation to

gty = =&~ .
19. (a) The denominator is zero when 1 = !~

the function f(x) =

x

1 ==

] = pl=x2

L=

l=x? =1

14=x=

—

1-2'=0 &

has domain {x | x # £1} = (=cc, =1) U (=1,1) U(1, =c).

i) The denominator is never equal to zero, so the function f(x) = ——— has domain B, or {—oo, oc).
Eﬁﬁlﬂ'

z==1 Thus,

6
21. Usey = Cb* with the points (1,6) and (3.24). 6=Ct" [C=%] and24 =0} = 24:(3)#‘ =

4=b = b=2 [sinceb>0] andC = 3 = 3. The functionis f(x) =3-2%

5 =1
=5 B
(=)

23, If f(x) = 5%, then

flz+h)=f(z) 5" =5 55"=5 5°(5"=1)

h

h

2 2ft=24in, f(24) =247 in=5T6in =48 ft. g(24) = 2% in = 22 /(12 - 5280) mi = 265 mi
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SECTION14 EXPOMENTIALFUNCTIONS 0O 27

27. The graph of g finally surpasses that of f at = = 35.8.

10"

29, (a) = ; (b) Using a graphing calculator, we obtain the exponential

5 - . curve f(t) = 36.80301(1.06614)" .

ZE .

T .

g .

= ]

0 4
f (howrs)
{c) Using the TRACE and zooming in, we find that the bacteria count =0
doubles from 37 to T4 in about 10,87 hours. B

i%
5E
FR
m

f s )

3. (a) Fifteen days represents 3 half-life periods (one half-life period is 5 days). 200 {%]: =25 mg

(b} In ¢ hours, there will be ¢ /5 half-life periods. The initial amount 1s 200 mg,
so the amount remaining after ¢ days is y = 200 {%]""’ mg, or equivalently,

y =200-2"" mg

200
ic)t =3 weeks =21 days = y=200-2="Y" = 109 mg
{d) We graph y: =200 - 2=%% and 2 = 1. The two curves intersect at
t == 38.2, 50 the mass will be reduced to 1 mg in about 382 days.
o an

33. From the table, we see that V(1) = T6. In Figure 11, we estimate that V" = 38 (half of 76) when t = 4.5. This gives usa
half-life of 4.5 = 1 = 3.5 days.

35. Let ¢ = 0 correspond to 1950 to get the model P = ab’, where a == 2614.086 and b = 1.01693. To estimate the population in

1993, let t = 43 to obtain P = 5381 million. To predict the population in 2020, let ¢ = 70 to obtain P = 8466 million.
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28 O CHAPTER1 FUMNCTIONS AND MODELS

. E - From the graph, it appears that f is an odd funetion ( f is undefined for = = 0).
;._.-.—:_4 To prove this, we must show that f(—x) = = f(z).
+o
=3 3 1 1 1= ! 1 1
J/.—-‘-'_ ”_}_l—eﬂ"]_l—e{'fr"}_ gl.l’*IE""rz_E"rl—l
L) = 1 + gtf(=2] - 1+ el=1/=) - 14+ 1 elf® = Llfx +1
J 1
—2 1=elf= e
=~trer - /@

s0 [ 15 an odd function.

1.5 Inverse Functions and Logarithms

1. (a) See Definition 1.

(b) It must pass the Horzontal Line Test.
3. f 5 not one-to-one because 2 2 6, but f(2) = 2.0 = f(6).
5. We could draw a horizontal line that intersects the graph in more than one point. Thus, by the Horizontal Line Test, the
function is not one-to-one.
7. No horizontal line intersects the graph more than once. Thus, by the Horizontal Line Test, the function is one-to-one.
9. The graph of f{x) = 2x = 3 is a line with slope 2. It passes the Horizontal Line Test, so [ is one-to-one.
Algebraic solution: If 1 # xa,then 2o # 222 = 25 =3 #2r:2 =3 = flx1) # flz=), so [ is one-to-one.
M. glz)=1=sinz. g(0) =1 and g{x) =1, s0 g is not one-to-one.
13. A football will attain every height kb up to its maximum height twice: once on the way up, and again on the way down.
Thus, even if ¢, does not equal o, f(t,) may equal f{t:), so [ isnot 1-1.
15. (a) Since fis 1-1, f(6) =17 <= Jf~'(17)=6.
(b) Since fis 1-1, f~1{3) =2 < f(2)=3.
17. First, we must determine x such that g(x) = 4. By inspection, we see that if « =0, then g(x) = 4. Since g is 1-1 (g is an

increasing function), it has an inverse, and g~*(4) =0,

19. Wesolve ' = 2(F =32)for F: 20 = F =32 = F =2 4 32. This gives us a formula for the inverse function, that
is, the Fahrenheit temperature F as a function of the Celsius temperature C'. F > =450.67 = %(3 + 32 = =459.67 =

%C > =401.67 = > =273.15, the domain of the inverse function.

Hy=Fflr)=14+/TF3x (p>1) = yp=1=+/T+3z = (¥=-1=243 = (=1 =-2=3r =
x=%(y=1)" = 3. Interchange zand y: y = 3(x = 1)* = . S0 f~'(z) = 3(x = 1)* = 2. Note that the domain of ="
Br >l

Ey:f{;]:eh'l = Ihy=2r=1 = l4+hy=2r = I:%I{l+lny].

Interchange randy: y = %I[l +lInz). So f~Y(z) = %{l + Inx).
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SECTION 1.5 INVERSE FUNCTIONS AND LOGARITHME O 29

By=flz)=lh(z+3) = z+3=¢ = z:e"’—ﬂ.lr‘iﬁmhﬂ.ﬁgﬁrmﬂy.‘y:e“—E.Si}f”f_.r:]-:e'—l

2
. =3
My=flz)=/Iz+3 (y=0) = yP=dr4+3 = I:y4 ) 10
I
=3 =3
Interchange xand 2 y = CSo N = (x> 0). From

the graph, we see that [ and =" are reflections about the line y = .

29. Reflect the graph of f about the line y = = The points (=1, =2), (1, =1), !

(2,2), and (3,3) on [ are reflected to (=2, =1), (=1,1), (2,2), and (3, 3)

on L

J,.nl'nJ ¥

\

MH(a)y=fz)=v1I—22 (0<x<]landnotethaty>0) =
;,r2=.'l—1:2 = z2=1—1,||2 = r=+/1=y% 50
F~Hz)=+T=2% 0=z =1 Weseethat f~"and f are the same
function.

(b) The graph of f is the |:n::frt.|{sr|1:nfTJ:1¢tmn:lva-::2 +y* =1withD < r < 1 and

0 <y = 1{quarter-circle in the first quadrant). The graph of f is symmetric

with respect to the line y = =, so its reflection about y = x 15 itself] that is,
=g

33 (a) It is defined as the inverse of the exponential function with base b, that is, log, zr =y = W =ax

i(b) (0, 2) c) B (d) See Figure 11.

35. {a) log, 32 = log, 2° = 5 by (7).

(b) log2 = logg8'/* = L by (7).
Another method: Set the logarithm equal to = and change to an exponential equation.
ogg2=z & 8 =2 & (=2 & 2%=2" & 32=1 & z=1
7. (a) logio 40 + logg 2.5 = logye [(40)(2.5)]  [by Law 1]
= log,, 100
= log,, 10° = 2 [by (7))
{b) log s60 — log, 3 — log, 5= log, % — log, 5 [by Law 2]
= logg 20 = log, 5
= log, 22 [by Law 2]
=logyd=log 8% =5 [by (7)
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30 O CHAPTER1 FUMNCTIONS AND MODELS

39 Inl0+2n5=Inl0+In5* [y Law 3)
=In[(10)(25)]  [by Law1]
= In 250
. tln(z+2* + [z —n(z* + 324+ 2)* = [z + 2)*]"* + iIn m [bw Laws 3, 2]
vz .
= ].I'.I.{I -+ 2} - In m I_h":.- Law 3]
g C5.2-) LV [by Law 1)
(z+1)(x+2) :
=ln ﬁ
41

Mote that since In x 15 defined for z > 0, we have x 4+ 1, x 4 2, and = 4 3z 4+ 2all positive, and hence their logarithms

are defined.
43. To these funct we use log lnx and lo Inz
-graph N:H'B, %I.EI_I 15 E:IEII_II'.I.E{J.
These graphs all approach —oo as  — 0%, and they all pass through the

point (1, 0). Also, they are all increasing, and all approach oc as © — oo,

The functions with larger bases increase extremely slowly, and the ones with

smaller bases do so somewhat more quickly. The functions with large bases

approach the y-axis more closely as r — 0%,

45, 3 ft = 36 in, so we need = such that log, = = 36 < z:ZM:ﬁE,?lﬂ,-iTﬁ,'r’:!ﬁ. In miles, this is
lft 1 mi
68,719,476, 736 == 1,084,587.7 m.
e T T Y -

47. (a) Shifi the graph of y = log, , = five units to the left to
obtain the graph of y = log,, (= 4 5). Note the vertical

asymptote of r = =5.

y = logyg(x + 5)

y=log,,x

49. (a) The domain of f(x) = Inx 4 2 is = > 0 and the range is B

By=0 = hx4+2=0 = Ihr=-=-2 =

r=e

{c) We shift the graph of y = In = two units upward.
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(b} Reflect the graph of y = In & about the x-axis to obtain
the graph of y = = Inx.

= 1_

=Inzx

y=Inxr y=

flxi=lnx+2
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SECTION 1.5 INVERSE FUNCTIONS AND LOGARITHME O 31
H.ja) e =6 & T—4dr=l6 & T-lhb=4zr I:%{?—IDE}
(b)In(3z=10)=2 & 3x=10=¢" & dr=¢’+10 & z=3("+10)

53. (2) " =3 & log,3=r=5 & r=5+log,3

Or:2""=3 & I(2*%)=h3 & (r=5h2=h3 & z—E-:E = I:E'+E
In2 In2

ibjlnz+fz=1)=ln(z(z=1))=1 & z{zr=1)=¢" & = —z—e=0 Thequadratic formula(witha = 1,
b=—1,and e = —e) gives = = (1 & +/T+ &), but we reject the negative root since the natural logarithm is not
defined for < 0. Sox = $(1 + T+ 2e).

5. (a)lnx <0 = z<e® = <1 Sincethe domainof f(x) =lnzisx > 0, the solution of the original inequality
B0 <z 1
bje*>5 = Ine® >Ind = x>Inj
57. (a) Wemusthave e =3 >0 & ¢ >3 & x> In3 Thus the domain of f{x) = In{e® — 3) is (In 3, o).
y=In{e®*=3) = e¥=2"=3 = " =e¥4+3 = z=In(e¥+3),50 f~'(z) =In(e®+3).

Nowe* +3 >0 = & > =3, which is true for any real , so the domain of f~' isR.

59. We see that the graph of y = f(x) = /&% + 22 + z + 1 is increasing, so f is 1-1. el

Enter = = /y* + »* + i + 1 and use vour CAS to solve the equation for y.

Using Derive, we get two (irrelevant) solutions imolving imaginary expressions,

as well as one which can be simplified to the following:

~

y=f"a)=-L (D= 70 - ¥DF o= =0+ 43) - a
where D = 3/3/27zF = 4022 + 16. -1

Maple and Mathematica each give two complex expressions and one real expression, and the real expression i1s equivalent

en by Deriv ; 1 M2 5 —2n'
to that given by Derive. For example, Maple’s expression simplifies to 7 ST , where

M = 10827 4 12 /48 — 1207 + 8127 — 20,

t
6. (@) n=f(t) =100-2* = —— =2 = lﬂﬁ'z( i )= - = tzﬂmgz(%).ljsmg formula ( 10), we can

100 100 3
- In(n,/100) )
write thisas £ = f~'(n) = 3- 7 - This function tells us how long it will take to obtain n bactera (given the
n
number ).
In ( K0 In 500
(b) n =50,000 = i= f~'{50,000)=3. % =3( LI. 2 ) == 26.9 hours
uil I

63. (a) cos =!(=1) = = because cos * = =1 and 7 is in the interval [0, 7] (the range of cos™").

{b) sin=" (0.5) = £ because sin £ = 0.5 and £ is in the interval [=Z, Z] (the range of sin™").

Coprright W6 Cengage Learsimg. A0 gy Rienerved. Wy ot be coped, scanned, or deplacaied, m whok or in pert. Du o chociners sights, sorme thind party comte moy be spprened from the diock andier o hepierial.
Esbtrrea rovarn S decmcd that s wepproncd content doc By affect the ovorall bermirg cupencece. Uagage Lcameng rescrves the nght 0 remens sckdtamal oot 2t 2z hine o vebusguent gt s icton regues i




32 0O CHAPTER1 FUMCTIONS AMD MODELS
85. (a) csc~'4/2 = I because esc £ = /2 and T isin (0, Z] U (7, 2] (the range of esc™?).

(b) arcsin 1 = £ because sin ¥ = 1 and § is in [=Z, Z] (the range of arcsin).

67. (a) cot™ (—4/3) = IE because cot 3 = —/Tand 3% is in (0, =) (the range of cot™").

(b) sec=! 2 = Z because sec £ =2and £ isin [0, ) U [, 2=) (the range of sec™").

64. Lﬂy:sin-lz.ﬂh‘.n—% Y= E = oosjy Eﬂ,mcm{.sin-l.r}zu.my = 1.,-"r.'l—:-iirj.jglr=1.,-"'1—.1:d

M. Lety = tan~" z. Then tany = x, 0 from the triangle (which
illustrates the case i > 0), we see that

I

sin(tan™' r) = siny = Wivr-i

T3, I y=gin~'x The graph of sin™" = is the reflection of the graph of
[ P ) sinx about the line y = =
-~ ¥ =Ema
T 2
T T

¥ o= s

1
raey

yo=sinT s

75. g(x) = sin~" (3z + 1).

Domain (g) = {z| =13z +1 <1} ={z|-2< 3xﬂﬂ}={z|—§£z£ﬂ} =[—%._l]].

Range (9) ={y | =F <w< 5} =[-5.5].

7. (a) If the point {x, i) 15 on the graph of y = f{x), then the point {x = ¢, y) is that point shifted ¢ units to the left. Since f
is 1-1, the point (y, =) is on the graph of y = f="(x) and the point corresponding to (x — ¢, y) on the graph of f is
(w, x = ¢) on the graph of f=*. Thus, the curves reflection is shifted dowsn the same number of units as the curve itself is
shifted to the lefi. $o an expression for the inverse function is g~ (z) = f~'(z) =
(b} If we compress (or stretch) a curve horizontally, the curve’s reflection in the line y = x is compressed {or stretched)

vertically by the same factor. Using this geometric principle, we see that the inverse of h{x) = f{cx) can be expressed as

h-l{:s] = [lfr::l-f'll[.r:l-.
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CHAPTERY REVIEW 0O 33
1 Review
TRUE-FALSE QUIZ
1. False. Let f(zx) =2% s==Landt =1 Then f(s+t) =(=141)* =0° =0, but
fE+ ) =(=1)"+1"=2#£0= f(s+1).
3 False.  Let f(z) = 2% Then f(3x) = (32)? = 92? and 3f(z) = 327, S0 f(3x) # 3f(x).
4. True, See the Vertical Line Test.
T. False.  Let f(z) = =*. Then f is one-to-one and f~'(x) = #T But 1/ f(x) = 1/=*, which is not equal to f~"(z).
9. True. The function ln x is an increasing function on (0, o).
Ix Ine* Zlne 2
11. False. Letr =e?anda = e Then = = —— = —— = 2andln = = In — = lne = 1, s0 in general the statement
Ina Ine Ine i e
15 false. What i true, however, 15 that In = Inx=Ina.
]
13. False.  For example, tan™! 20 is defined; sin™" 20 and cos™* 20 are not.

EXERCISES

1. (a) When x = 2, y == 2.7. Thus, f{2) = 2.7

b) fiz)=3 = ==2356

{c) The domain of f is =6 < = < 6, or [=6, 6].

(d) The range of [ is —4 <y < 4, or [—4. 4]

ie) fisincreasing on [—4, 4], that is, on —4 < = < 4.

(f) f is not one-to-one since it fails the Horizontal Line Test.

(g) f 15 odd since its graph is symmetric about the origin

3 flz)=a" =2z + 3,50 fla+ h) ={a+ k)" = 2(a+ k) +3=0a" + 2ah + h* = 2a = 2h + 3, and

Fla+ k) = f(a) _ (o +2ah 4 h* =20 = 2h 4 3) = (a° = 2a + 3) =hl[2u:+h—2}

=2a4+h=2

5 f(z) =2/(3z = 1).

T. J:I{.r:l- =

h R h

Domain; 3r=1#0 = 3x#1 = r#3i D= (=00 1)U(;. )

Range:  all reals except O {y = 0 is the horizontal asymptote for [

A = (=oc,0)U (D, o)

].||l|:.1+ﬁ:l-. Domain: z4+6>0 = x> -4 D‘:I[—ﬁ,-::c}

Range: x4 6 > 0, 50 In(x 4 G) takes on all real numbers and, hence, the range is B

A= (=00, )
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1.

13.

15

17.

O CHAPTER1 FUNCTIONS AND MODELS
{a) To obtain the graph of y = f{x) + 8, we shift the graph of y = f{x) up 8 units.
(b) To obtain the graph of y = f(z 4 8), we shift the graph of y = f{z) left 8 units.

{c) To obtain the graph of y = 1 + 2f{x), we stretch the graph of y = f{x) vertically by a factor of 2, and then shift the

resulting graph 1 unit upward.

(d) To obtain the graph of y = f(x — 2) = 2, we shift the graph of y = f(x) right 2 units (for the *=2" inside the
parentheses), and then shift the resulting graph 2 units dowrward.

{e) To obtain the graph of y = = f(z), we reflect the graph of y = f{(x) about the r-axis.

(f') To obtain the graph of y = f='(x), we reflect the graph of y = f{x) about the line y = = (assuming | is one—to-one).

y = (x — 2)*: Start with the graph of y = =* and shift ! !
2 units to the right. —
il X 1] __""I_ 'Y
== 2
y=r' =24+ 2= (2" =224 1) 4+ 1= (x —1)* + 1: Start with the graph of y = =*, shift 1 unit to the right, and shift
1 umit upward.
v v v
¥=i \ \
h, y=(r=1F T = =P+
0 * of T ¥ of 1 X
flz) = —cos 2z Start with the graph of y = cos o, shnink horizontally by a factor of 2, and reflect about the =-axis.

: =0 g : §= s 2y ' = —cos Xy
N /l‘\ N N AN TANNAN l AN AN
e IR AR A AR A A A AR S

{a) The terms of f are a mixture of odd and even powers of =, so f is neither even nor odd.
(b) The terms of f are all odd powers of =, so f 15 odd.
(c) fl=x) = P Fiz), 50 fis even.

(d) f(=x) =1 +sin{—x) =1 —sinz. Now f(—z) # f(z) and f{—x) # —f{x), so [ is neither even nor odd.

Copyeight 3046 Conpoge Lemmiog. AB ights Reverves. Moy st b copind, scomm o dmphicate, o whole o . o b et ightn, s shind oty contnt sy b e s the ek e o mptts
Esbirrea rovars b decmacd that as wepy By affect the ovorall bermirg cupencece. Uagage Lcameng rescrves the nght 0 remens sckdtamal oot 2t 2z hine o vebusguent gt s icton regues i




CHAPTERY REVEEW O 35

19 flz) =lnx, D=(0,2c); g[I}:Iﬂ—Q, D=k

(@) (f o g)(x) = f(a(z)) = f(=* = 9) = In(z* = 9).
Domain: = —9>0 = =z =9 = |f>3 = =r&(—oc,-3)U(3 x)

(b) (ge fi{z) =g(f(z)) = g{lnz) = (lnx)* =9. Domain: x > 0, or (0, o)
ic) (fe Niz)=fflz)) = filnz) = In{lnz). Domain lnr>0 = z=> =1, 0r (1, 2c)

(d) (g e g){x) = glg(z)) = gl[f -9 = [;l:2 - 9}2 -9 Domain: x € B, or {—oo, 00)

21, 30 Many models appear to be plausible. Your choice depends on whether you
Lt think medical advances will keep increasing life expectancy, or if there is
L bound to be a natural leveling-off of life expectancy. A linear model,
VT ) y = 0.2493x — 423 4818, gives us an estimate of 77.6 vears for the
1590, . —— ot S year 2010.

23. We need to know the value of = such that f{z) =2z + lnxz =2 Sincex =l gvesusy = 2, f=1(2) = L.
n {a} e‘EJI'L:! . {Eln:!}ﬂ — 32 — g
(b) log, o 25 + log,o 4 = log,4(25 - 4) = log,, 100 = log,, 10? =2
(c) t.an{a.n:ﬁin %] t.u.n— = ?lg{
(d) Let # = cos™! %, so cosll = %_ Thensi.ll{cm-’ [E}] —sinf =+T—cosff =4/1 = {:— ¥ = -..'% = %
21. (a) After 4 days, 7 gram remains; after 8 days, § g after 12 days, £ g after 16 days, 7 g
1 1 1 -t 4
(b) mid) = rn[E] 22, m(12) = 78" mi16) = e From the pattern, we see that m(t) = e or 2 .
c)m=2""" = Jog,m=—tf4 = t=—4log, m;thisis the time elapsed when there are m grams of "*'Pd.

d)m=001 = 1=-41ug2u_m=-4(l“|:.}§1

) == 26.6 days
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[1 PRINCIPLES OF PROBLEM SOLVING

By using the area formula for a nangle, 3 (base) (height), in two ways, we see that
4 : 7
;(4)(w) = ;(h)(a).s0a = f_y Since 4% 4 y* = h*, y = VvRT = 16, and
L

4,/ FT =16
h

a=

45 if &> =5

2e=1 if x>
1 |21’—1|:
1=-2r ifx<

(2= o oY

and |I-I-5|:
—r=5 if < =5

Therefore, we consider the three cases x < =5, =3 < r < L andr > 4.
Ifex < =5 wemusthave ] = 2xr = (=x =5) =3 < = 3, which is false, since we are considering x < =5.
If—5<z< wemusthavel —2r— (x+5)=3 & z=-I
Ifzzﬁ,wemmt]'meﬂx—l—{z+5}=3 & =19

So the two solutions of the equation are © = —% and r = 9.

f(z) = |=* — 4]z] + 3|. If £ = 0, then f(z) = |z* — 4z + 3| = |(z = 1)(z - 3)|.
Case (): 1f0 < = < 1, then f(x) =x" = 4z + 3.
Case if): If1 < x < 3,then f(zr) = =(z" =dr 4+ 3) = =a” + dr = 3.
Case (ii): Ifx > 3,then fiz) = 2" — 4z + 3.

This enables us to sketch the graph for = = 0. Then we use the fact that f is an even

function to reflect this pant of the graph about the y-axis to obtain the entire graph. Or, we
could consider also the cases < =3, =3 Tz < =1 and =1 < & < [

. Remember that |a| =« if @ > 0 and that |e| = —a ifa < 0. Thus,

J] 2r if x>0 and o] 2y fy=0
r+ x| = y+lyl= .
0 frxr<O 0 fy<0

We will consider the equation = 4 || = y 4 |y| in four cases.

(zxz20y>20 Jrz0y<0 (z<byz0 $az<by<0
2r=2 2: =0 0=2y 0=0

r=y =10 0=y

Case 1 gives us the line y = x with nonnegative = and y.
Case 2 gives us the portion of the y-axis with y negative.
Case 3 gives us the portion of the x-axis with = negative.

Case 4 grves us the entire third quadrant.
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38 0O PRINCIPLES OF PROBLEM SOLVING

8. (a) To sketch the graph of

T . ¥
| IR

J{x) = max {x, 1/2}, we first graph \
gl(x) =z and hiz) = 1/ = on the same b b= o1
coordinate axes. Then create the graph of e i} _.1 : ] 1
F by plotting the largest y-value of g and h Y Fix)= max [x, 1}

1
for every value of . I|

|

(b} ¥ ¥
glr] = s 1 i Jolx) = o ¥ 1 Flap= max{sin t, cos x]
14 .
—ir \L/\ Sy /
]
X 1% i
R _
T=H2
{-E]- Ny
4 L
flxp=max{x%, 2 +x, 2— x}
-2 1] 2 °

On the TI-84 Plus, max is found under LIST, then under MATH. To graph f(z) = max {z*,2 4 .2 =z}, use
¥ = max(x?, max(2 + x,2 = z)).

31/ W2 M2z Im2 =

1. (log, 3)(log, 4)(log, 5) - - (logy, 32) = ( )(:zj)(:i (1-32 _ 32 _2® _5in2

13.]."(:5 —EI—E]EU = & —EI—Eifen:l = #F=2r=3<0 = (z=3)z+1)<£0 = =ze[-17]
Since the argument must be positive, z° =2 —=2>0 = [z—(1

-V3)|[z=-(1+v3)] >0 =
x € (=o0e,1 = +/3) U (14 +/3,00). The intersection of these intervals is [-=1,1 —+/3 ) U (1 ++/3,3].

15. Let o be the distance traveled on each half of the trip. Let ¢, and {5 be the times taken for the first and second halves of the trip

For the first half of the trip we have ¢; = /30 and for the second half we have t2 = d/60. Thus, the average speed for the

total distance 2d 2d 60 120d 120l
entire trip is = =

= . = —— = 2= — 4D. The average speed for the entire tr
omlume L 4i, d d B0 2d+d_ 3d average of the entire trip

a0 60

is 40 mifh.
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PRINCIPLES OF PROBLEM SOLVING O 39

7. Let S, be the statement that 7" — 1 is divisible by 6.
& S istrue becanse 7' = 1 = 6 is divisible by 6.

» Assume S is true, that is, T* = 1 is divisible by 6. In other words, 7% — 1 = 6m for some positive integer m. Then
T L1 =7 . 7T=1=(6m+1)-T=1=42m + 6 = 6(Tm + 1), which is divisible by 6, s0 Sy, is true.

# Therefore, by mathematical induction, 7" = 1 is divisible by 6 for every positive integer ri.
19. fa(z) = = and fogr(z) = fo(falz)) forn=0.1,2,....
(@) = folfo(®) = fo(=*) = (&%) =2, fa(z) = folfi () = fola?) = (=) =2,

2n+l

fa(x) = fo(f2(x)) = folz®) = (£°)* = =, .. .. Thus, a general formula is fu(x) = r
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2 [ LIMITS AND DERIVATIVES

21 The Tangent and Velocity Problems

1. (a) Using F(15, 250), we construct the following table:

25 | (25 28)

30 | (30,0)

=15

A= L% 15

t Q slope = mpg

5 (5. 604) GA=Ci = Al = 44
10 | (10,444) el = = 388
20 | (20,111) I = A = 7R

pl- W (] = _%’é = =37 3

0-200 _ _250 — 16§

ic) From the graph, we can estimate the slope of the

tangent line at /* to be =22 = —33.3.

1
i@y= —= P(2,=1)
x ez, 1/(1 =x)) Mpg
|15 |(15-2) 2
(u) | 1.9 (1.9,=1.111111) 1.111111
(i) | 1.99 (1.99, —1.010101) 1.010101
(iv) | 1.999 | (1.999, =1.001001) | 1.001001
(v) | 25 | (25 -0666667) | 0.666667
(vi) | 2.1 (2.1, =0.909091) 0.909091
(vii) | 201 | (2.01, —0.990099) | 0.990099
(vii) | 2.001 | (2.001, =0.999001) | 0.9992001

{b) Using the values of ¢ that correspond to the points
closest to F (f = 10 and ¢ = 20), we have

—38.8 4+ (=27.8)
. =

33.3

TiHI )
T s PR
";H| L graph of function

BE AP LELe
L angent |
45l
Al
sy
L]
250 I
i}
[k ]
O]
T

1’ pallicme:}

e 1

a E DN T T T I 11}

¢ iy

(b) The slope appears to be 1.
{c) Using . = 1, an equation of the tangent line to the
curve at P2, =1) sy — (=1} = 1{x — 2}, or

Yy =I=3

5 (a)y = y(t) = 40t = 1687, Att =2,y = 40(2) = 16(2)" = 16. The average velocity between times 2and 2 4+ h s

Cu(24+h)=y(2)  [40(24+ k) = 16(2 + h)*] =16 =24k — 164

= =24 = 16h, ifh 0.

Vave =

(24 h) =2

(i) [2.2.5]: h =105, vave = =32 {15

h

(iti) [2, 2.05]: k = 0.05, vy, = =24.8 fifs

h
(i) [2,2.1]: h = 0.1, vave = =25.6 s
(iv) [2,2.01]: & =001, v, = =24.16 fifs
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42 O CHAPTER2 LIMITS AND DERIVATIVES

ib) The instantaneows velocity when ¢ = 2 (h approaches 0) is —24 fifs.

s(4) —s(2) _ T9.2-20.6

T. (a) (1) Onthe interval [2.4], vaye = =g = 3 = 29.3 fifs.
s(4) — 5(3 792 — 46.5
(i) On the interval [3, 4], tave = s( i ;'[ ) 1 2 =32.7fi/s.
s(5) — s(4 124 8 =792
(iii) On the interval [4, 5], tave = "":’,} :'[ ) _ 1 = 45.6 fi/s.
5 —
{iv) On the interval [4, 6], vay. = _3,-{53 - :'{‘“ = ‘“2' M2 _ 75 fi/s.
g —
(b) Using the points (2, 16) and (5, 105) from the approximate m”
I
tangent line, the instantaneous velocity at £ = 3 15 about
1401
W05-16 _ 89 o997 ft/s.
=2 3

LU

8. (a) For the curve y = sin(10=s/x) and the point F(1,0):

a Q T pg x ] mipg
2 | (20 0 0.5 | (0.5,0) 0
1.5 | (1.5,0.8660) 1.7321 0.6 | (0.6,0.8660) | —2.1651
1.4 | (1.4,-0.4339) | —1.0847 7| (0.7,0.7818) | —2.6061
1.3 | (1.3, -0.8230) | —2.7433 0.8 | (0.8,1) -5
1.2 | (1.2,0.8660) 4.3301 0.9 | (0.9, -0.3420) | 3.4202
1.1 | (1.1,-0.2817) | —2.8173

As o approaches 1, the slopes do not appear to be approaching any particular value.

(b)

We see that problems with estimation are caused by the frequent
oscillations of the graph. The tangent is so steep at P that we need to
take x-values much closer to 1 in order to get accurate estimates of

its slope.

{c) If we choose = = 1.001, then the point ¢} is (1.001, —0.0314) and mpqg = =31.3704 If = = 0.999, then ) is

(0.9%9, 0.0314) and mpg = —31.4422. The average of these slopes i1s —31.4108. So we estimate that the slope of the

tangent line at /7 15 about —31.4.
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SECTIONZ22 THELMITOFAFUNCTION O 43

2.2 The Limit of a Function

1. As.r approaches 2, f(x) approaches 5. [Or, the values of f{z) can be made as close to 5 as we like by taking = sufficiently
close to 2 (but = 7 2).] Yes, the graph could have a hole at (2. 5) and be defined such that f{2) = 3.

3 (a) lim Flz) = oo means that the values of f{x) can be made arbitrarily large (as large as we please) by taking =
sufficiently close to =3 (but not equal to =3
ib) 2I_iﬂl_F J{z) = —oc means that the values of f{x) can be made arbitrarily large negative by taking x sufficiently close to 4
through values larger than 4.

5 (a) As rapproaches 1, the values of f(z) approach 2, so Eml flx)=2.
(b) As x approaches 3 from the left, the values of f(z) approach 1, so ].ir;n_ flz)=1
ic) As r approaches 3 from the right, the values of f{x) approach 4, so lir.!:_'_ flz) =4
(d) EJI:!.‘. flz) does not exist since the lefi-hand limit does not equal the right-hand limit.
e) Whenz =3, = 3,50 f(3) =3

T. lir ) = =1 b) i i) = =2
(@) lim g(t) (b) lim g(t)
ic) PJI:I.“ alt) does not exist because the limits in part (a) and part {b) are not equal.
d) lir ) =2 Ii t) =0
(d) Eim g(t) (e) lim g(t)

(f) F_{“ﬂ gl(t) does not exist because the limits in part (d) and part () are not equal.

g)g(2)=1 {h) }i_lﬂg{!} =3
9. (a) 2I_-ilET flz) === (b) IIEJ'Eq_f{I]- = &5 {c) Eﬂ}}f{r} = &3
(d) m fiz)= =00 (e) lim f{x)=o0
z—li— it

() The equations of the vertical asymptotesare + = =7, r = =3,z =0, and = = 6.

1. From the graph of "1
14z ifx<-=1 "
flz) = z* if =1=<x<l,

Z2ar ifx=1 / D i \
we see that lim f{x) exists for all a except a = —1. Notice that the

il

right and left limits are different at a = =1.
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44 O CHAPTER2 LIMITS AND DERIVATIVES
13 (a) lim f{z) =1
x—=ll—
(b) lim f{z)=0
F=llt
{c) lim f{z) does not exist because the limits
==l

in part (@) and part {b) are not equal.

15. rlil‘l..l_ flz)=-1, ;IEFEL fiz)=2, flO)=1

.5

17. :rf:'h flz)=4, :E-I;I:!— fz) =2, IEsz flz) =2,

f3)=3, f(=2)=1

. =3
18. F )= ———
or f(z) =1
x fl=) x fiz)
S | 0.508 197 2.9 0.491 525
3.05 0.504 132 2.95 0495 TO5
3.0 0.500 832 2.99 0.499 165
3.001 0.500083 2.999 0.499917
3.0001 | 0.500005 2.9999 | 0.499992
. ozt =3z 1
It appears that }u_ﬂ —~—75 3
Inz=In4
2. F T) = —
or /(=) =4
x fl=) x fl=)
39 0.253178 4.1 0246926
3.99 0.250 313 4.01 0249688
3.999 0.250031 4.001 0249969
3.9999 | 0.250003 4.0001 | 0.249997

O
21. For f(t) = = : .
t Fit) t fit)
0.5 22 364 088 0.5 1.835 830
0.1 6.487213 —n.1 3.034 593
0.01 5.127110 —0.01 4.8TT058
0.001 5.012521 —0.001 | 4.987521
00001 | 5001250 —0.0001 | 4.998 750
et =1
It 5 that 1i =5
appears Bt e 1 ?
0.5
i3
2
" 3 5

It appears that lim F{z) = 0.25. The graph confirms that result.
—
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SECTIONZ22 THELIMITOFAFUNCTION O 45

sin 36
ﬁ F ﬂ — s1n .
oF '” :. tan 26
2
2] (1
fie) . osndd 1.5
+0.1 1.457 847 It appears that fim, +="g = 1.5
+0.01 1.499 575 The graph confirms that result.
+0.001 1.499 996
S0.0001 | 1.500 000 —0.5 0 0.5

27. For fz) = «*:

x f(=) .
0.1 0.794328 It appears that Tita, f(z) = 1.
0.01 0.954 993 The graph confirms that result.

0.001 0.993 116
0.0001 | 0999079

08 2r — COS
29. (a) From the graphs, it seems that lim ——————— = —1.5. (b)
J—"U

2

x f(=z)
+0.1 =1.493 759
+0.01 =1.4999358
+0.001 =1.499 599
+0.0001 | =1.500000

—2

M lim L

z—ft I =

= oo since the numerator is positive and the denominator approaches 0 from the positive side as r — 5%,

3. lim {2;;:]2 = oo since the numerator is positive and the denominator approaches 0 through positive values as = — 1.
F— I -

35 Llett =2 =9 Thenasx — 3%, ¢t — 0%, and lim In(z® = 9) = lim Int = —oc by (5).
F=—agt =it

1 1
ar. lim —secr = =ocsinee — 15 posilive and secx — —oo as x — {#f2]+.
= f2)+ I F

3. lim rescxr= lim =—
p—aly— F—ay— SINT

= =oo since the numerator 15 positive and the denominator approaches 0 through negative
values as o — 277

- - -
. lim 2r=8_ . (z 4]{.1:+2:]-:

S TR TE e =3z =2) oo since the numerator is negative and the denominator approaches 0 through

negative values as x — 2%,

43. Iirnf_lllu:2 —1-2] =—oosincelnz® =+ —candz™? — soasz — 0.

=il
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46 O CHAPTER2 LIMITSAND DERIVATIVES

45. (a) f{.r] =

-1 x f(x) x f(z)
0.5 —L14 1.5 0.42
From these calculations, it seems that 0.9 =3.69 1.1 3.02
) , 0.99 —337 1.01 33.0
Jim f(z)=—ccand lim, f(x)=cc. 0000 | —333.7 1.001 333.0
0.0999 | —3333.7 10001 | 3333.0
0.09999 | =33,333.7 1.00001 | 33,333.3

(b} If x is shightly smaller than 1, then £t = 1will bea negative number close to 0, and the reciprocal of £* = 1, that is, Fiz),

will be a negative number with large absolute value. S0 lim fi{z) = —=c.
F=l"

If = is slightly lasger than 1, then =* — 1 will be a small positive number, and its reciprocal, f(x), will be a large positive

number. So lim f(z) = ca.

{c) It appears from the graph of f that
lim f(x)

F=—]l—

=l

==ocand lim f{z) =oc.
=1+t

47. (a) Let h{x) = (14 =)/

x hix)
=0.001 2.71964
=0.0001 2.71842
=0.00001 2.T1830
=0.000001 | 2.71828

0.000001 | 271828
0.00001 2.7182T7
0.0001 2.7T1815
0.001 2.71692

48, For f(x) = = = (2%/1000):

(a)
x flx)
1 0.998 000
0.8 0.638 259
0.6 0.358 484
0.4 0.158 680
0.2 0.0358 851
0.1 0.008 928
0.05 | 0.001 465

It appears that Iinlijf{r:l =0.

1

(k) f

It appears that Iin:J (1+ I]u: 7= 2.T1828, which is approximately e.
s

In Section 3.6 we will see that the value of the limit is exactly e.

(b)

x f(x)
0.04 0.000 572
0.02 | —0.000614
0.01 | —0.000907
0.005 | =0.000978
0.003 | —0.000993
0.001 | —0.001000

It appears that limnf{u:} = =[.001.
e
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SECTION22 THELIMITOFAFUNCTION O 47

51. No matter how marny times we zoom in toward the origin, the graphs of f{x) = sin{=x /) appear to consist of almost-vertical

lines. This indicates more and more frequent oscillations as = — 0.

1.2
-1 % W
—1.2
1.2
m : o m o

=]

53 & There appear to be vertical asymptotes of the curve y = tan{2sinx) at = == +0.90
‘ U and r == +2.24 To find the exact equations of these asymptotes, we note that the
— «  2raph of the tangent function has vertical asvmptotes at = = 3 4 sn. Thus, we
m must have 2sinx = § + mn, or equivalently, sinxr =  + . Since
4 =1 < sinx < 1, we musthavesinr = X andsox = & sin™! 2 (comesponding

to x = +0.90). Justas 150° is the reference angle for 30°, © — sin™"! 3 is the

reference angle for sin™' £ Sox = (7 — sin™" £) are also equations of

vertical asvmptotes (corresponding to © == +2.24).

55, (a) Lety = i_l 52 ¥ y
V-1 x ] o v =65

From the table and the graph, we guess 0.99 | 5.92531 *_—“I

that the limit of y as x approaches 1 1s 6. 0.999 5.902 50 :
0.9999 | 5.99925 P ¥y=455
1.01 607531 0% < <13
1.001 | 6.007 50
1.0001 | 6.00075

=1
1 <2 6.5. From the graph we obtain the approximate points of intersection P{0.9314, 5.5)

J_;S
(b)) We need to have 5.5 < w—

L=
and (X 1.0649,6.5). Now 1 — 0.9314 = 0.0686 and 1.0649 — 1 = 0.0649, 50 by requiring that z be within 0.0649 of 1,

we ensure that v is within 0.5 of 6.
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48 O CHAPTER2 LIMITSAND DERIVATIVES

2.3 Calculating Limits Using the Limit Laws

1. (a) lim [F{z) + 5g(z)] = lim fl=) + lim, [Ba(x)] [Limit Law 1) (b) lim [o(=)® = [lliﬂllz_q{::s]]ﬂ | Limnit Law &)
= .1]'—'-'12 flz)+5 l]._l-nz glx)  |Limit Law 3] =(=2) ==

=445(=2)=-6

3f(z) _ lim B/(=)]
=2 g(z) ~  limg(z)
T o)

_ 31 _
=—=-6

c) 11:-15 VIlz) = ‘/jll_l-l'.li Fixz) [Limit Law 11] (d) l| |Limit Law 3]

|Limnit Law 3]

{e) Because the limit of the denominator is 0, we can’t use Limit Law 3. The given limut, |u|1 i{hl does not exist because the

=2 hiz)’

denominator approaches 0 while the numerator approaches a nonzero number.

lim [g{x) h(x)]
o glE) hix) o -
if) 11:-15 T l"".; T [Limit Law 5]
|iIIL glx) - lir::! hiz)
= Ty @) [Limit Law 4]
— -2 -u —
= —4 =0
3. lim(52* = 32% 4z = 6) :PE&{EI:“} - llig;‘{axﬂ} + lim x — lim 6 [Limit Laws 2 and 1]
=Slims" ~3lma+ = —fime  [3)
=5(3*)=3(3%) +3-6 [9, %, and 7)
=105
_ lim (t* = 2)
5. lim —L =2 — [Limit Law 5]

e TR TN lim (26 = 3 +2)

lim ¢ = lim 2
F e =

1,2,and 3
E:lll'.[l 2 =3 llrn t+ IIIII 2 l’ : ]
16 =2
= e— 9,7, and 8
2(4) =3(=2) 42 9.7, 1
_u_7
T 16 8
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SECTION 223  CALCULATING LIMITS USING THE LIMIT Laws O

7. lim (14 ¥7) (2 - 6e? 4 2% = lim (14 ) - lim(2 - 6z” 4 %)
E == E

= (Iim 14 lim &"I) . (Iim 2 =6 lim «° + lim z*

E—el E ]

sl x—al  —nl

=14 V8)-(2-6-8"+58")
= (3)(130) = 390

[Lirnit Law 11]

[ET_ o

Ii“.'J: 2r” 4 1)

e .

9. lll‘.[l :—-—z '!.r— 2

2 lim = + lim 1
= =" [1.2, and 3]
",I 3limx = lim 2

x=—sl ]

/-’E_a
1~ 2

B 12(2)% +1 _

_"n'lm_ [9.8, and 7)

I2—6I+5 {I-a]l[:-l'_l

| Lirrit Law 4)
[1,2,and 3)

[7, 10, 9]

'I1._11_|-1; —= :—-5 - —ll_l_l'é{I—I:I:a—l:al
—5c+6 .
13. Iin;I ¥5 does not exist since # — 5 — 0. but a® — 5 +6 — G a3z — 5.
e I =
=9 (t4+3)t=23) _ t =3 —-3-=3 56
15. lim = li = e, S|
t==3 202 70+ 3 t=-3(2A+1)(1+3) e=-a2t+1 2(-3)+1 -5 b5
2 = = 2 2
A7, lim 3R =25 Q5-10h+A) =25 =10h+h _ ) B(=104K) _ i c104 h) = =10
h—i h h—i) f [ h fe=il h fe—il
19. By the formula for the sum of cubes, we have
" 42 - i 42 1 1 _ L
— P P Py R e S P Rl SR U T b

z—=2 1% 4 §

{ﬂ+h:|—

gty VIER=3 _ . VOFE-3 JOFh+3 (VIFR) =3*
g h T a0 R VO+h+3

h 1 1
= lin —— lim = = -
=0 h(yO+h+3) h=0B4+h4+3 343 6
1 1 1 1
z 3 _ . =z 3 3z _ 3—=x -1 1
B T AT T ARG A% 0

= At h{-.,fﬁ +Fh+3) = h—b h [q’@-+.ﬂ:+1}
1
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50 O CHAPTER2 LIMITS AND DERIVATIVES

gy VIFE=VT=T _ | IFi=yT=T JIFi4+yT=t_  (VIFT) - (VI=1)
im = lim " —
=0 t t=+0 ! VIFE+ VIt =0 L(VI+l4yIat)
- (14t)=(1=1t) i 2t 2
= lim ————————
t=0 f (fTH+E+T=1) =—uz{¢1+:+¢1-z} ~0 THl+ V11
- _2_
CVTHVT 2
- T 4 - 4 16 =
27. lim 1"1. = lim ( VA +yT) = lim ud
=—16 16z — x?  =—16 (16 — =) (4 + ‘_J_-'_j 26 J:I{lﬁ-:]-{:-l-l-\.-"'_:l-
= lim ! _ ! - i
x—-lL-.III:-l-i-\,.r} ( +1..-"_1||3:| - 16(8) 128
1 . 1=T3t (1=wT+E)(14+1+2t) -
2. lim = lin = = lim
=0 :ﬁ£1+ =0 L JT3T =0 LIt 1(1+vI1F1) =0t T+t (14 1+1)
. =1 =1 1
= lim = P —
=0 T4 2(14+v14+1) VI4+0(14+/140) 2
) =2 3ch 4 32k 4 0 = 3eth 4 3ch® + HP
. |1|:|1M:lm:|{x+'I L +h7) i = lim i 5
—il) h I k=0 h
- h{ﬂ-.r2+3.r.f:+.f:2:l — lim(3e? 4 3ch 4 A%} = 3u2
_hlﬂlu h _hu_flnli. +.I-J+J:.—.
33. (a) .3 (b)
x f(x)
_— —0.001 0.666 166 3
o~ —0.0001 | 06666167 )
-1 1 =0.00001 0666661 T The limit appears to be T
l =0.000001 | 0.6666662 '
—0.5 0.000001 | 06666672
lism T L2 0.00001 DGGGRTLT
=041 4+3x=-1 3 0.000 1 DGGGTIGT
0.001 D.G6T 166 3
: z VIFsz 41\ _ . =(VTF3z+1) z(VI+32+1)
(c) lm | = —=——| = lim = lim
2=0\ /] $Jr=1 +143Ir+l x—0 {l-l-ﬂ.r]—l x—+0 3x
1
= E Iil!l:._. {1,.-'1 + 3z 4 l} | Limit Law 3]
ks g
= [ ,n'lm:{l-l-'i.r +1un ] [1and11]
= ||.|I|l-|-'11m:|.r+l) [1, 3, and 7]
1
=z(vV1+3-0+1) [7 and 8]

1 2
={(141)==
3{+} 3
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SECTION 2.3 CALCULATING LMITS USING THELIMITLAWS O 54

35 Let fz) = —Iz, glz) = % cos 20wz and hiz) = 2%, Then I
=l €cosWrzr <1 = =z <s%cosMWrr < = flzx) < glx) < hix). h o

So since lim flx) = Iin‘n{.h{.r} = 0, by the Squeeze Theorem we have -1 I
X o

s o) =

37. We have lim (4x — 9) = 4(4) = 9= Tand |in!'|[x2 — 44 T7) =4 —44)+T=T Sincedr—9< flz) <z’ —dx + 7
x— T

forz > l],llELfl::::I = 7 by the Squeeze Theorem.

0 -1 Ceos(2fr)£1 = -z I‘cm{Ef:s:l < x4 Since ].iEB{—z:"'} = [ and Ii.lrhr" = 0, we have
xr o

lim. [* cos(2/x)] = 0 by the Squeeze Theorem.
Al

41.

=23 if =320 z=3 ifx>3
|z — 3] =
J=x ifxr<3

—(x=3) fzx=3<0

Thus, lim (2z4|r=3|)= lim (2z 4+ xr=3)= lim (3x =3) =3(3) =3 =6 and
=i+ =3+ =3+
lim (2r4|r=3|)= lim (2Ze 43 =x) = lim (x4 3) =3 4+ 3 = 6. Since the left and right limits are equal,
=T =T s

11:-15{2; +|lx=3)) =

43 |21:’1 =] = |z 2z =1)| = |«°| - |22 = 1| =27 |22 = 1]

2r — 1 if 22—1>0 ([2r—1 if £>05
2r=1|= =
| I —(2z=1) f2z-=1<0D —(2r=1) fx<05

S0 |22* — %] = 2*[—(2x = 1)] for = < 0.5.

2r =1 Fr =1 =1 =1 =1
Thi Ii [ li i li —_— — ——
U 0t~ 22 = 2] ros- D=(2x=1)] =—08- 2 _ (05)F 025

1 1 1 1 2
45. Since |z| = —z for = < 0, we have lim (_ - _) = lim (- - —) = lim —, which does not exist since the

=—o— Wz |z Pa———

denominator approaches 0 and the numerator does not.

4T. ¥ b s = 1 fi 0, L ; = lim 1=1
{a) I (b) (1) Since sgnx or x == ,I_IFI;I:II-'_E‘!.",III Jim,
(11) Since sgnax = =1 forz < 0, |1.||1 sgn = lim =1= =1
=il =il
0 X
- (1i1) Since lim sgnx # lim sgnr, lim sgn o does not exist.
F—ali— e—aili+ E—l)

{iv) Since |sgn x| = 1 for = # l],_l.lEMtign:sl = 111:11 =1
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52 0O CHAPTER2 LIMITS AND DERIVATIVES

. . E4r=6_  (z+3)(z—-2)
L I =

Izx=2
= lim M [Slﬂ:E‘I—E}ulfI—FE+]
P x=12

= :EJ;[:: +3)=5
(11) The solution is similar to the solution in part (i), but now |[¢ = 2| =2 —zsince s =2 < 0if z — 27,
Thus, lim g(x) = lim —(z +3)=-5.
(b) Since the right-hand and lefi-hand limits of g at x = 2 (c) T+ /

are not equal, Iil:r.; gix) does not exist, \ 2.5
E -y

51. For the I.hu:;ﬁl[t} to exist, the one-sided limits at t = 2 must be equal. lim B(t) = lim (4= #)=4=1=3 and
t— P— P

li1?+B[£]=li1;5_U1+c=U2+c. Now3d=+24¢ = 9=24¢ & =T
£ —

53 (a) () [sq) = -2fwr -2 <z < =150 lim+[.r] = Iim+ (=2) =-2

P D O i

(i) el = =3fr =3 <r < =250 lim [zf] = lim (=3)==3.
T

Fer=l

The right and left limits are different, so zEJ_u:L:r [z] does not exist.
(iii) [£] = =3 for =3 <z < =2, mz_l.ifé_q Iz] = z_l-i.l-l::le-d (=3) = =3.
®) ()[sl=n—1forn—1<z<ns0 lim [f] = lim (n=1)=n-1
i) [fl=nforn <z <n+Lso lim [zf] = lim n=n

z=—mt r=sat

{c) lim [z] exists < a is not an integer.
E=—uid

55. The graph of f(z) = [x] + [—x] is the same as the graph of g(x) = —1 with holes at each integer, since f{a) = 0 for any
integer a. Thus, lim f{z) = =land lim f(z) = -1 s0 Ihu:;jl[x} = —1. However,
e =2+ T
£(2) =PI+ [-21 =2+ (-2) = 0,50 limm f(2) # f(2).
57. Since p(x) is a polynomial, p(x) = ag + a,= + agx”® + «- - 4 a, ™. Thus, by the Limit Laws,
lim p{x) = lim I:na+n1.r+a,:»z2+ o b anr™) = ap 4+ ap lim x4 ag lim 2° 4 -+ 4 a, lim 2"

=ao + a1a +aza” + -+ + ana” = pla)

Thus, for any polynomial p, lim p{x) = pla).
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SECTION 24 THE PRECISE DEFIMITION OF ALIMIT O 53

f{::}-—la (x=1) =II|E|I@ EE'JI_ 1)=10.0=0

59, lim [f(x) = 8] = lim — 1

Thus, lim f(z) = lim {[f(z) — 8] + 8} = lim[f(z) = 8] + lim 8 =0 + 8 =8.

Nore: The value of lim —{-—j— does not affect the answer since it’s multiplied by 0. What's important is that

=l I -

lim 1) =8

ExX1sIs.
x=1 =1

61. Observe that 0 < f(x) < x* for all =, and I:I.II1 0=0= I].II'.I.n.I S0, by the Squeeze Theorem, ].I:I'.II f{z:]l =0

63 Let f{x) = H(z) and g(x) = 1 — H(x), where H is the Heaviside function defined in Exercise 1.3.59.
Thus, either f or g is 0 for any value of =. Then i F(z) and lim g{x) do not exist, but lim [Fiz)a(z)] = limo=0

65. Since the denominator approaches 0 as x — =2, the limit will exist only if the numerator also approaches

0as z — =2, Inorder for this to happen, we need Ihnj{3m2+nz+a+3} =0 +
e

3{—2]2+ﬂ{—2}+a+3=ﬂ & 12=2a4a+3=0 < a=15 Witha = 15, the limit becomes

3 15 18 3 2 3 3 3 =243 3
lim —I +oord lim JE+2DE+3) e t3) =243 3
P I +I-2 P {I-l}{I+2} l—--j :5-1 —2-1 —3.

24 The Precise Definition of a Limit

LIF|flz) =1 < 0.2, then =02 < flx) =1 <02 = 0.8< f(z) < L2 From the graph, we see that the last inequality is
true if 0.7 < = < 1.1, so we can choose § = min {1 —0.7,1.1 = 1} = min {0.3,0.1} = 0.1 (or any smaller positive
number),

3. The lefimost question mark is the solution of ./ = 1.6 and the rightmost, ./T = 2.4. So the values are 1.6° = 2.56 and
2.4* = 5.76. On the left side, we need |r = 4| < |2.56 = 4] = 1.44. On the right side, we need |z = 4] < |5.76 = 4| = 1.76.

To satisty both conditions, we need the more restrictive condition to hold —namely, |+ — 4| < 1.44. Thus, we can choose

4 = 1.44, or any smaller positive number.

5 2 From the graph, we find that y = tan = = 0.8 when = == (L6735, so

S I_5=0675 = b&i=~ZI—0675=01106. Also,y =tanz=12

when o == 0876, s0 £ 4 do = 0876 = d2 = 0.876 = £ = 0.0906.

Thus, we choose & = 0.0906 (or any smaller positive number) since this is

L )
wala

the smaller of §; and da.

I
|
&
|5
|9
(=
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54 O CHAPTER2 LIMITS AND DERIVATIVES

T. : From the graph with £ = 0.2, we find that y = = = 3z + 4 = 5.8 when
y=xi-3x+d T 197T4,502 =6, = 1.9774 = &, = 0.0226. Also,
ﬁ': y::s:‘-3:+4:E.2whenz:=2.ﬂ22,suz+ﬁj:sE.DElQ =
o da == 0.0219. Thus, we choose § = 0.0219 (or any smaller positive
14 : 1% L2118 22 number) since this is the smaller of §; and dz.
i For e = 0.1, we get §; = 0.0112 and &; = 0.0110, so we choose
& = 0.011 (or any smaller positive number).
9. {(a) = - 11
T
-7 "
—ll - " 4
—sn ’ " 2 102
The first graph of y = ﬁ shows a vertical asymptote at x = 2. The second graph shows that y = 100 when

x == 2,01 (more accurately, 2.01005). Thus, we choose § = 0.01 (or any smaller positive number).

(b) From part {a), we see that as = gets closer to 2 from the right, y increases without bound. In symbaols,
1

lim ———— =0,
1—-1-:I.£I+].III::.I—1:I- =
MaA=rand A=100cm” = ar'=1000 = =120 = p= /80 (r>0) =I17.8412cm

(D) |A=1000] <5 = —5<ar’—1000<5 = 100D=5<mr <I0D0+5 =

VEE g IR o 17.7066 < r < 17.8858, /380 _ /2B = 0 04466 and |/ 2202 — /1000 = ) 04455, So

if the machinist gets the radius within 0,0445 cm of 17.8412, the area will be within 5 cm® of 1000.

{c) = is the radius, f{x) is the area, a is the target radius given in part (a), L is the target area (1000), = is the tolerance in the
area (5), and 4 is the tolerance in the radius given in part (b).

0.1 0.1
8. (a) 4z =8 =4]z=2[ <01 & |e=2/ < s0d=—— =002

0.01 0.01
(b) Hr =8| = 4]z =2 <001 & |r—2|<—— s0d=—— =00025.

15. Given = > 0, we need & > 0 such that if 0 < |« = 3] < 4, then i+
y= =T

|1+ 42) =2| <e.But|(14+ 22)=2| <2 & |izr-1|<e & he

|$|le =3l <e & |z =3| <3 Soif wechoose § = 3e, then

D<lz=3]<é = |{1+%I}—2|{.!.Thl.ls,lin:ltl:l-l-%_::}:ﬂb)- .
—

the definition of a limit.
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SECTION 24 THE PRECISE DEFINITION OF ALIMIT O 55

7. Given = = 0, we need & > 0 such that if 0 < |« — (=3)| < 4, then \ ¥ .
=1—4 dte
¥ X i3

I3—&

[(1—4x) —13] <= But|(1 —4z) —= 13| < = =

|[=dr =12 < = |=d||z+3|<e & |r=(=3)] <e/4d Soif
we choose d = /4 then0 < |zt = (=3)]| <4 = |(1—=4z)=13| <=

Thus, lim (1 —4z) = 13 by the definition of a limit.
o | -

—:_; i X
—i—d —3+4

19. Given = > 0, we need & > 0 such that if 0 < |+ — 1] < 4, then 2-24.1: 2_4.34_,;

—2|-\:‘.E.Em| -2‘-::.: r=

dx =4
3

<e & |Hlz-1ll<e & |r—1]<2e Soifwechoosed = 3=, then0 < |z 1| <4 =

+ dx

= 2 by the definition of a limit.

24 dx
3

2
-2| < £ Thus, lim

rf=2: -8

21. Givene= > 0, we need § > 0 such that if 0 < |« — 4| < 4, then i
& —

-G‘{z =

Ix—”‘l'{:—”l-ﬁ‘-:: & |t+2=6/<e [r#4] < |c=4]<e Sochoosed =« Then

=4
N -4 2
De|emd<d = |r—4<e = |r42-6<e = W-ﬁ ce [r#£4 =
£ -
fe2:—8 z?=2r =58
I -7 6 < =. By the definiion of a limit, lim ——— = 6.
=4 : F—ed r —4

23 Givens >0, we need § > 0 such that if 0 < |x — a < 4, then |z — a| < £. S0 d = = will work.

25. Givens >0, we need > O such that if 0 < |z = 0] < 4, then " =0| <2 & z* < & |z] < F Taked = 5

Then0 < |z =0 <é& = |£* =0| <& Thus, Ii.u::l‘.::2 = 0 by the definition of a limit.
o

21. Given s 3> 0, we need & > 0 such that if 0 < |« = 0] < &, then ||z| = 0] < . But ||z]| = |x|. So this is true if we pick § = ¢,

Thus, lim || = O by the definition of a limit.
=

29. Givenz >0, weneed § > Osuchthat if 0 < | = 2| < 4, then |(2" =42+ 5) = 1| <2 & | —dr+4|<e &
|(z=2)*| <e Sotaked = F Then0 < [z —2| <d & |r-2<yF & |(z=2)"| <e Thus,

lim (* — 4x + 5) = 1 by the definition of a limit.

Coprright W6 Cengage Learsimg. A0 gy Rienerved. Wy ot be coped, scanned, or deplacaied, m whok or in pert. Du o chociners sights, sorme thind party comte moy be spprened from the diock andier o hepierial.
Esbtrrea rovarn S decmcd that s wepproncd content doc By affect the ovorall bermirg cupencece. Uagage Lcameng rescrves the nght 0 remens sckdtamal oot 2t 2z hine o vebusguent gt s icton regues i




56 [0 CHAPTER2 LIMITS AND DERMVATIVES

3. Given = > 0, we need & > 0 such that if 0 < | — (=2)| < 4, then |(z* = 1) — 3| < = or upon simplifying we need
|#* = 4| < e whenever 0 < |x + 2| < 4. Notice hat if Jr + 2| < Lthen =1 <2 4+2<1 = =5<z=2<=3 =
|r =2| < 5 Sotake § = min {=/5 1}. ThenD < |[r 4+ 2| <d = |r—=2]< 5and |xr4 2| < /5, 50

HI2 -— 1} - 3| = |I:I+ 2}{.: - 2:]-' = |:r.: + Zl |1: —2' e {tf&}{E:l = £. Thus, by the definition of a limit, Iimz{;l:2 - 1} =3,

33 Givene >0, weletd =min {2, £} f0 < |z =3[ <4 then|r =3] <2 = -2<r-3<2 =

1<r+3<8 = |r+3|<B Also|r—3| <L s0|z" =9 =|zr+3||z-3| <8 £ = Thus, runﬁ;”=9_
E Rl

35. (a) The points of intersection in the graph are (. 2.6) and (x5, 3.4) - ! .

with x; = 0.891 and x> = 1.093. Thus, we can take d to be the - /

smallerof 1 =z, and x5 = 1. S04 = x4 = 1 == 0.093. /

4 T

t
T2

(b) Solving P hrtl =34 gves us two nonreal complex roots and

(2164 1082 + 12336 + 324 + 517 ) /' — 12

one real root, which is x{=) 7
E{Elﬁ + 108= + 12./336 4+ 324e 4+ Bl=2 ]

. Thus, § = x{=) = 1.

(c) If £ = 0.4, then x(2) = 1.093272342 and § = =(=) — 1 7= 0.093, which agrees with our answer in part (a).

37. 1. Guessing a value for 8 Given £ > 0, we must find 4 > 0 such that | /T = /a] < = whenever ) < |z = a| < 4. But

|vZ = /| = % < ¢ (from the hint). Now if we can find a positive constant (' such that /= + /& >  then
I i}

|x =

(__l

|z = al

VT4 a

< < e, and we take |x — a| < Ce. We can find this number by restricting = to lie in some interval

centeredat a. If |z —a| < ia,then—fa<zs-a<ia = la<z<ia = Vor+,a>,/la+ o andso
C= %a+._,-’Ejsaswtahlechmcefﬂrthemmmmﬁn|.r—a|-::( %a.+.,,.-’a_).:_'l'hlssugg¢ststhatwele1
5=m.in{%a,( %u-l-—v‘i;)s}.

2. Showing that § works (in.'ent::-{J,weletd":min{%u.{:‘/;+ﬁ)t}.1fl}-:|I—u|-f:5,men

lr—al <3a = VE+ya>\/Ia+ a(asinpan 1) Also|r—a < (1/3a+va)e, 50

i lz—a_ (VA4 E)e
VE= = < e )

= e. Therefore, lim /= = /a by the definition of a limit.
E—=d
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SECTION2S CONTINUITY O 57
39. Suppose that lir::}j[r} = L. Given e = §, there exists d > Osuchthat0 < |z] < 4 = [f(x) — L] < ;. Take any rational
—

number r with 0 < |r] < & Then f(r) = 0,500 — L] < §,50 L < |L| < 3. Now take any irrational number s with

0 < |s] <4 Then f(s) =1,50|1 = L| < ;. Hence,1 = L < 1,so L > 1. This contradicts L < 1, s0 Ihu::}j{.r}doesnm
=

exIst.
H— 510000 & (243)' € e & |43 <m—m— & |z—(=3)|<—=
z+3)° . 10,000 /10,000 10

43. Given M < 0 we need 4 = 0 so that In = < M whenever 0 < = < §; that is, r = £'** < e whenever 0 < r < §. This

suggests that we take § = e If 0 < 2 < ™, thenlnz < lne® = M. By the definition of a limit, lim lnz = —oc.
Fe=allf

25 Continuity

1. From Definition 1, ,_I.i_'ﬂ fl=) = fi4).

3. (a) f is discontinuous at =4 since f{=4) is not defined and at =2, 2, and 4 since the limit does not exist (the left and right

limits are not the same).

(b} f is continuous from the left at =2 since  lim  f{z) = f(=2). f is continuous from the right at 2 and 4 since
a2

Ii:;u+ Fiz) = f(2) and lirn+ Fl=) = fi4). It is continuous from neither side at —4 since f{—4) s undefined.

5. The graph of y = f{x) must have a discontinuity at 7. The graph of y = f(x) must have a removable
x =2 and must show that lim  f(z) = f(2). discontinuity (a hole) at = = 3 and a jump discontinuity
Fat
atr = 4.

v

9. (a) The toll 15 $7 between 7200 A and 10:00 A and between 4:00 p6 and 7:00 PM. m
(b) The function 7" has jump discontinuities at ¢ = 7, 10, 16, and 19. Their Tp == =
significance to someone who uses the road is that, because of the sudden jumps in

the toll, they may want to avoid the higher rates between t = 7 and t = 10 and 0 T 1615 4 !
between £ = 16 and ¢ = 19 if feasible.

1. gl_i'.'E1f{I] = ,l_if'ﬂ, {I+ 213]4 = (EE-JEIJ:-J- Zgl_ifﬂ, 33)4 = [—1 + 2{_”3]4 = (= :]-" =81 = fi-1).

By the definition of continuity, f is continuous at a = —1.
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58 O CHAPTER2 LIMITS AND DERIVATIVES

13, lim p(r) = lim 2B £ 1 =2 lim+/ T+ 1 = 2"/li.|n[3n"! +1)=2_/3lim w2 4 lim 1
=l v==1 p=sl el =l ==l
=231 +1=2/1=4=p(1)
By the definition of continuity, p is continuous at a = 1.

15. For a > 4, we have
lim f(z) = lim{z 4+ vz =4) = lim £ 4+ lim vz =4 [Limit Law 1]
ol I E—"E I

=a+4+ [limx=lim4 [8, 11, and 2]
=a4ya=4 [Ea.ru:l?]
= [(a)

So f is continuous at © = a for every a in (4, 2c). Also, lim fi{z) =4 = f(4), so [ is continuous from the right at 4.
F—rdt
Thus, f is continwous on [4, o).

1 .
3 is discontinuous at ¢ = =2 because f{—=2) is undefined. !
X

17. f(z) =

x=-2

z43 fz<=1
2= if = -1

19, f(x) = {

lim flz)= lim (r+3)==14+3=2and

F—a=1"

lim flz)= lim 2% =2""= 3 Since the lefi-hand and the

Pt Fea=]

right-hand limits of f at =1 are not equal, Ii.mlf{.r} does not exist, and
Frrem

f s discontinuous at =1,

oS T if <0

N flz)=410 if z=0 ¥
1=z ifz>0
_'E/ i) I i
=!i._l-r:l‘_ﬂ"l[.z:l-:l,hut_||"|[ll]-:i=l];an":1,s-|:n_,|" is discontinuous at 0. ‘ \
3. flz)= IZI'_IE'E — {I-IE]_I[I; 1) =z 4 1forz#2 Since lim f(z) =2+ 1= 3, define f(2) =3. Then f is

continuous at 2.

2
IS.FI{I}ZZII r=1

S 15 a rational function, so it is continuous on its domain, (—oo, =<}, by Theorem 5(b).
I
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SECTION2S CONTINUITY O 59

NP =2=0 = =2 = r=J2,0Q(x)= v hﬂsdﬂmaln{—-x VZ)u (2, 2c). Now =* = 2is

continuous everywhere by Theorem 5(a) and ¥z = 2 is continuous everywhere by Theorems 5(a), 7, and 9. Thus, @ is
continuous on its domain by part 5 of Theorem 4.

29. By Theorem 5{a), the polynomial 1 4 2¢ is continuous on B. By Theorem 7, the inverse trigonometric function aresin x is
continuous on its domain, [—1, 1]. By Theorem 9, A(f) = aresin(1 + 2t) s continuous on its domain, which is

[tl-1<1+20<1}={t|-2<2t <0} ={t|-1<t<0}=[-1.0]

1
N M(z)= y14—-=
x

of © < =1, 50 M has domain [=oo, =1]U (0, 2c). M is the composite of a root function and a rational function, so it is

1 1
Jsdeﬁnedm'hm—'r+ >0 = z+1Z0andz >0orz+ 1 <0andx <0 = x>0
I

continuous at every number in its domain by Theorems 7 and 9.

1
33. The function i = = 15 discontinuous at © = 0 because the p- ; -
14 elf=

lefi- and right-hand limits at = = 0 are different.

bl
35. Because x is continuous on & and /20 = £ is confinuous on its domain, —+/20 < = < /20, the product

fix) = z+/20 = 2 is continuous on —' 20 < x < /20. The number 2 is in that domain, so f is continuous at 2, and

ill_l?;f[r:]- = f(2) =2,/ =8

1
s ) is continuous throughout its domain because it is the composite of a logarithm function

37. The function f(z) = m( R

- z*

5
and a rational function. For the domain of f, we must have 3 = 0, 50 the numerator and denominator must have the

same sign, that is, the domain is {—oa, —u‘E] ui=1, ~..-"'§] The number 1 15 in that domain, so f is confinuous at 1, and

lim f(z) = f(1) =In i‘:: = In2.

1—2* fzr<l

Inx if =1
By Theorem 5, since f(x) equals the polynomial 1 = =¥ on (=g, 1], f is continuous on (—oo, 1].
By Theorem 7, since f(xz) equals the logarithm function lnx on (1, o<}, f 1s continuous on {1, os).

Atz =1, lim fi{z)= I.1m (1=2)=1=1"=0and lim f(x)= lim Inz=Inl=0. Thus, lum_f{m]eﬂsrsand

Eea]l— F=slt Fe=alt

equals 0. Alsp, f{1) = 1= 1% = 0. Thus, J is continuous at = = 1. We conclude that f is continuous on (=oo, o).
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O CHAPTER2 LIMITS AND DERIVATIVES

x” if x <=1 .
flz)=4<= if =1<x<1 .
Ijz ifz=1

f 18 continuous on (—oso, =1), (=1, 1), and (1, =), where it is a polynomial,

a polynomial, and a rational function, respectively. =11

Now lin:_f[.r] lim z*=land lim f(z)= lim z=-1, i=1.=1

]l =]t Ferm]¥

so [ 1s discontinuous at —1. Since f{=1) = =1, f is continuous from the right at —1. Also, lim fiz) = lim = =1 and

F—sl— e
1
lim fiz) = llm = =1= f(1), so f is continuous at 1.
F—alt =1+ I
42 fz<D !
il &
fl)=der fo<z<i 0.2, /
- - il 1)
2=x x>l i c\
£ 15 continuous on (—oo, 0) and (1, oo) since on each of these intervals / u \n'
it is a polynomial; it is continuous on (0, 1) since it is an exponential.

Now lim f(z)= lim (x4 2)=2and Ii.n:L+ flz)= lir.:]'l+ e® =1, s0 [ is discontinuous at 0. Since f(0) =1, fis
el =il Eall E
continuous from the nght at 0. Also qu flz) = lim ¢* =eand lim f(z) = lim (2 =) = 1, 50 [ is discontinuous
Pl F=alt =1+

at 1. Since f(1) = e, [ is continuous from the left at 1.

i et 42 ifx <2
(=) = I =cr ifr>2

f s continuous on {—oo, 2) and (2, 00). Now lim f(z) = lim {c32+2.1:]=4c+4and

=D =l
lim f{z) = lim {z*—c::] =8=2c 50 f iscontinuous & de4d=8=2¢ & =4 & r::;. Thus, for f
=t =+

to be continuous on [ —oso, 0o), ¢ = %

If f and g are continuous and g(2) = 6, then :!i_l.l:lﬁ[j_f{:c] + flz)g(z)] =36 =

3lim f(z) + lim f(z) - limg(x) =36 = 3f(2)+f(2)-6=36 = 9/(2)=36 = f(2)=4

o1 _ @t (@t l-1)

L (a) fz) = = ={z2+l:}[z+—1] [or.r" +I2+I+1]

=1 =1 =1

for = # 1. The discontinuity is removable and g(x) = =® 4 £ 4 = 4 1 agrees with f for = 2 1 and is continuous on B.

Py :51:2—:5—2:]- .1:{.1:— 2)(x+ 1)

r=2 r=2 xr=2

(b} flz) = =z{xr+1) [orz’+z] forz## 2 The discontinuity

is removable and g(z) = z* + x agrees with [ for = # 2 and is continuous on &.
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SECTIONZS COWTINUITY O &1
ic) lim flz)= lim [sinz] = lim O0=0and lim f(z)= lim [sinz] = lim (=1) = =1, 50 lim f{z) does not
T E . T F— r=—axt L =t =
exist. The discontinuity at = = 7 is a jump discontinuity.

51. fiz) = 2% + 10sin x is continuous on the interval [31, 32], f(31) = 957, and f{32) = 1030. Since 957 < 1000 < 1030,
there is a number ¢ in (31, 32) such that f(e) = 1000 by the Intermediate Value Theorem. Nove: There is also a number ¢ in

(=32, —31) such that f() = 1000

53. fiz) = 2" + = — 3 is continuous on the interval [1, 2], f({1) = =1, and f{2} = 15. Since =1 < 0 < 15, there is a number ¢
in (1, 2) such that f{c) =0 by the Intermediate Value Theorem. Thus, there is a root of the equation * + = =3 = 0 in the
interval (1, 2).

55, The equation e® = 3 = 2z is equivalent to the equation €™ 4 2r =3 =0. f(x) = ¢* 4 2r = 3 is continuous on the interval

[0, 1], FiD) = =2, and f{1) =e =1 = 1.72. Since =2 < 0 < e = 1, there is a number ¢ in (0, 1) such that f{e) = 0 by the

Intermediate Value Theorem. Thus, there is a root of the equation ® 4 2x = 3 =0, 0r ¢™ = 3 = 2z, in the interval (0, 1).

51. (a) f(x) = cosx — " is continuous on the interval [0, 1], f(0) =1 > 0, and f(1) =cos1 = 1 = =0.46 < 0. Since
1 =0 > —0.46, there is a number ¢ in (0, 1) such that f{c) = 0 by the Intermediate Value Theorem. Thus, there is a root
of the equation cos = — =* = 0, or cos = = =*, in the interval (0, 1).

(b) f{0.86) = 0.016 > 0 and f(0.87) == =0.014 < 0, so there is a root between 086 and 0.87, that is, in the interval
(0.86, 0.87).

59. (a) Let f(x) = 100e==/1™ — 0.01=". Then f{0) = 100 > 0 and

F(100) = 100e™" = 100 = —63.2 < 0. So by the Intermediate EL

Value Theorem, there is a number ¢ in (0, 100) such that f(c) = 0.

This implies that 100e~</1" = 0,017,

(b) Using the intersect feature of the graphing device, we find that the

— 100 . + ]
root of the equation is = = T0.347, correct to three decimal places.

B1. Let f(x) = sinz". Then f is continuous on [1, 2] since f is the composite of the sine function and the cubing function, both

of which are continuous on . The zeros of the sine are at nor, so we note that 0 < 1 < 7 < %rr < 27 < B < 3, and that the
pertinent cube roots are related by 1 < § %rr [call this value A] < 2. [By observation, we might notice that * = &7 and
= éﬁmz&m&ai‘f.]

Now f(1) ==sinl >0, f{A) = sin %# ==1<0,and f{2) ==in8 > 0. Applying the Intermediate Value Theorem on

[1, A] and then on [A, 2], we see there are numbers ¢ and o in (1, A) and (A, 2) such that f{c) = f(d) = 0. Thus, f has at

least twio z-intercepts in (1, 2).
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62 O CHAPTER2 LIMITS AND DERIVATIVES

63. (=) If f is continuous at a, then by Theorem & with g(h) = a 4 k, we have
lim f(a+ k)= f(lim (a+ ::}} = f(a).
(<) Lete = 0. Since J!i_l:flﬁ_f{u + k) = fia), there exists § > Osuchthat 0 < [h]| <46 =

[fla4h) = Fla)] <= 3010 < |z =a| <4, then | f{x) = fla)| =|fla+ (z=a)) = fla)] <=

Thus, E_uﬂ f{x) = fa) and so f is continuous at a.

65. As in the previous exercise, we must show that lein}] cos{a + h) = eos a to prove that the cosine function is continuous.
lim cos{e + h) = lim (cosacosh =sinasinh) = lim (cosacos ) = lim (sinasinh)
h—1 h—0l h=i) h=

= (Eﬂ:‘t]cus a.) (J{ill:hcm h.) - (}Ili_lz.r_.lnsina) (!!IEE sin h) = {cosa)(1l) = (sina)(0) = cosa

- |

0 if x is rational

is continuous nowhere. For, given any number a and any & = 0, the interval (a — 4, a 4 4)
1 if x is irrational

67. f(x) = {

contains both infinitely many rational and infinitely many irrational numbers. Since f({a) = 0 or 1, there are infinitely many
numbers = with 0 < |z — a| < d and |f(x) = f(a)] = 1. Thus, lim f(x) £ f(a). [In fact, lim f{x) does not even exist |

89. If there is such a number, it satisfies the equation * + 1=z < z® =z + 1 =0. Let the lefi-hand side of this equation be
called f{x). Now f{=2) = =5 < 0,and f{—1) = 1 = 0. Note also that f{x) is a polynomial, and thus continuous. So by the

Intermediate Value Theorem, there is a number e between —2 and —1 such that f{e) =0, so that e = A4l

M. fl{z) = 2" sin(1/z) is continuous on {—oe, 0) U (0, o) since it is the product of a polynomial and a composite of a
trigonometric function and a rational function. Now since =1 < sin{1/z) < 1, we have —z* < =" sin(1/x) < 27, Because
E-:‘L]{—:"] =0and lim z' = 0, the Squeeze Theorem gives us li_l:-r.‘l}{.r‘ sin(1{x)) = 0, which equals f(0). Thus, f is
continuous at 0 and, hence, on (=og, o).

73, Define u(t) to be the monk’s distance from the monastery, as a function of time ¢ (in hours), on the first day, and define d(t)
to be his distance from the monastery, as a function of time, on the second day. Let I be the distance from the monastery to
the top of the mountain. From the given information we know that w{0) = 0, u{12) = D, d(0) = D and 4{12) = 0. Now
consider the function u — o, which is clearly continuous. We calculate that (u — J)(0) = =0 and (e — d)(12) = D.

S0 by the Intermediate Value Theorem, there must be some time £o between 0 and 12 such that (v — d)(te) =0 =
u(lo) = d(ta). So at time Ly after 7:00 aM, the monk will be at the same place on both days.

2.6 Limits at Infinity; Horizontal Asymptotes

1. (a) As = becomes large, the values of f(z) approach 5.
(b} As = becomes large negative, the values of f(x) approach 3.

1 (a) :Ii-tg.:. flz)==2 [14)] tll-l..lfx flz)=2 {ch ilﬂll fz) =00
{d}ii:.%f['r}:-m {e) Vertical: x = 1, = = 3; horizontal: y = =2,y = 2
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;ET flz) =15,
_'l'lElﬂlE flz)=-5

SECTIONZE LIMITS AT INFINITY, HORIZONTAL ASYMPTOTES O &3

T lim f(z) = —cc, lim f(z) =o0 9. flo) =3, JE.IE.'— flx) =4,
Jim f(x) =0, lim f(z)=oc, ].|rn fiz) =
S (=)= Jm f(z)==cc, lm flz)=
N oir=2 =%
Jim flx) =oc, lm flr)=3
i L

M. If f{z) = £*/2%, then a calculator gives £(0) = 0, f{1) = 0.5, f(2) = 1, f(3) = 1.125, f(4) = 1, f(5) = 0.78125,

1(6)

=0.5625, f(T) = 0.3828125, f(8)

=0.25, f(9) = 0.158203125, f(10) = 0.09765625, £(20) = 0.00038147,

F(50) == 2.2204 x 10~*2, f(100) = 7.8886 x 10~*". Itappearsthat lim (z%/2%) =0.
il

22 =T

(222 = 7]];,_-? [Divide both the numerator and denominator by =*

13, lim

r—oc Drd fx—3

15, lim S2=2 _
oo By 4 1

1. L _—
.r—-E.:w. 41

VI
8. hm o

e (2 4 1) /=

=2

= I
e (522 + x — 3) [x* (the highest power of = that appears in the denominator)]

lim (2 - 7/2%)

Jim (5+ 1/x = 3/22) [Limit Law 5]

|:|.|r1 2= lim f_?frz:l-

:

- - |Limit Laws 1 and 2]
-— ]
Jm 5+ ,"_";JUI} Jim (3/=7)

2=T lim {lf:sz}
— |Limit Laws 7 and 3]

5+ lim (1/2) - 3 lim (1/2%)
2 — 7(0
= Theorem 2.6.5
5+ 0+ 3(0) [Theorem 2.6.5]
2
=3
Bz—2)jx . 3-2/z Jm3-2lmlz 5_sq) 3
240 "2

e 241/ T lim 24 lim 1fx -
.l .l

: : 1
o =2 L Yregfe? SR VERLERVE g0
T pmmme (22 1) xt T ammae L 1f2E T lim 14 lim 1/x2 = 140
P O
2y 42 /2
b {zt-tz},.ftz o =1 0=1
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64 O CHAPTERZ2 LIMITSAND DERIVATIVES
M. lim M = lim {ZIZ L l}l‘!f.r"' = [{ZI! s ILHIJ]J
== (z =1z + ) so= [z -1 + 2)]fxt e (2 - 20 4+ 1)/27[(27 + 2) /2]

- lim (2+1/x7) _ (240" _
e (1=2fx 4+ 1) (14 1) (1-040)(14+0)

T TR Jm T/ s T
N W T _ E—eol A _ [ p
B s T T mee-)) [since &= = Va® for = > 0]
XD
B Jim (/1/25 41 ~ \/EIE:;{I,J'I"] + lim 4
= — —— = -
J‘Il_lslgll[ﬂlu'u:“j] xIE'»}.;l 0=1
044 2
= = — =3
=1 =1
Az 43 . Wz432 s xli—l.'a'.-_ V (x + 32%) /=2 ~F
B. JII—I.I»:I.; Taz—1 xlll-l;l.r_ (4r=1)fz = lim (4 =1/x) [since = V== for = > 0]
T D

__Am s JIm0/H+ IS 5w V3

,IE';,:'{_,I'_I.';._{UI} 4 =10 4 4

JE— . - 2 2
(Ox? 4+ r=3x)(v9z* + x4+ 3z fOx? 4 )" = (3

1. lim {v'5|12+r—3::} = lim E‘r - - - H — }: lim h - = (32)

P £ =i ‘,.-‘g._rd + x4+ 3 = VOt 4 x4 3x

g 2 . _g 2
= lim (I +I} - limm d £

r—eoo o SOFS 4o 4 Ja = 2 WEzd 4 x4 3 ’ 1/x

n zfr . 1 1 1 1
= lim = lim = = = =
o OrTfa? f xfx? 4 3afz o= 041z +3 943 343 6

f22 fax = fx? F b)) (Vi +ax 4422+ b
B. lim (yz?+ar— .z +br) = lim v — II ) (v II — z)
e E \-"r.r‘!+ﬂ.r+v"l.rz+bI
i o tar) = (@ 4br) l(a = b)z]/x
= lim = il —
rox frfdar4ri b ot (el par /2T F b ) [V 22

B a—=b a=—0b a—Db
= lim =

== Thafr+T+bfz VI+0+/T+0 2

B =3z 41z
T e T- L + 2

= li
e I e D sl (z? =z 4 2)/z?

of = in the dendrminator

M. lim ' =3 fx (' = 32" + 2)/2 |:d|'-||.ir by thie highest power ]
since the numerator increases without bound and the denominator approaches 1 as r — oo,

33 lim (z"4+2:7)= lim 7 (é -I-E) [factor out the largest power of ] = =oo because ¥ — =oc and
P p—— F e

1,-"::"’-}-2—-2:15.1:—-—:-:..

T 2 AT 2 5y _ _
r: lm |:.r +2I}_JEE..,;I {1+2.r }_ 5o,

I =
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SECTIONZE LIMITS AT INFINITY, HORIZONTAL ASYMPTOTES O

35 Lett=¢" Asx — oo, — 2o lim arctan(e™) = lim aretant = f by (3).
E E=—v o0

2 T _ B
37. lim e lim (A =)/ et =1 D=1 1

smvoe | 4 26 xece (14 2e™)/e" = e /e 42 D42 2
39. Since =1 < cosxr < 1and e~ > 0, we have =e™** < o™ cosr < e~ We know that lim (=e~**) = 0 and
Faa

lim (e=**) =0, so by the Squeeze Theorem, |1.||1 {L = eosx) =0

Tl

I

: 14z 14 z* * +
#. lim [In{l + =) =In{l 4+ )] = lim In tr - In ( lim haks ) = In( lim = I) = oo, since the limit in
o Feroan 14+x

z=aoy | :—rxi.{..]

parentheses is oo

41 (a) (1) ].IIII flz) = lim L —Dsince x — 0* and Inx — —oc as = — 0%,
P
(i) Iim f(z)= lim L — mscsincer — landlnzy — 0~ asx — 1=
sl z—1— lnx
(111} 1|1|| flz)= +Ii—:!nsmter—n- landlnz — 0% asx — 1%
—1+ In
(b) ch *
I fl=)
10,000 1085.7
100,000 BGES.D
) = It appears that lim f{x) = ==
1,000, 000 T2,382.4 e 0

43. (a) — 100 0 (b)

T flz)
—10,000 | —D.4999625
—100,000 | —0.4999962
—1,000,000 | —0.4009996

-1
From the graph of f{z) = vz +z + 14 2, we

estimate the value of lim  f{z) to be =0.5.
]

From the table, we estimate the limit to be =0.5.

Iz I- (=" 4+x41) =2
(c) lim {VI“+I+1+I:|= lim {VI“+I+1+I] m]: lim r tetl)—a

= = ."I:.! dirdl=z Pra—— m_ -
= lim (= +1(1/=) = lim 14+ (1/x)
== (Ve bz 41 -x)(1fz) === =T+ (1/2) + (1/27) = 1
140 _ 1

—Vil+t0+0-1 2

Mote that for = < 0, we have +/z? = |z| = —z, so when we divide the radical by =, with = < 0, we get

—VFTETI= —%Jﬂ TEFl=-/T3 (/0 + (/).
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66 [0 CHAPTER2 LIMITSAND DERIVATIVES

g, lim 2 g, GHdn)fz g S/x44 044, 10
r—toe 43 z—-:l::wr. (x+3)/z s=tae 143fx 140 N
— 4 isa horizontal asymptote. y = f(z) = ——t. s0 Lim f(z) = |
u = 4 is a horizontal asymptote. y = fz) = z 7300 Im, () = = i 5 ] o

since 5 4 4r — =Tand £ + 3 — 0% as £ — =3*. Thus, £ = =3 is a vertical

asymptote. The graph confirms our work. =1

2:f 4z -1 1 1 li 2.1 _ 1
. 20 =1 ] B 24 —=— :—-I::;Isc +I x?
48. lim ———— = lim —/—*—— = lim £ X =
roton T2 —2 P T F—rdo 1 2 1 2
— l+____! lim 1+ ==
2 r T P r z*
1 1
lim 24 lim —= lim —
- — - 240=0
= 2oEx imlI Lot Il =7 T} S =2 soy = 2is ahorizontal asympote.
im 14+ lim =—2 lim +0-2(0)
2 et o o e F—rtoo I

_ _2Z'4a=1_ (2z=1)z+1) _ 3
v=f@=m e = (z+2)(x=1) 50 lim f(z)=co,

lim f(x) = =og, ,E.I:I— F{z) = =oc, and !]._I-I'.il-'_ Slx) = oo. Thus, £ = =2

==t

and = = 1 are vertical asymptotes. The graph confirms our work.

- rz? =1) Hr4l)z=1) =fxz<+1)
V=) = e s T o) - eo==) — ==5 ") frz#
The graph of g is the same as the graph of f with the exception of a hole in the 2
2
. I +r k_//
ffatx=1 Byl div = = i .
graph of f at = v long division, g(x) - r+ -|--I_‘5
Asx — Foo, g{x) — %00, so there is no horizontal asymptote. The denominator —20 40
of giszerowhen = = 5. lim gx) = —oo and IIIII glz) =oco,s0x=>5isa L/ \ J
E et
-0
vertical asymptote. The graph confirms our work.
33. From the graph, it appears i = 1 15 a honzontal asymptote.
3 + 500
3% 4 50022 ) - =
lirn lim — -
oo T8 + 50022 + 100z + 2000  z—toc 2 + 50022 + 100z + 2000
xd
= lm 3+ (500/x)
= et 14 (500/) + (100/=?) 4 (2000/*)
340
= m =3, soy = 3i1sahorizontal asympiote.

-
&

The discrepancy can be explained by the choice of the viewing window. Try
[=100,000, 100,000] by [=1, 4] to get a graph that lends credibility to our

calculation that y = 3 15 a horizontal asympiote.

bl L] lik
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SECTIONZE LIMITS AT INFINITY, HORIZONTAL ASYMPTOTES 0O &7

85 Divide the numerator and the denominator by the highest power of = in Q(x).
(a) If deg PP < deg €2, then the numerator — 0 but the denominator doesn’e. So lim [Px)/(}{x)] = 0.
(b) If deg P > deg ¢, then the numerator — o0 but the denominator doesn’t, so lim [P(x)/CQr)] = oo
{depending on the ratio of the leading coefficients of P and Q).

57. Let™s look for a rational function.

(1) QEEL& flz) =0 = degree of numerator < degree of denominator

(2) »_l-i'—'-'}: flz) ==0c = there isa factor of =% in the denominator (not just =, since that would produce a sign
change at = = 0), and the function is negative near x = 0.

(3) Eli__;_!:_ flz) === E.I"HizEJ?_'_ flz) = =0 = vertical asymptote at = = 3; there is a factor of (x — 3) in the
denominator.

(4) f(2Z)=0 = 2isan z-intercept; there is at least one factor of (x = 2) in the numerator.
Combining all of this information and putting in a negative sign to give us the desired left- and right-hand limits gives us
flx — 5 e ibil

(x) = { - 3} possibility.

59. (a) We must first find the function . Since [ has a vertical asymptote = = 4 and z-intercept x = 1, = — 4 is a factor of the
denominator and = — 1 is a factor of the numerator. There is a removable discontinuity atr = =1, s0x = (=1) =z 4+ 115

alz = 1)z +1)
(x=d){zx+1)"
afx =1){xz41) i afr=1) a{—l =1) 2

be determined. Then ]I]’.Il _f{::l:] _:EI—I-IEI m = m = {_1 _4} —ﬂ,_S-D EE_E and

a factor of both the numerator and denominator. Thus, f now looks like this: f(z) = where a 15 still to

Sz =1){(x+1)
(z =4}z +1)

_5(=1){1) s
TO=1hm) =1
=1 (£2/=*) = (1/£) 1=0

(b) Jim flz) =5 lim o =5 ) = Gaet) — (49 ~ T-0-p M =5

a =75 Ths f(x) = is a ratio of quadratic functions satisfying all the given conditions and

Bl.y=flz) =at =¥ =1 = 2%) =21 4+ z){(1 = ). The y-intercept is -"'
fi{0) = 0. The z-intercepts are 0, =1, and 1 [found by solving f(z) = 0 for z).

Since ' > 0 for = £ 0, f doesn’t change sign at = = 0. The function does change
signatr = =land x = 1. Asx — #oo, f(z) = £%(1 = 2%) approaches —oc
because ! — oo and (1 = £7) — =oa.
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68 O CHAPTER2 LIMITS AND DERIVATIVES

8. y = f(z) = (3 ==z)(1 + 2)*(1 = x)*. The y-intercept is f(0) = 3(1)*(1)* =3. !
The r-intercepts are 3, =1, and 1. There 15 a sign change at 3, but not at =1 and 1.
When x 15 large positive, 3 — x is negative and the other factors are positive, so
Jim flx) = —oc. When = is large negative, 3 — =z is positive, so

i = e
Jim_J(2) = oo T
. (s) Since —1 <ainz < 1fwralle, — 2 <TBZ 1 pr om0 Asz =00, —1/z — Oand 1/x — 0, so by the Squeeze
xr i L o
=inx

=0

Theorem, (sin z)/x — 0. Thus, lim
=0

() From part (a), the horizontal asymptote is y = 0. The function

y = (sinx)/x crosses the horizontal asymptote whenever sinz = 0

that is, at & = wn for every integer n. Thus, the graph crosses the —I5 25
asymplote an infinite mumber of times.
—n.s
67. lim ”"_ ANVE gy 8 S —5and
E T lf\.-"_ E=sb V-'rl— ].jlfI} VI-E
. 10e" =21 1fe* 10— (21/e")  10-=0 L 10e* = 5T
i ST e =t S = T = s D02 < fla) < 25

we have lim f(x) = 5 by the Squeeze Theorem.
T

=y i

69. (a) llln;c v(t) = lli-n; v'(l - 2-9"'""-) =v*(l=0)=v"

(b) We graph v(t) = 1 — e~ and v(t) = 0.99v*, or in this case,

v(t) = 0.99. Using an intersect feature or zooming in on the point of

intersection, we find that ¢ == 0.47 5.

3" 41
T. Let g(x) = T pr—— and f((z) = |g(z) = 1.5]. Note that 010

Jim g(x) = 2 and Jim f(x) = 0. We are interested in finding the |’.T . \ 1

a-value at which f{x) < 0.05. From the graph, we find that = = 14.804,

s0 we choose W = 15 (or any larger number). i 20
E..Wewa.nta\-*aluenf"r'suchﬂm:-c:-\’:rl =i 3| < =, or equivalently, 3 = = < 1=z < 34 = Whene =011

we graph y = f(z) =%,y = 3.1, and y = 2.9. From the graph, we find that f{x) = 3.1 at about £ = —B.092, s0 we

choose W = =9 (or any lesser number). Similarly for £ = 0.05, we find that f{x) = 3.05 at about =+ = =18.338, s0 we
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SECTION 27 DERIVATIVES AND RATES OF CHANGE 0O &9

choose N = =19 {or any lesser number).

~ 3.2 -
y=3. _'__r,_--"'\.l
___________._.--"" v = 315
—
e v 2 4% ¥
=190
1 i.l 2R e, 1 1 LE
—H = =l 1]

= =i

75 {a) 1/2* < 00001 < *>1/0.0001=10000 < =>100 (r>0)

(b)Ife >0isgiven, then 1fx’ <2 & ¥ >1/e & z>14E LaN =14/~

1 1
——D‘:E—{t Sﬂzll_l':l.;tg 0.

1
Thenz >N = > — =
JE

M. Forz < 0,|l/z=0] =
Take N = =1fe. Thenz < N = z < =1lfe =

=1z If e > 0 isgiven, then =1fx <= & =< =1fc
[(1fz) =0] = =1fxr < g,50 lm (1fx)=

79, Given M >0, weneed WV > Osuchthatz > N = & > M Nowe® > M < =z >In)d,sotake
=max(l,In M) = & > maxe M) > M,

N = I.ua.xl:.'l. In M']. {This ensures that &V > 0.) Thenx = WV

s0 lim ¢ = oo

X =30

B1. (a) Suppose that lim f{z) = L. Then for every = > 0 there is a corresponding positive number N such that | f{z) — L] < =
oD

whenever z > N. Ift = 1fz,thenz >N & 0< fz<1/N & 0<t< /N, Thus, forevery £ > 0 there is a

corresponding & = 0 (namely 1/N) such that | f({1/t) — L| < = whenever 0 < ¢ < 4. This proves that

tl—i-l|;1+ My=L= _,11{";,: flz).

MNow suppose that lim  f(z) = L. Then for every £ > 0 there is a cormesponding negative number N such that
It Y
/N <t < 0. Thus, for every

|[flz) = L] < =wheneverz < N. Ift =1fz thenz < N & 1/N<1lfz<D &

£ = 0 there is a corresponding & > 0 (namely —1/V) such that | f{1/t) — L| < = whenever —4 < ¢t < 0. This proves that

tE.I‘:I.'.I._ ffty=L= lliﬂlﬂ fl=z).

1
(b) lim xsin—= lim ¢sin— [let = = ¢]
e - t
1

= lim ==l ajwithy =1/t
Pl_l'iyhllly | part (a) y [

= lim /= lety = x|
F=on T

=0 | Exercise 63]

2.7 Derivatives and Rates of Change

_ Ay _f=-13)

1. (a) This is just the slope of the line through two points: Mpg = == 3
(b} This is the limit of the slope of the secant line P as (@ approaches P2 m = Im!* L;H]
E= I o=
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70 O CHAPTER2 LIMITS AND DERIVATIVES

3. (a) (i) Using Definition 1 with f{x) = 4x — +* and P(1.3),

- dr =) =3 =(z" =4r+3 =z =1)xr=3
m = lim M = lim ( z) = lim (= +3) = lim (= )= )
=g X o= =1 T =] F=al =1 =l Fe=]
:,],"2'1{3-1:':3-1:2
{11} Using Equation 2 with f{x) = 4x — =” and P(1, 3),
- - 14 h)= R =3
ot Ty flath) = f(a) _ o S+ h)=f(1) _ [ (14 h) = (1+h)*]
f—t ke J - h h—-ﬂ h
. 4+44h=1=2h=h*=3 _ =h*+2h _ h(=h+2) _
=1 =1 = lim —— =1 -h4+2)=2
iy ﬁ, A T A

i(b) An equation of the tangent line is y — fla) = fla)(z —a) = yv-=fll)={1)z-1) = y=3=2(zx-1),

ory =2+ 1.

c) i The graph of y = 2r 4 1 is tangent to the graph of y = 4r — x* at the
point (1. 3). Now zoom in toward the point (1, 3) until the parabola and
the tangent line are indistiguishable.

L ;

5. Using (1) with f(z) = 42 = 327 and P(2, =4) [we could also use (2)],

f@)=fla) _ (4 —32)—(—4) =3’ +dr 44

mz-}l—lﬂ T=q T2 r=2 =2 r=2
o {—3:— E:H:I - 2] o _ _
=l = lm(-3r-2) = -3(2) -2 =3

Tangent line: y — [—4) = =8{x =2} & y+4==-Br+ 16 = y=—Bzx+ 12

1. Usmg{l},m:]_im'”r ""F ":\-"{_'l]'fv"'_+1] r=1 i

= lim — — i

=1 A @oDETD  AAE-DETD HJ“

Tangentline: y —1=3(x—1) & y=3x+3
9. (a) Using (2) with y = f(z) = 3 4 4z = 22*,
{ﬂ.+h}—f{ﬂ] i 3 +4(a +h)? =2(a+ h)* = (34 4a® = 24")

m = lim
h—s} h—1 h
= lim 34+ 4a? 4 2ah + h?) = 2{a® + 3a®h + 3ah® + h%) =3 — 4a® + 2a°
- h
— iy 3+ 4a” + Bah + 4h7 — 2a* = 6a’h — 6ah? — 2 = 3 —4a” + 24°
" h—o h

. Bah + 4h* — Ga*h — Gah® = 20* B M:Ba + 4h — Ba® = Gah — 2!:2]
= lim = lim
f—t f ho—sil h

=}ILi.|rtl[Sa.+4h—Buj—Bah—ﬂhz}zﬁa—ﬁuu
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SECTION 2T DERNATIVESANDRATES OF CHANGE O 7

(b) At (1,5): m = 8(1) = 6(1)* = 2, s0 an equation of the tangent line ic) 1D

By=5=2x-=1) & y=2r43

At (2,3): m = 8(2) = 6(2)" = =8, s0 an equation of the tangent

IIMEy—Ez—B{I—E:} & y=-=-Bx 419 -2 k -J-t

11. (a) The particle s moving to the right when s is increasing; that is, on the intervals (0, 1) and (4, 6). The particle is moving to
the left when s is decreasing; that is, on the interval (2, 3). The particle is standing still when = is constant; that is, on the

intervals (1, 2) and (3, 4).

vl sl
(b) The velocity of the particle is equal to the slope of the tangent line of the —
graph. Mote that there 15 no slope at the corner points on the graph. On the
| —
I=0 —
interval (0, 1), the slope s —— = 3. On the interval (2, 3), the slope 15 o 1 1
1-0 T {seconds)
1=3 _ _5 Onthe interval (4, 6), the slo isa=1l_ |
e +0)s e
13. Let s(t) = 40t — 1662,
o s(t) =s(2) (40t =16¢°) =16 =16t 440t =16 =8(2t =5t +2)
©(2) = lim = ——= = lim T2 = —— =i
L =Bt=2)(2=1) _ _
=l —— 5 =-3lim@-1)=-8@)=-
Thus, the instantaneous velocity when t = 2 is =24 ft/s.
1 1 a’ = (a+h)*
o sladh)=s{a) (a4 h)? e aXla+h)? a’ —(a’ +2ah+h%)
B e e R v RO
—(2ah+h?) _ . =h(2a+h) _ —(2a4+h) _ =2a _ =2

= lim = = = =_=
et ha(a + k)2 frr ha(a + h)? I:-rél alfla 4+ h)E  a?.a? at m/s

=2 2

Sow(l)= =% = -2m/s,0(2) = 57 —2__2

1
= —Imfs, and v(3) = - i mfs.

17. 4'(0) is the only negative value. The slope at £ = 4 is smaller than the slope at x = 2 and both are smaller than the slope
atz = —2 Thus, g'(0) <0 < ¢'(4) < ¢'(2) < ¢'(-2).

19. (a) The tangent line at = = 50 appears to pass through the points (43, 200) and (60, 640), so

_ 640 = 200 440
Fe0~g—m =7 ~%

(b) The tangent line at = = 10 is steeper than the tangent line at & = 30, 50 it 15 larger in magnitude, but less in numerical
value, that is, f'{10) < F'(30).
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72 O CHAPTER2 LIMITS AND DERIVATIVES
{c) The slope of the tangent line at = = 60, f'(60), is greater than the slope of the line through (40, f{40)) and (80, f{80)).
- 1(80) = f(40)
So yes, f'(60) = 0—2
21. For the tangent line y = 4x = 5 when = = 2,y = 4(2) = 5 = 3 and its slope is 4 (the coefficient of =). At the point of

tangency, these values are shared with the curve y = f{(z); that is, f(2) = 3and f'(2) = 4.

23. We begin by drawing a curve through the origin with a ¥ ¥

slope of 3 to satisfy f(0) = 0and f'(0) = 3. Since ! ]: /\
} 4 2 " L] L 2

F{1) =0, we will round off our figure so that there is " — — \

a horizontal tangent directly over = = 1. Last, we

make sure that the curve has a slope of —1 as we pass

over x = 2. Two of the many possibilities are shown.

25. We begin by drawing a curve through (0, 1) with a slope of 1 to satisfy g(0) = 1
and g'(0) = 1. We round off our figure at = = =2 to satisty g'(=2) = 0. As

T — —5+, y — oo, so'we draw a vertical asymptote at £ = =5. Asx — 57, /,

y — 3, so we draw a dot at (5, 3) [the dot could be open or closed).

27. Using (4) with f(z) =32 = anda =1,

iy e SR = F(1) B+ R) = (14 h)Y =2
F(1) = fim S————— = lim, 2

2 2 3 4 2
= lim {3 + 6k 4 3k :I {1 + 3430+ R :]- 2 = lim Jh=h = lim h!ﬁ h
h—ii h h—t R - h

= li = =3 =0=7
_.!!E:In{j h*)=3=0=3

Tangent line: y =2=3{z=1) & y=2=3z-3 & y=3c-1

29. (a) Using (4) with F(x) = 52/(1 + =) and the point (2, 2), we have (b) 4
52+ Hh)
— z
F'(2) = lim F2+h) - F(2) = lim 1+(2+h)
Fo—elli h fo—ii I -1 '
5h 4+ 10 5h + 10 = 2(h" 4+ 4h + 5) l/ j
= lim f2 4= dh 4 5 = lim h2 4 dh 45 =2
] h ] h
=2h" = 3h . h{=2h-=-3) _ =2h-3 -3

li =1 =lim —— =
w0 h(h? + dh+35) h-oh{h: +4h+5) h-0h®+dh+5 5

: — 3 -
S0 an equation of the tangent line at (2,2) sy = 2= -3z —-2) or y = -3z + 8
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SECTION27 DERIVATIVES AND RATES OF CHANGE O
M. Use (4) with f(z) = 3z° — 44 1.

fla+h) = fla) = lim [3la + k) =d{a + h) + 1] = (3a* = da + 1)]

Ja)= iy A h
ki 3;.”+ﬂur:+3n”-4u—4h+1—3a”++u-1_I_ fiah + 3h" — 4h
= A0 h = o h
h(fa + 3h = 4
= lim w = lim(Ba 4+ 3h —4) = 6a —4
Fo = h —

33 Use (4)with f(£) = (20 4+ 1)/t + 3).

Ha+h)+1 _ 2a41
f{u+f:}—f{a}_l_ (a+h)+3 a+3
h = h T

(2a42h+1){a+3)=(2a<+ ) a+ h+3)
_h—-ﬂ hfe 4 b 4 3)(a +3)

Fla) = fim

= lim (20" + Ba4+ 2ah 4+ 6h 4+ a4+ 3) = (2a° 4+ 2ah + 6a+ a4+ h+3)
T h—o he+h<+3)a+3)
5h 5 5

= li = li —
heoh{a+ h+3)a+3) holath+3)as+d) (a+3)

35. Use (4) with f(z) = T = 2.

f'{ﬁ]=ﬁi_:-|}"r{a+hj}— —Iun v1-2 u-l-::]—\,-"l—zu
1 fl—ﬂl{a-l-—h]—\,-"'l—Zu \,.-"l— la+h)+ 1=2a
T a0 h VI-2a+h) ++vI-2a
= Iil!l'.l. (\Illllll -z{u + h] )J - {Jl - Zu}z _ Ii.III {l - 2“ - Zh:] - {l - 2{'.!}
=il ﬁ(\,.-'lll—ZI::ﬂ-I-ﬂ:]-{-\,-"'l—zﬂ) _h_'nj!(v"ll—ﬂ{u-t{-h:}-{-\."rl—gﬂ)

=2h =7
= lim = lim ———]
A=0 h{\f’l —Sa+ i) +T=Ta ) h=0 /T—2(a+h) +1—2a

-2 -2 =1
TV i—Za+.l-2a 2yi=-2%a +l=2a

V94 h=

h

37. By (4), lim = f'(9), where f(x) = /= and a = 9.

3. By Equation 5, lim T =64 _ pr(2), where f(z) =2 and a =2
F=a? T o=

um{'ﬂ‘+h}+l

41. By (4), lim -

F(=), where f{z) =cosrand a = 7.

cos(m 4+ h) 41

h S(0), where fz) = cos(m + x) and a = 0.

Cr: By (4), &i.IIEI
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74 O CHAPTER2 LIMITS AND DERIVATIVES

f+h) = f(4) _ - [80(4+k) - 6(4+h)"] — [80(4) - 6(4)°]
h

;] ft

8. u(4) = £'(4) = Jimy

= lim

(320 + B0 — 96 — 48h — 6h”) — (320 — 06) _ .~ 32h — 6h°
- T

h—i h fe—si)
= lim A3z -6h) _ lim (32 — 6h) = 32 m/s
h— h k=)

The speed when ¢t = 415 |32] = 32 m/s.

45. The sketch shows the graph for a room temperature of 72° and a refrigerator Tempernure
1 iim “F)
temperature of 38°. The initial rate of change is greater in magnitude than the :
rate of change after an hour. W
1] ‘l ; T
{im hours)y
C(2) =01 0.18 — 0.33 L
a7, @) (i) [Lo, 20 SR =CQ) _ = —0.15 Mg/m
2=1 1 h
C(2) = C(15) 018—024 —D06 mg/ml
1.5,2.0]: = = = =0.12
() 15,20 =5—73 05 05 |.
C(25)—C(2) 012-0.18 —D06 mg/ml
2.0,2.5]: = = = =0.12 —/——
(i) 20,25 =575 0.5 05 h
C(3) =2 0.07 =0.18 L
(iv) (20,30 2B =CC) _ = o1 Mgm

i=2 - 1
i) We estimate the instantaneous rate of change at ¢ = 2 by averaging the average rates of change for [1.5, 2.0] and [2.0, 2.5]:

=0.12 4 (=0.12) _

mL
2 =0.12 g:; . After 2 hours, the BAC is decreasing at a rate of 0.12 {mg,/mL) /h.

B4,07T — 66,533 _ 17,544
005 = 1990 15

consumption rose by an average of 1169.6 thousands of barrels per day each vear from 1990 to 20035,

49. (a) [1990, 2005]: = 1168.6 thousands of barrels per day per year. This means that oil

76,784 — 70,099 6685

(b) [1995, 2000]: —o = 5 = 1337
B407T = 76,784 _ 7203
2000, 2005]; — = = 1458.6
I [ —005 = 2000 5

An estimate of the instantaneous rate of change in 2000 is 3 (1337 + 1458.6) = 1397.8 thousands of barrels
per day per year.

AC _ C(105) = C(100) _ 6601.25 — 6500

5. () () 3o = — e —on— = - — $20.25/unit
AC _ C(101) = C(100) _ 652005 — 6500
W =—Tor—wo - 1 = $20.05/ o,

) CU00+ k) = C(100) _ [5000 + 10{100 + k) + 0.05(100 + k)*] — 6500 20k 4 0.054
h fe - h
=204005k, h#0

(b)

€(100 + h) — C(100)
h

So the instantaneous rate of change is i = }!imﬂ{zﬂ + 0.05k) = $20/unit.
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SECTION 2T DERNATIVESAMDRATES OF CHANGE O 75

53 (a) f'(x) is the rate of change of the production cost with respect to the number of ounces of gold produced. Its units are

dollars per ounce.
(b) After 300 ounces of gold have been produced, the rate at which the production cost is increasing is $17/ounce. So the cost

of producing the 800th (or 301st) ounce is about 517.
{c) In the short term, the values of f' () will decrease because more efficient use is made of start-up costs as = increases. But

eventually f'(x) might increase due to large-scale operations.
55. {a) H'(58) is the rate at which the daily heating cost changes with respect to temperature when the outside temperature is

58 °F. The units are dollars/ °F.
(b) If the outside temperature increases, the building should require less heating, so we would expect H'(58) to be negative,

57. (a) §'(T) is the rate at which the oxygen solubility changes with respect to the water temperature. lts units are (mg/L)/*C

(b) For T = 16°C, it appears that the tangent line to the curve goes through the points (0, 14) and (32, 6). S0

5'(16) = 22_ 1; = -% = =0.25 (mg/L)/"C. This means that as the temperature increases past 16°C, the oxygen

solubility is decreasing at a rate of 0.25 (mg/L)/*C.

59, Since f(z) = xsin(l/z) when x % 0 and f{0) = 0, we have
im hsin{1/h) = 0 = A.l_l:&ln sin(1/h). This limit does not exist since sinf 1/#) takes the

— gy SO+ R) = f(0)
I = .I!.Jil:ql) h - -'!En h
values —1 and 1 on any interval containing 0. (Compare with Example 2.2.4.)
61. (a) The slope at the origin appears to be 1. L-\ : \
—4
(b) The slope at the origin still appears to be 1. 0.2
—04 { } .4
—0.73
ic) Yes, the slope at the origin now appears to be 0. L.
—iLiHI { / / } R
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76 O CHAPTER2 LIMITS AND DERIVATIVES

2.8 The Derivative as a Function

1. Itappears that f is an odd function, so f* will be an even function—that s
is, f'(=a) = f'(a). A
(a) f'(=3) = =0.2 i+
(b) f'(=2) =0 (€ f(=1) =1 (d) f'(0) =2 = g ; -
(e) (1) =1 (£) F(2) =0 (g) f'(3) = =02
3. (a)' = 11, since from left to right, the slopes of the tangents to graph (a) start out negative, become 0, then positive, then 0, then

negative again. The actual function values in graph I1 follow the same pattern.
i(b) = IV, since from left to right, the slopes of the tangents to graph (b) start out at a fixed positive quantity, then suddenly
become negative, then positive again. The discontinuities in graph 1V indicate sudden changes in the slopes of the tangents.

{c) = 1, since the slopes of the tangents to graph (c) are negative for = < 0 and positive for = 2> 0, as are the function values of
araph [.
(d)' = III, since from left to right, the slopes of the tangents to graph (d) are positive, then 0, then negative, then 0, then
positive, then 0, then negative again, and the function values in graph I11 follow the same pattern.
Hints for Exercises 4 —11: First plot c-intercepts on the graph of f* for any horizontal tangents cn the graph of f. Look for any comers on the graph
of f— there will be a discontinuity on the graph of f*. On any interval where [ has a tangent with positive (or negative) slope, the graph of * will be
positive (or negative). If the graph of the function is Enear, the graph of f* will be a horizontal line.

5 ¥ T. ¥

N AN

-

a

[ X
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SECTION 28 THE DERIVATIVE AS A FUNCTION O

13. (a) C'(t) is the instantaneous rate of change of percentage g
of full capacity with respect to elapsed time in hours,

(b) The graph of C'(t) tells us that the rate of change of

percentage of full capacity is decreasing and

approaching 0.

15 It appears that there are horizontal tangents on the graph of M for ¢ = 1963 ¥ Ml
[[NE A
and ¢ = 1971. Thus, there are zeros for those values of ¢ on the graph of e
M. The dervative is negative for the years 1963 to 1971,

—ihn3

15500 1960 1970 1460 1960 2000
17.

The slope at O appears to be 1 and the slope at 1 appears

to be 2.7, As r decreases, the slope gets closer to 0. Since

the graphs are so similar, we might guess that f'{z) =

19. (a) By zooming in, we estimate that '(0) =0, /() =1, f'(1) =2,

[
A

and f'(2) =4
(b) By symmetry, f'(=z) = —f' (). So f'(=}) = =L f'(~1) = -
and f'(=2) = =

ic) It appears that f'(x) is twice the value of x, so we guess that f'(x) = 2z

\ .
= i LR~ 1) (z+h) —a* ' )
@ f') = fimy S = Jim ==
hr + h*) — £ z
= lim {E e N ] - lim 2hx+h = lim h{ﬂz+ h] = lim{EI -I-h} =2r
=i h h—0 h - h h=si)

oo flxdh)=flx) . [Blr+h)=8=(3x=8) = 3r43h-8-3r48
ASE=m T =i h = p

:].'IIIIE:].'IIIIEZE
[ -}

Domain of [ = domain of ' = K.
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78 O CHAPTER2 LIMITS AND DERIVATIVES

2. f'(t) = lim Je+m =70 _ (25 + ) +6(t + h)] - (25" + 61

h—0 h h—0 h

2.5(t° + 2th + h") + 6t + 6h — 25" — 6t _ | 2.50° + 5th+ 2.5h" + 6h — 2.5¢°

lir

lism

bl h h—si h
_ Sth 4+ 2.5h" +6h h(5t4+25h4+6) .
B e L
=5t +6

Domain of f = domain of ' = K.

2. f'(x) = Jim flz=+ .f:g = f(z) = lim [(x+h) =2z +hh]'] = (" = 2z")

z? + 2zh 4 h* = 227 = 62*h = 6zh® = 28 = 27 4+ 247

= lim

;) ha
. 2xh + b = 6z h = Gzh® = 247 . .F:I::Z.I + h = 6z* = Gxh — th:l
= lim = lim
-} h [ -1 h
= J!ilIEI{‘l: + b = Br* = Gzh = ?.h!} = Fr — G’

Domain of f = domain of ' = K.

1. g'(z) = J!iEE

gath) —g(x) _ . VI-GEHR) - VI—z [yI-GE+h) +,,.-*ﬂ-I]

/! - I '\-'"IIH =(z+h)++/0=x
= lim B-(+h)]-(0-z) — = lim —h
h_'n.f:[\,.-"ﬂ—l[.r+.f:}+‘.-"'9—.r "_'uh[u-"ﬂ—{r+.l‘:]+ 1,-"9—.:]
=1 =1

= lim =

b=l O e [z h) b 0=z 2WO=x

Domain of g = (—a=c, 9], domain of g’ = (=2, 9.

1 —2{t 4+ k) _ 1=t
G{.!+h]—f}{r}_“m 34(t+h) 341
h T h—n h
[T=204+h)(3+t)=[3+(t+h)](1=21)
B++h)]E3+t)

0. L) = J!1_|:-n“

= T

oy 3t 61—t —6h—Oht— (3—6t41-2"+h—ht) —6h— h

= a0 R[S+ (t+ h)](3 +1) a0 RB L R)B 1)
~Th -7 -7

SARABHANBE) AN GH RG] B

Domain of (¢ = domain of &' = (=00, =3) U (=3, oc).

_ 4_ .4 443 3 Be?hE 4 deh® 4 B — 2t
. f'(x) = lim fle+h) = flz) _ lim (z+h)" =z _ im (=" + 1+ Gz h 4+ dzh” +h7) —x
-} h -} h -} h
4z h + 6 k" + 4zh® + b . . . . .
= lim FhToEh + s = lim {-i.r"' + Gk + 4xh® + .f:"] = 4s*
h—0 h h—0

Domain of f = domam of f* = K.

Coprright W6 Cengage Learsimg. A0 gy Rienerved. Wy ot be coped, scanned, or deplacaied, m whok or in pert. Du o chociners sights, sorme thind party comte moy be spprened from the diock andier o hepierial.
Esbirrea rovars: b decmcd that asy wepproncd content doc st mateuly affet e overall kerming cxpencsce. Umgage | sameng rewrves the nght te renovs ackdial comiant o sy bne = vebeguon g o com reours o,




SECTION 28 THEDERIVATIVE ASAFUNCTION O 79

h) = 4+ k) 4+ 2z + h)]—- (= +2
5. ) £ = i LEERIZIE) _ oy, [t b2 ) = (o 20
[
— i * 4P h 4 G R  dxh® + W' 4 22 4+ 2h =2 =22
= het R
— 5 A5 h + 62 b + Aeh® + B+ 20 -0 h{d_-z;{ 4+ 6z h + drh® + K + 2]
= h = ab h
:Aﬂ{u‘+ﬁzzh+¢m1 +hP 2 =424 2

(b) Notice that ['{x) = 0 when [ has a horizontal tangent, f'(x) is
positive when the tangents have positive slope, and f' () is

negative when the tangents have negative slope.

5

1

p— 1
a

L]

35 (a) U'(t) s the rate at which the unemployment rate is changing with respect to time. 1S units are percent unemployed

per year.
Ut + k) = U(t) ~ Uit + k)
h

[/(2004) — U(2003) 5.5 — 6.0
2004 — 2003 - 1

(b) To find L7'(t), we use Ein::l

For 2003: [7'(2003) =

= ={.5

a = U() for small values of k.

For 2004: We estimate [/ (2004) by using i = =1 and & = 1, and then average the two results to obtain a final estimate.

U(2003) — U(2004) _ 60-55 _
= = =UL.a

h==1 = U'(2004) % =0 — :

. [/(2005) — /{2004) 5.1-=55
— = .f == — = =0

S0 we estimate that [7'(2004) = [-0.5 + (—0.4)] = —0.45.

t 2003 2004 2005 2006 2007 2008 2009

2010 2011 202

0'(t) | =050 —045 =045 =025 060 235 190

=020 =0.75 =0.80

37. As in Exercise 35, we use one-sided difference quotients for the
first and last values, and average two difference quotients for all

other values.

t 14 21 28 35 42 49
Hit) |41 54 64 T2 T8 83

H'(t)

i
gl
= [z
I
[
& |

14 11
14 14

I
I
I
I
=i

1]

T4 31 28 35 42 49 ¢

39, (a) dP/dl is the rate at which the percentage of the city’s electrical power produced by solar panels changes with respect to

time {, measured in percentage points per year.
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80 O CHAPTER2 LIMITS AND DERIVATIVES

ib) 2 vears after Jameary 1, 2000 {January 1, 2002), the percentage of electrical power produced by solar panels was increasing

at a rate of 3.5 percentage points per year.
41, [ is not differentiable at © = =4, because the graph has a comer there, and at x = 0, because there is a discontinuity there.
43. [ is not differentiable at = = 1, because [ is not defined there, and at = = 5, because the graph has a vertical tangent there.

-

45, As we zoom in toward (=1, 0), the curve appears more and more like a straight

line, so f{x) = = + |z is differentiable at + = —1. But no matter how much

we zoom in toward the origin, the curve doesn’t straighten out—we can’t —3 |

eliminate the sharp point (a cusp). So f is not differentiable at = 0.

-1
47. Call the curve with the positive y-intercept g and the other curve fi. Notice that g has a maximum (honzontal tangent) at
& =0, but i # 0, so h cannot be the derivative of g. Also notice that where g is positive, f s increasing. Thus, b = [ and
g = f'. Now f'(=1) is negative since [ is below the z-axis there and (1) is positive since [ is concave upward at x = 1.
Therefore, (1) is greater than f'(=1),

48. a = f, b= f', e = f". We can see this because where a has a horizontal tangent, b = 0, and where b has a horizontal tangent,

e = 0. We can immediately see that « can be neither f nor . since at the points where ¢ has a horizontal tangent, neither a

nor b is equal to 0.

51. We can immediately see that a is the graph of the acceleration function, since at the points where a has a horizontal tangent,

neither e nor b is equal to 0. Mext, we note that @ = 0 at the point where b has a horizontal tangent, so b must be the graph of

the velocity function, and hence, b = a. We conclude that « is the graph of the position function.

flz 4+ h) = f(z) Bz +h)* +2(x+h) + 1] = (32" + 22+ 1)

= lim

E

53. f'{.r:] = J!i

=0 h h—l T
— 1 (32 4+ 6ch+3h% + 20+ 2h + 1) = (32" + 224+ 1) L Gk + 342 4+ 2h
i h o= a—
. h{Bz+3h+2) B
—AﬂT_ggh{sxmnu}_ﬁIH
o) = tim LEER =L@ [tk +2=(6e+2) _\ (Gz+6h+2) = (62 +2)
h=si h b= h e h

We see from the graph that our answers are reasonable because the graph of

[ is that of a linear function and the graph of [ is that of a constant

function.
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_ i Sz h) = f(z)
ﬁf{z]—llﬂl i

SECTION 28 THE DERIVATIVE ASAFUNCTION O g4
[2{1’ -I'-.I'i-:lj -+ h}a] - {21’2 - .I;!}
h— h
hidr 4+ 2h =3x" < 3zh <}
=h|i:n‘{ + ;’ — ']=1m (4x + 2h = 32* = 3xh — h?) = 4z — 32°
— I
¢ - Az + h) =3z + h)*] = (4x = 327 (4 = 6 = 3h)
f(x) = lim Lt -f(=) _ [ = ) (= +h) ] z=3z) = lim hid = 6z = 5h
k=0 h b=} h [ h
= ||I||L_|I:4—GI—3F1] =4 =iz
e v Sz h) = M=) =6z +h)]|=(4=6z) =6k
f(x) = fim, h = i, h = fim = = lim (-6) =
o B = —6 = (=
ey =1 i CE .f:: f7(=) J!IE|':|+ = ||1|| 1= |IIII {(0)=0
3
A -
[ i o The graphs are consistent with the geometric interpretations of the
—4 - & ;
1
\
Ty
R .
X 1 L |
-7

derivatives because [ has zeros where [ has a local minimum and a local

constant function equal to the slope of f*

maximum, [ has a zero where [ has a local maximum, and
(a) Note that we have factored r = a as the difference of two cubes in the third step
- E-—=d

=i

fla) = lim M = lim '/ =o't

IR BT
i = — = lm (@73 — ai/3)(22/® + 23 /3173 + gi/3)
1 _ 1 L, =243
= ,!'_','1 2208 4 2 3g1/3 | gij8  3/% or za
0+ h) = f(0 Vi =10 1
710 = iy LLIO) i T8 = o

exist, and therefore f10) does not exist.

ic) Iun (=) = llrn

1
'11.2,.!'..!

=0
ﬂf{r}:lr-ﬂlz{

= oo and [ is continuous at x = 0 (root function), so f has a vertical tangent at x = 0.
fr—62=6
—(x —6)

r=6 fzx=>=6
fr=6<0 |6=ur

This function increases without bound, so the limit does not

S0 the right-hand limit 15 lim

if =<6
J@) = J6) _ py J2=61=0 _ py Z=6 _ iy 1= 1, and the lefi-hand limit
- =16 P r—iih T = P
i5 lim —E-]_—‘HEI- JI—-EI_— = lim —— = lim (=1} = =1. Since these limits are not equal
2=li— .'r—-ﬁ— g—fi— I = 2—sli—
= fi6
F{6) = lim 1 Lé“ does not exist and f 1s not differentiable at 6 ¥ v =l
= Fa 1+ e —
. for £ is 1 if «>6
However, a formula for 718 f(x) =
@ =121 irz<o ‘! 5 f
& =1
T o=
Another way of writing the formula s f'(z) = i 6
I ==
cwmlucwmumwMnhm—_&._wnﬁ-mmn.um@—waqhwﬁ_hu.ﬁML
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82 O CHAPTER2 LIMITS AND DERIVATIVES

x* if 2>0
B1. (a) f(z) =z = {—;” . ; 0 (b) Since f(z) = x* for > 0, we have f'(x) = 2z for = > 0.
. |See Exercise 19(d).] Similarly, since f{z) = =z for x < 0,

we have ['{r) = =2z for = < 0. Atz = 0, we have

i r{ﬂ}zlii'ﬁw=lhn%

—o STy —imkl=o

So [ is differentiable at 0. Thus, [ is differentiable for all =

B b have f*(z) = 2r ifx>0 —3
{c) From part (b), we have f'{z) = or ifxen|” |l

63. (a) If f is even, then
f'{=z) = lim f=x+h) = f(=2) = lim f=(z = h)] = f(==)

— h h—0 h

flz =h) = fix) _

flz=h) = f(z)

L= — R flet = =]
_ . _ﬂ.r -+ ﬁ.r} - _ﬂ ) _ _
- al_:E.rn Ax ==f(z)

Therefore, 7 1s odd.
(k) If f is odd, then

Heg) = fig A=t h) = fl=x) . fl=(z=h)]= f(-z)
fl{=z) = lim —‘!11'15

h=si} I h

—f(z = h) + f(z) Sz —h) = flz)

= ,'11_'.'}, n = ;!'E. L = [let Ax = =h]
_ o S+ Ax) = flx)
=fm =/

Therefore, [ is even.

65. These graphs are idealizations conveying the spirit of the problem. In reality, changes in speed are not instantaneous, so the
graph in {a) would not have corners and the graph in (b) would be continuous.

.
(a) 8 ib) ’ = il
—
G—a A—p
t +——+ } } " 3 ﬁ IE 1\ P
a 3 L] 15 (L

In the right triangle in the diagram, let Ay be the side opposite angle & and Ax

TR
the side adjacent to angle . Then the slope of the tangent line £

is m = Ay/Ax = tan d. Note that 0 < o < 5. We know (see Exercise 19)

that the derivative of f{z) = =* is f'(x) = 2z. So the slope of the tangent 1o

1 the curve at the point (1, 1) is 2. Thus, ¢ is the angle between 0 and 5 whose

tangent is 2; that is, § = tan ™" 2 = 63°,
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2 Review
TRUE-FALSE QUIZ
1. False.  Limit Law 2 applies only if the individual limits exist (these don’t).
3. True, Limut Law 5 applies.
=9 (z+3)(x=3)
Slve. TSI -3 o aalEtd
. . ax{x—15) . sinfx = 5)
T. False.  Consider lim - or lim — The first limit exists and is equal to 5. By Example 2.2.3, we know that
the latter limit exists (and it 15 equal to 1).
9. True. Suppose that lim [f({z) + g(z)] exasts. Now lim f{x) exists and lim g{z) does not exist, but
lim g{x) = lim {[f{x) + g(z)] = f(=)} = lim [f(z) + g(=z)] = lim f{x) [by Limit Law 2], which exists, and
we have a contradiction. Thus, lim [f(z) + g(x)] does not exist.
1. True. A polynomial is continuous everywhere, so linip{I} exists and is equal to p(b).
13. True. See Figure 2.6.8.
1 -1) if 1
15 False.  Consider f{x) = { fE==1) =7
2 ifz=1
1T, True. Use Theorem 2.5.8 witha = 2, b = 5, and g(z) = 4 — 11. Note that f(4) = 3 is not needed.

19, True, by the definition of a limit with = = 1.

M. False. See the note after Theorem 2.8.4.
d’y dy \
23. False. oy is the second derwvative while o is the first derivative squared. For example, if y = x,
d’y _ dy'\" _
then E =0, but (E) =1,
25, True. See Exercise 2.5 T2{b).
EXERCISES
1. (a) (1) ‘l_l-rjl_'_f[::] =3 [IJ}:—I-E-.I-%-F flz) =0

(1) limx Fx) does not exist since the left and right limits are not equal. (The left limit is =2.)

{iv) jlf:i flz)=2

(v :I:-I:él flz) === (v1) z]inz.— flx) = -
(vil) lim f(z) =4 (vii) lim f(z) = =1

(b) The equations of the horizontal asymptotes are y = =l and y = 4.

(c) The equations of the vertical asymptotes are + = D and £ = 2.

(d) f is discontinuous at x = =3, 0, 2, and 4. The discontinuities are jump, infinite, infinite, and removable, respectively.
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84 O CHAPTER2 LIMITS AND DERIVATIVES

3
3. Since the exponential function is continuous, lim e ~=* = "l =e'=1.
b

=0 Iz =3 T -3 - -3 =0 3
5 lim D gy EASE=S) o zod o8-8 63
o Nl | [y {I + 3}{_‘: - l:l =l o= ] -3 =1 - 2
h=17241 W =3h* +3h=1) 41 kY =3h% 4 3 .
7. lim —{l ) + = lim [! . ) = lim ——— Ln - = lim [hz —3h+3] =3
b=} h h—ii h h—silh h b

Another solution: Factor the numerator as a sum of two cubes and then simplifi.

tin (h=1%4+1 . (h=1)% +1* i (h=1)+1[(h=1)*=1h=1)+17]
e T = bt k = b T

=i h=1V=h42l=1=04+2=3
i [(h = 1)" ~h +2] +

9. Iirllizxsmcel[r—g}q—!l]"'aSr—nﬂﬂﬂd VT = 0 for r £ 9.

et (r =91 W
1. lim =1 = lim 4+ -1 = lim (w4 D(u+ D(u—1) = lim 4 Du+l) _22 _4
“u—1w® 4 Suf —Bu  uw—t 1.LI::1'.:2 -I-Eu—ﬁ] w1 ul[u-{-—ﬁ}{u— 1]- u—+1 u{u -I-E:I 1{?] T

13. Since = is positive, 'z = |z| = x. Thus,

N ﬁf:!-g,fv-“xu_l_ W1=9/z" JT=1 1
s 2z =G s—o (2z—6)jz  s—= 2-6/z  2-0 2

15. Lett =sinz. Thenasz — 7=, sinz — 0%, s0t — 0%, Thus, lim In(sinz) = lim Int = —oc.
F=aiit

Fenl

Eewal E=ud0

1 Vi ddr4l4+x oo gt pdr 414z

) VB A Fler VvEFIzF1 (2 -?
7. lim (VAT FAz F1—-2) = lim [ T4 dr4l=x Vr +4I+1+I]= i A4z +1) =z

4r 41
= lim 7 di;ﬂfi y [dl\-'H:IE by xr =z forz =0
Eomen x r)fx
_ 14 1z 440 4_

im = =
= 14 4fr+1fz* 41 VI+0+0+1 2

19. Lett = 1z Thenas x — 0%t — oo, and lim lilII-[{].l.llII} = lim tan~'1 = E
=it = 2

M. From the graph of y = (cos” x) /2*, it appears that y = 0 is the horizontal el
asymptote and = = 0 is the vertical asymptote. Now 0 < (eosz)’ €1 =
0 cos” 1 cos” T 1
— = - — = — i =
SS—3 S5 = 0<—— < Bu lim 0=0and
. 1 ) . cos” x —h f
11!'51:'1 == 0, 50 by the Squeeze Theorem, 11!'51:'1 — = 0. -

2

Thus, y = 0 is the horizontal asvmptote. lﬂm.’ = — oo because cos? = — 1and 22 — 0* as x — 0, s0 = = 0 is the
x

vertical asympiote.

Coprright W6 Cengage Learsimg. A0 gy Rienerved. Wy ot be coped, scanned, or deplacaied, m whok or in pert. Du o chociners sights, sorme thind party comte moy be spprened from the diock andier o hepierial.
Esbirrea rovars: b decmcd that asy wepproncd content doc st mateuly affet e overall kerming cxpencsce. Umgage | sameng rewrves the nght te renovs ackdial comiant o sy bne = vebeguon g o com reours o,




CHAPTER2 REVEEW O 85

23 Since2r = 1 < f(x) < =" for 0 < = < 3 and liml[_EJ:— I)=1= I.in:i:ﬂ,wehave Ijmlf[z} = 1 by the Squeeze Theorem.
= T T

25 Given e > 0, we need 8 > Osuch that if 0 < |z = 2| < 4, then (14 = 5z) =4| < = But |14 =5z) =4| <2 <
|[-5x4 10| <=z = |=5||lz=2<s < |r—=2]<z/5 Soifwechoosed =£/5, thenD < [r=2| <4 =

[(14 = 5x) — 4| < =. Thus, liny (14 — 5x) = 4 by the definition of a limit.
=

27. Givens > 0, we need 8 > 0 5o that if 0 < | = 2| < 4, then |=” = 3z = (=2)| < =. First, note that if |z — 2| < 1, then
=l<r=2<lLswol<r=1<2 = |r=1]<2 Nowletd =min{z/2 1} Thenl < |z =2|<d =
| =32 = (=2)] = |(z = 2)(z = D] = |z = 2] |z = 1] < (¢/2)(2) =e.

Thus, lim (z* = 32) = =2 by the definition of a limit.
F—sl

2 (a) flz)==rifzr <0, flz) =3=rif0<r < E,I{I}z{z—E]EJfI}S.

(1) !l_i-r.gll_'_ flz)= zlj—:ill:ll+ (3—x2)=3 (ii) 2EJ;]:IL_ flz)= -_-l—i-IE— V=r=10
(iti) Because of (1) and (ii), Iinaf[z:l does not exist. (iv) lim f(z)= lm (3—=2z)=0
e P P
(v} llr.;l_'_ flz)= I.hg._'_ (x— 3]2 =0 (vi) Because of (1v) and (v), ill.l-li flz)=0.

(b) f is discontinuows at 0 since Ijli:u:I Six) does not exist. (c)
Fa

[ s discontinuous at 3 since f{3) does not exist.

31. sinx and e* are continuous on B by Theorem 2.5.7. Since ¢ is continuous on B, €*™* is continuous on & by Theorem 2.5.9.

Lastly, = is continuous on K since it's a polynomial and the product x®®* is continuous on its domain & by Theorem 2.5 4,

3. f(x) =z = £* + 3z — 5 is continuous on the interval [1. 2], f(1) = =2, and f(2) = 25. Since =2 < 0 < 25, there isa
number ¢ in (1, 2) such that f{c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation

£ = £ + 3 — 5 = 0 in the interval (1, 2).

35 (a) The slope of the tangent line at (2, 1) is

- f(2 9—-2z" =1 8 =27 -2(z" -4 -2z =2 2
li.ll:l. M = Ijl'.[l = ]_i:u._ = ]i]'_"_ L = Ii.ll:l. M
F—sl r=2 e I T P R . -] ¥ oD oy D

ll_l.'r; [=2(z+2)]==2-4==8

(b} An equation of this tangent line 15y — 1 = —=8{x = 2) ory = —8x 4 17.
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86 [0 CHAPTER2 LIMITS AND DERIVATIVES

37. (a) s = s(t) = 1 + 2t + t* /4. The average velocity over the time interval [1, 1 4 k] is

s(1+h)=s(1)  142(1 +.f:}+|[1+h}{f4-13j4 10k +h* _ 10+ h
(1+k)—-1 h 4h 4

Uave =

So for the following intervals the average velocities are:
(i) [1.3): k=2, vaye = (10+2)/4 =3m/s (i) [1.2): h=1, tywe = (104 1)/4 =2.T5 m/s

(iii) [1, 1.5]: A = 0.5, tave = (104 0.5)/4 = 2.625m/s  (iv) [1, L1} h =01, vave = (10 + 0.1)/4 = 2.525m/s

(14 h)=s(1 10+ A 10
(b) When ¢t = 1, the instantaneous velocity 15 lim M = lim 4 =—=25mfs.
T el h h=ty 4 4
e e SlE)=F(2) = 2r =4 12
B@SO= TS T T ©

o {1—2]{12+21+2] o g _
= =il 24 = - :

by —4=10{(z = 2)ory = 10z — 16

=2

#1. (a) f*(r) is the rate at which the total cost changes with respect to the interest rate. [ts units are dollars/{percent per year).

ib) The total cost of paying off the loan is increasing by $1200/ (percent per year) as the interest rate reaches 10%. So if the

interest rate goes up from 10% to 11%, the cost goes up approximately $1200.

{c) As r increases, O increases. So () will always be positive.

(N

o

von v flath)=flz) . /3=5(x+h)=3=5z/3=5(z+h)+3=5z
. @ f(z) = lim h = o, h V3i-5E+h+v3-52
= lim 13_5{I+h}]_{3—5$} = lim =
h_.a_.!{‘ﬁ_air+h}+vﬂ_&:) h—0 SB—5lz+h)++3—5z 230z

- "
= =
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CHAPTER2 REVIEW 0O 87

(b) Domain of f: (the radicand must be nonnegative) 3 =52 > 0 =

52<3 = r€(-oo i . 6
Domain of [ exclude % because it makes the denominator 2ero; ‘\*—L_N ]
z€ (=o0.2) Sl

{c) Our answer to part (a) is reasonable because f*(x) is always negative and ! \ |
[ is always decreasing. l -6

47. [ is not differentiable; at + = =4 because f is not continuous, at * = =1 because [ has a comner, at x = 2 because [ 15 not

continuous, and at = = 5 because f has a vertical tangent.
48, Domain: {—oa,0) U{D'x};_g]li.?— flz)=1, ,]i'-él-n- flz)=0,

f'{z) = 0 for all x in the domain; lim Flz)=0; Jim Flz)=1

§1. B'(t) is the rate at which the number of US $20 bills in circulation is changing with respect to time. [ts units are billions of

bills per vear. We use a symmetric difference quotient to estimate 5'(2000),

B(2005) — B(1995) _ 5.77 = 4.21

*
B(2000) = —— 50 To05 10

= 0.156 billions of bills per year (or 156 million bills per year).

8. |flz)] €£glzx) & =giz)= flz) = g(x)and EE;_I}{I] =0 = lim =g(x).

Ie—ad

Thus, by the Squeeze Theorem, lim f{z) = 0.
E=—rd
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[1 PROBLEMS PLUS

1. Lett =€.E,snz=!“.Then£—nlas::—-1,so

e | t=1 t=1)t+1 41 141 2
lim vz = lim = lim ( Je+1) = lim ¥ = T =

=l To] =B =1 (= (E+L+]) =1 B+l+1 DPF1+1 3

Another method: Multiply both the numerator and the denominator by (/T + 1}{ Ve + T+ l) .

1 Fﬂr—%{:{%,we}m'eﬂz—l-:.l]-a.ru:lﬂ:+1:::-{],50|2:s-1|:-{2:-1]3m:||2.r+1|:2.:+1.

2r=1]=|2 1 =(2r=1)=(2 1 =4
Therefore, IunII [=Retl] (2z-1) = (224 }=|im—=run{-4}=-
T z—-EI T = —ll - x—il
=1
5 (a) For0 < = < 1, [=] =D,mﬂ={],and lim ﬂ=IEI'. Fur—l{z{ﬂ,[z]:—l,mﬂz—,and

r F=sil+ I r X

lim ﬂ= lim (-—1) = oo. Since the one-sided limits are not equal, lim ﬂdnesnn{ﬂlst

z—li— I z—— | T 2=l T

(B Forz>0,1fz=1<[1/z] € 1fx = z(lfz=1)=<zlfz] <z(lfz) = 1=z ]lfz] <L
Asxr = 0%, 1 = r — 1,50 by the Squeeze Theorem, lir.n+ z[1fz] = L
z=
Forz<0,1fz=1<[1fx] <1fz = =z(lfz=1)Z=z[1fz] Zzz(lfz) = 1=z=:z[1fz] > L
Asx — 07,1 =z — 1,50 by the Squeeze Theorem, Ii.|:;1 z[1/z] = 1
il

Since the one-sided limits are equal, lim z[1f=] = 1.
x

7. [ is continuous on (—oo, a) and (g, o). To make [ continuous on B, we must have continuity at a. Thus,

lim f{z)= lm f{z) = lim = lim (z+1) = ad=a+l = ad=a=1=0 =
F=sat E s

o E el

[by the quadranc formula] a = {liﬁ] 2 == 1.618 or —0.615.

Jim [f(x) + g(z)] = 2 lim fz) + lim g(z)=2 (1)

Em[f(z)—g(x)]=1 | limf(z) = limg(x)=1 (@)

Adding equations (1) and (2) gives Lmii.irx:.1 Az)=3 = a_]-'inl fz)= ; From equalmn{l},zliu:. gl(x) = 3. Thus,

ol
A

lim [f(2) g(z)] = lim f(z) - lim g(z) = §-

1. (a) Consider G{x) = Tz 4+ 180"} = T(x). Fix any number a. If G{a) =0, we are done: Temperature at a = Temperature
at a 4+ 180°. If G{a) = 0, then Ga 4 180%) = T(a + 360°) = T(a 4+ 180°) = T(a) = T{a 4+ 180°) = =Gi{a) < 0.
Also, (7 is continuous since temperature varies continuously. So, by the Intermediate Value Theorem, (' has a zero on the

interval [a, a 4+ 1807). If G{a) < 0, then a similar argument applies.
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90 O CHAPTER2 PROBLEMS PLUS

ib) Yes. The same argument applies.

{c) The same argument applies for quantities that vary continuously, such as barometric pressure. But one could argue that

altitude above sea level is sometimes discontinuous, so the result might not always hold for that quantity.

13. (a) Put x = O and y = 0 in the equation: f(0 4 0) = f{0) + f(0)+0* -0+ 0-0° = f(0) = 2f(0).

Subtracting f(0) from each side of this equation gives f(0) = 0.

flO+m) = f(0) _ [(0) + (k) + 0*h + 0R7] = f(0O) — i T

i ——— = lim M

h h—i) h h—0 h =l F =1

)50 = in

a ) - -
© f(z) = Jim _r‘{.r+hi =f(x) _ - [f(z) + F(h) + =k 4+ =h?] = f(x)

— lim Flh) + 22h + =k
h h=0 h

= lim [@+x2+.ﬂ:] =1-l--.172
h—tt | R
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3 [0 DIFFERENTIATION RULES

31 Derivatives of Polynomials and Exponential Functions

h

1. (a) e is the number such that lim £ — L)
h—i f
(b)
_ 2.7 =1 _ 28 =1
T = T = From the tables (to two decimal places),
— - 2.7 =1 28" =1
0001 | 09938 0001 L0291 lim, ———— =0.99 and Jim —— = 1.03.
—0.0001 | 0.9932 —0.0001 | 1.029 =0 h b= h
0.001 0.9937 0.001 1.0301 Since 0,99 < 1 < 1.03, 2.7 < e < 2.8,
0.0001 0.9933 0.0001 1.0297
3 flz)= 2 j2 a constant function, so its derivative is 0, that is, fx) =
i flz)=52x4+23 = fY(z)=52(1)+0=52
T fi=2% =3 =4t = ['(1) =2(3") = 3(28) = 4(1) = 6" = 6t = 4
8 glr) =2 (l=2x)=2" =22 = g'(z)=2r=2(32") = 2r - 6"
1. g{t] — 2!'-;"“' =] g’,rr{!':ll = 2(—%1-7-“} — —%f-r"rd'
B F(r)= = =52 = F/(r)=5(=3"%) = =15r=4 = -2
r)= i T r) = 3r = rT = o
15 Rla) =(3a+ 1) =%"+6a+1 = R(a)=09(2a)+6(1)+0=18a+6
1. S(p) = F-p=pTop = SE)=1p" =10 ——=—1
2.
19, y = 3" + —= =3¢ + 4210 = 3 =3(e%) + 4(=1)zV? = 3¢* — d2~ U/
&z
N h{u) =Au” 4 Bu' +Cu = h'(u) = A(3u”) + B(2u) 4+ C(1) = 34u” + 2Bu+C
]
B y=ZFEHI_ s g o
vz
Y = 3 4 4(3)e 2 4 3(=4)a = §VE 4+ = - ot tht 292 = 212 212 5 V|
v E..L'v"';
The last expression can be written as + i 3 —3I2+4I_3
- 20z 2xvr  22vE 2xvr

25 jlz) = e T e iiz)= 245" 40 =241

X Gg)=(1+g7")" =142 +¢7" = Gg) =0+2(-1g7") + (=24~") = =29~ = 29™°

(H) Lo v

2 )= LT N an e o )= =20

-2
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92 O CHAPTER3 [MFFEREMTIATION RULES

A 104
Hz=—74+ Be¥ = Ay~ + Be¥ = = = =10Ay~*' 4 Be¥ = -——g + Be¥
o 2

By=2"-2"4+2 = ¢ =62 =2z A1(1.3),' =6(1)* = 2(1) = 4 and an equation of the tangent line is
y=3=4zr=1)or y=4x -1
2 . .
By=z+-=z+2r"' = y' =1-2r"" At(2.3),y' =1-2(2)~" = ; and an equation of the tangent line is
A
y—3=3z(z-2)ory=gr+2
My=x'42" = 3y =42+ 2¢° A1(0,2), v’ = 2 and an equation of the tangent line is y =2 = 2(z = 0)

of y = 2z + 2. The slope of the normal line is —% {the negative reciprocal of 2) and an equation of the normal line is

—_1 — 1
y—z_-ng-u} or y_—E.I+2.

|y =3 =2 = g =6x =3z b

At (1,2),y" =6 — 3 = 3, s0 an equation of the tangent line is

y=2=3zr—=1) or y=3x -1

11._{{.::]-:.:"—21:3-4-.:2 = f'{.rj]:da:u—ﬁ.rz-i-ﬂ.z
Note that f'(x) = 0 when f has a horizontal tangent, f* is positive

when [ is increasing, and [ is negative when [ is decreasing.

43. (a) 5 () From the graph in part (a), it appears that [ is zero at «; = —1.25, x5 = 0.5,

and x3 = 3. The slopes are negative (so ' is negative) on (—oc, ;) and
{2, xa). The slopes are positive (so [ is positive) on (1, 2 ) and (3, oc).

¥

=10

() flx) =2 =3 6" + T+ 30 =

1

Fle) =40 =02 = 122 4.7 /—L
-3 5
VA

—40
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SECTION 31 DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS 0O 93
45, f(x) =0.001" = 0022 = f(z) =0.005c% = 0.062° = ['(z) =0.02:* —=0.12¢

47. f{r}:ﬂ:—ﬁa:’wd = _f'[r}:ﬂ—%:‘lﬂ = f"{.r}: 15 =5/4 )

Note that f' is negative when f is decreasing and positive when [ is

increasing. " is always positive since [ is always increasing.

—1iF
8. @s=t'=3t = vt)=s(t)=3=3 = alt)=1(t)=6t
(b} a(2) =6(2) = 12 m/s*

() v(t) =3t =3 =0whent* = 1 thatis. t =1 [t > 0] and a(l) = 6m/s*.

: dL ;
51. L = 0.01554% = 0.3724% + 3954 + 1.21 = i 0.04654% = 0.7444 4 3.95, s0
£

dl

7l P 0.0465(12)* = 0.744(12) + 3.95 = 1.718. The derivative is the instantaneous rate of change of the length of an

Alaskan rockfish with respect to its age when its age is 12 vears.

53 (a) P = iiandP_Eﬂwhenl'_ﬂll]E so k = PV = 50{0.106) = 5.3. Thus, " = ?aﬂd 1—’—5;}3_
dV 5.3 di" 5.3
(b) Vv =53r! = 75 = 5.3[—1!“2} ==% When P = 50, =5 = "E@ = =0.00212. The derwvative is the

instantaneous rate of change of the volume with respect to the pressure at 25°C.  Its units are m”/kPa.

55. The curve y = 22" 4 32” — 127 4 1 has a horizontal tangent when 3’ = 62" + 6 =12=0 < 6B(z*+z-2)=0 =
Gz 4+ 2){(z=1)=0 & =xr=-=20rz=1 The pointson the curve are (=2, 21) and (1, —6).

S.y=2e" £ 3r 4+ 52° = ' =2 £3 4152 Since2e® > 0and 152° > 0, wemust havey' > 0434 0=3, s0no

tangent line can have slope 2.

59, The slope of the line 3z — y = 15({or y = 3= — 15) is 3, so the slope of both tangent lines to the curve is 3.
y=2"=324+3r=3 = ' =3 =6r+3=3(c" =2r+1) =3z =1)". Thus,3(z =1 =3 =
(r=1"=1 = z=1=%41 = z=00or2, whichare the z-coordinates at which the tangent lines have slope 3. The
points on the curve are (0, —=3) and (2, —1), so the tangent line equations are y — (=3) = 3z —=0) or y =3z =3 and
y=(=1)=3z=2) or y=3x=T.

B1. The slope of y = /T isgiven by y = § ‘1-‘“_?1.& The slope of 2 + y = 1 (or y = =2z + 1) is =2, so the desired

1 1
normal line must have slope —2, and hence, the tangent line to the curve must have slope % This occurs if EWE =3 =
I

VI=1 = z=1Whenzr=1y=+1= 1, and an equation of the normal lineisy — 1 = =2{x = 1) or
y==-2x43.
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94 O CHAPTER3 [MFFEREMTIATION RULES

63. Let (a. a®) be a point on the parabola at which the tangent line passes
fa ) through the point (0, —4). The tangent line has slope 2a and equation
¥= —(=4)=2a(zr=0) = y=2ax—4 Since (a,a”) also lies on the
) line, a* = 2afa) — 4, or a” = 4. Soa = +2 and the points are (2, 4)
o and (=2, 4).
< __ l

67. Let Px) = ar® + br 4 ¢. Then () = Zar + band P'(z) =22 P"(2)=2 = 2a=2 = a=1
F(2)=3 = 2(1)}(2)+b=3 = 44b=3 = b=-1L

PI{E}:E = 1{2]2-4-{—1}{2:]-}-1::5 = 24e=5 = c=3.50Ff_I}=I2—I+3.

m.y:f{I}:qu+bI2+EI+d = _f'l::::l:h.zz-}-ﬂiu:-{-c. The point (=2, 6) ison f,s0 f(=2) =6 =
—Ba4db=2c4d=>06 (1). The point (2,0} ison f,s0 f(2) =0 = Ba44b+ 2c4d4d =0 (2). Since there are
horizontal tangents at (=2, 6) and (2,0), f(£2) =0. f(-2)=0 = 12a—4b4c=0 (3jand ['(2)=0 =
12a 4 4b 4 ¢ = 0 (4). Subtracting equation (3) from (4) gives 86 =0 = b=0. Adding (1) and (2) gives 8b 4 2d = 6,
so d = 3 since b = 0. From (3) we have ¢ = =12a, s0 (2) becomes Ba 4 4(0) + 2{=12a) +3=0 = 3I=16a =
a=& Nowe==12a = =12(&) = —2 and the desired cubic function isy = 22" = 22+ 3,
2
+1 fxr<l
M. fl(z) =
x4l ifrxl

Calculate the left- and right-hand derivatives as defined in Exercise 2.8.64;

}:{I}ZLEELM: fm ER AU -(04D P @:hm‘-}_{:ﬁz}:zm

h f—— h h—li—
oy JOtR=F) L [A+m -4 B _
JII1{1]_:LI—'-I':Jv'+ h = i, h = R T e =1

Since the left and right limits are different, } !

1+ .i:} F(1)

b
1

J!_]'—'.a does not exist, that i, f'(1) ,
y =
does not exist. Therefore, [ 15 not differentiable at 1. . TR -
y=1rix)

T3 (a)Notethatz” =9 <Oforz’ <9 & |2]<3 & =-3<z<3 %

=9 if ¢ <=3 2x if £< =3
) X 2x if |z] >3
flz) = 40 f=3<z<3 = flzj=4¢ =2 f-3<zx<l =
) =2z if |z] <3
=9 ifx>3 2x ifr>3
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SECTION 3.1 DERNATIVES OF POLYMOMIALS AND EXPONENTIALFUNCTIONS O 95

F(3+ k) = f(:

To show that f'(3) does not exist we investigate 1]['5':. ; 1G) by computing the left- and right-hand derivatives
I

defined in Exercise 2.8.64.

_ o JBHR)=F(3) _ . [=(3+h)+9]-0
f-@) = lim S==p—= = lim h

ﬁ{3}=hli13+ LGN =TO) _ iy [G+h) -9] -0 = lim Sh+h =h]-"ré:.'[ﬁ+h} =

I [ h B+ h

= li =6 —=h)=—6 and
- (0=

Since the left and right limits are different, b ¥ ¥ /
13+ rr} 1(3) !

h n does not exist, that is, ['(3)

does not exist, Similarly, f'{=3) does not exist. ! -3 1 1

Therefore, f is not differentiable at 3 or at =3,

73 Substitting r = landy = 1 into i :a.r”+ba:g|\-'es usa <4 b =1 (1). The slope of the tangent line y = 3 = 2 is 3 and the
slope of the tangent to the parabola at (z.y) isy' = Zar + b Atz =1,y =3 = 3 =2Za<+ b (2). Subtracting (1) from
{2) gives us 2 = a and it follows that b = =1. The parabola has equation y = 2” — .

My=flz)=axr’ = f(z)=2ax. Sothe slope of the tangent to the parabola at = = 2 is m = 2a(2) = 4a. The slope
of the given line, 2r +y =& < y ==2zr <4 b, isseento be =2, sowe must have da = =2 & a= -%. S0 when
a = 2, the point in question has y-coordinate —% .27 = =2 Now we simply require that the given line, whose equation is

2x 4+ y = b, pass through the point (2, =2): 2(2) +(=2) =b < b=2 Sowemusthavea ==Zandb=2

79. The line y = 2= + 3 has slope 2. The parabola y = ex® = 3" = Zcx has slope 2ca at + = a. Equating slopes gives us

Zca = 2, or ca = 1, Equating y-coordinatesat r —a givesusca” =2a+3 & (mla=2a+3 & la=2a+3 <

1
a==3 Ths, c=—==—.
a 3

81. f is clearly differentiable for = < 2 and for = > 2. For = < 2, f'(x) = 2z, 50 fL(2) = 4. Forz > 2, f'(z) = m,s0
F4(2) = m. For f to be differentiable at = = 2, we need 4 = fL(2) = f1(2) = m. 50 f(zx) = 4x + b. We must also have
continuity at = 2,504 = f(2) = lim f(z) = lim (4x 4 b) = 8 + b. Hence, b = =4

-t =i

J@ =Sy, 21

#—-1 r—1

83. Solution 1:  Let f(x) = =™, Then, by the definition of a derivative, f'(1) = lim

But this is just the limit we want to find, and we know (from the Power Rule) that f'(z) = 1000=™", s0
CHE ! =1
£'(1) = 1000(1)** = 1000. So lim ~———— = 1000.
xr —

|continued)
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9% [ CHAPTER3 [MFFEREMTIATION RULES

Solutfon 20 Mote that I::.I]'r"“:“:I - l:l = I::.r - l:]-l:zl:w"I Nl O oL RN B N l:l. S0

1000 __ iih G0 997 z
- 1) 4 27 1 < P . .
lim = = lim = ) Lttt i e s & }= lim (™™ + 2" + 2™ 4 2 2 4+ 1)
x—sl :5—]_ =1 r=1 =1
=14+1414---4+141+1=1000, asabove,

1000 ones
85 y =z = ' =2¢ sothe slope of a tangent line at the point (a. a®) is y' = 2a and the slope of a normal line is —=1/{2a),

- al=e 1

|
for a # 0. The slope of the normal line through the points {a, a”) and (0, ¢} is = o> 50 ™
R = a Lr

2

a'—e=—% = a' =c— 1 The last equation has two solutions if ¢ > 3, one solution if ¢ = %, and no solution if

(=T

[ % Since the y-axis is normal toy = =° regardless of the value of ¢ (this is the case for a = 0), we have three normal lines

if ¢ > 3 and one normal line if e < £,

3.2 The Product and Quotient Rules

1. Product Rule: f(z) = (14 2¢%)(z =2") =
Flr)=(14271 = 20) 4+ (=) (dx) = 1 = 22 + 22" — 42 4 42" — 42" = 1 — 22 + 62" — B2"

Multiplying first; f(z) = (1 +2e' )z =2?) =2 =2+ 2 =22 = f'(z) =1 = 2= + 62 — Bz (equivalent).

3. By the Product Rule, f(z) = (32" = 5z)e* =

f(z) = (32" = 5x)(e®)’ + e*(32” = 5r)' = (3" = 5x)e® 4 e (6x = 5)
=X [I[ﬂ;l:2 - 5:5] + I[EJ: - 5}] = |=_"!|:,'i.;|:2 4 - 5]

The notations —= and == indicate the use of the Product and Quatient Rules, respeciively.

(3 =4x)(2) = (14 2x)(—=4) 6G—8r+448z 10

1. glz) = T—1r g(x) = (3 — 4z T (3=4x)? T (3 =4x)?

9. H(u) = (u— va)u+a) =
1 1
H'{u}={u-ﬁ](1+ﬁ)+{u+ﬁ}(1—ﬁ)_u+jq" Vi—ttu—Jutu—1=2u-1

An easier method is to simplify first and then differentiate as follows:

Hlu)=(u=yullu+yu)=v = (yu) =u=u = H(u)=2u-=1
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SECTION32 THE PRODUCT AND QUOTIENTRULES O o7

1. ﬂﬂ—(f-§){+hﬂ—{ 3y 5y B

F'(y) = (u™* =3y~ ") (1 + 1507) + (w+ 50 ) (=20~ + 12577)
=y~ +15=3y~" =45y~ + (=2p~" + 12y~ = 10 + 60y )

=54+14g 4+ 9%~ or 5+ l4fy2 + .L],n";,r‘d

41 or
=

1Ly =
v =1

(@ =1)(22) = (& + 1)) _ a[(x® = 1)(2) = («* 4 1)(3x)] _ 22 =2-32"—3r) (s’ —32-2)
(=2 =1)* (=% = 1) (2% = 1) (= = 1)

43t Ok

5 y=——
L T

o (=404 3)(3° 4 3) = (£ 4 30)(2t = 4)

Y (=4t +3)

C B3 =126 =120 4 0 40— (201 =4t 4617 = 121) ¢ =Bt 4617 40
= (17 —4t + 3)° C (At +3)

1T.y=e-p{p+pﬁ]=ep{p+p3’u] s y':ep{l-l-"p["u)+I[p+p3"r!]£'p=£#{l+%ﬁ+p+?g"ﬁ}

_ &= '.-'"'_ v""; =1 =3 2 f =2 g B =53 -1 3 _ 32— Zv"z
18 y= ;—F—S -4 = y=—s5 +3s T2 T ogafz . T ognfe
WIooow
L
sy =
=2 3
- =273 _ 4173 y i g S ——
) = (i ?}( =t } tH3(1) _ %!.1;.! -1 .:;.i_tu.‘l _ z pU3 g2 _ 308 B _ 2t =3
t—=3) t=3)2 ll:!'—'ﬂJ [t =3)2 IR = 3)°
et ok
Bf@)=grm T
f(z) = (=* + &%) [Ize“ + e'{EI]] - e (2r + ) _ z'e” 4 22%" 4 2™ 4 2xe™ — Dt o it
e =+ e ) = =+ ey
ale® 4 Dpet® e’ I[.I:‘II + 2e7)
= {IE +L..'l'}:d = {Iz + EJ‘}E
25, f(z) = fla) = (z+c/z)(1) = x(1l = /=) _ rdcfz—x4cfx _ 2efx II_:'!: 2ex
x+ r:,-".r (I + E}J PERRY (T +c) 22 (2 +c)?
I = =2

7. f(z) = (& +1)e* 5
Flz) = (2 + 1)e* + e5(32?) = e*[(#* + 1) + 3%] = e*(=* + 322 +1) =

() = e® (3" + 6x) + (2 + 3" + 1)e* = ¢* [{312 + Gx) + (a2 + 32" + 1)] = *(z* + 6a” + 6z + 1)
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98 O CHAPTER3 [MFFEREMTIATION RULES

- g fr'[I] _ I[l + E'!}{EI] - J:’!{L"} _ I[{l + E’]E - IEJ] _ I{Z + Fe® = Ie’]
14 e® - (14 e*)* - (1+e=)? - (1+e=)?

A flx)=

2r 4 2xe® = x'e”

Using the Quotient and Product Rules and f'(x) = 1+ )
&

. we get

. (14 &%) [2 + 2(ze® + &%) = (z%e* + E.Ie"}] = (22 + 2xe® = £%e") [(1 + e®)e® + (1 4 %))
B [(1 + =)

(14 { [l{l + e*)(2 + Zre® 4 2eT = ' - 2'1'9’]] = (22 + 2ze” = zze“]{ﬂe'}}
- (14 ex)t

(L4 )2 4 Ze® = 2e") = dxe® =dxe®® 4 2™

- (14ex)2

2 2% = o 2e® o Te™T = re” mdre® = dre™ 4 22T

- (14 e=)?

24 4et = z'e® = dxe” + 2™ + 2%e™® = dae™®

- (14 e=)?

J(=)

2t =1

Ny = ——
v 44l

, @4+ (2) = (=122 +1) 2204207 422 =22~ £ 2241 244z 4]
- 2 4+ x4 1F o x? 4 x4 1 T (x4 x4 1)
¥ 2 1}2 2 1}2 2 132

At (L,0),y" = 'iil = 2,andaneqmtmnufmetangem lineisy —0=3(zr—1),ory= gz — 3.

By=2z" = y=2z-e"+e"-1)=2e%z+1).
At(0,0), 5’ =204 1) =211 =2, and an equation of the tangent line is y =0 = 2(x = 0), or y = 2z_ The slope of

the normal line is —3, so an equation of the normal line sy — 0 = —$(z — 0), ory = —3.

1
35 = = b
(a)y = flx) T+ 2 (b)
iron (1 +Iz}{'|:|}— 1{2x) =2z .
Flz)= T+ =TT So the slope of the
' 2
tangent line at the point (=1, £) lsf{-ljzz—zzéand its 4
Equatmnﬁﬂ—%=%I[I+1:Im’y=%z+l_ —i15

W (a) flz) =(* =x)e® = [lz)=( =zl +e" (32" = 1) =" (" + 32" =2 =1)

b z [ = 0when [ has a horizontal tangent line, [ is negative when [ is

| }/\1 ] decreasing, and f* is positive when f is increasing.
=il +
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SECTION32 THE PRODUCT AND QUOTIENTRULES 0O

=1

30 (a) fixz) = =31 =

fiz) = {.r + 1)(2x) — {J: —1){2x) _ {2:][{:2 +1) = l:zl:2 =13 _ (2=)(2) _ 4z

(= + 1) (=2 +1)* CEr41)E T (22 41)2
() = (z* + 1)(4) = 4a{z® + 22" +1)" 42" +1)* — 4a(4z” + 4x)
- [(=* + 1) - (x2 + 1)
At 1) =162 (2 4 1) A2 D[ 4 1) = 42?41 = 32Y)
B (=2 + 1) B (=% +1)* S (1P

(h) S = 0 when [ has a horizontal tangent and ' =0 when [’ hasa

horizontal tangent. [ is negative when [ is decreasing and positive when [
is increasing. [ is negative when [ is decreasing and positive when [ is

increasing. [ 1s negative when [ is concave down and positive when f is

concave up.

£ (14 x)(2x) —Ij{].:] _ 2r 4 227 = 2* _ & + 2z
W=7 = M= (14 x)2 T 1+ T a4 241

(22 + 20 4+ 1)(22 +2) = (2" 4 22)(22 + 2) I:Ex-l- Dz + 2x 4 1 =1 = 27)

fiz) = (% + 22 + 1) [(x+1)*)2
_ x4 ) () _ 2
{.r+ l}d. 'I:E+ 1]3‘
o _ 2 _2 1
=T =sT

43. We are given that f(5) = 1, f'(5) = 6, g(5) = —3,and ¢'(5) = 2.
(@) (f9)'(5) = F(5)g'(5) + 9(5)S(5) = (1)(2) + (-3)(6) = 2 - 18 = 16
(b) ( ) ()= 2OSG) ~FE)'E) _ (=3)6) - (@) __20

776 A o= E
1(5)4'5) = a(5)'(3) _ (D) = (=3)(6) _
@ (§ ) O =" o

8. f(z) =e"g(z) = [(2)=e"g(x) +glx)e” = [¢'(z) + g(x)]. £'(0) =€"[g"(0) +g(0)] =1(542) =T

41. g(z) = zf(z) = g'(z)==zf'(z)+ f(z)-1. Nowg(3) =3f(3)=3-4=12and
g (3} =3f(3) + f(3) = 3(=2) 4 4 = =2 Thus, an equation of the tangent line to the graph of g at the point where z = 3
By =12 = =2z =3),0ry = =2r 4 18

49. (a) From the graphs of [ and g, we obtain the following values: f{1) = 2 since the point (1, 2) is on the graph of f;
g(1) = 1 since the point (1, 1} is on the graph of g; /(1) = 2 since the slope of the line segment between (0, D) and

14=-0 =4
—a = g'(1) = =1 since the slope of the line segment between (=2, 4) and (2, 0) I8 oy = -1

(2, 4) is o )
Now u(x) = f(z)g(z), 50 u'(1) = f(1)g'(1) + 9(1) f'(1) =2+ (=1) + 1-2 =0,

rwmlucmwh_q..uwuwm-gu—q-d.—_&._wn-uum,-tn.um.#—H,-qwqh-n._ﬁ_ha.*nu.mp
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100 O CHAPTER3I DIFFEREMNTIATION RULES

.

(b) v(z) = f(z)/g(z), so v'(5) = g(5)f" {:E;{E:ijz{aj g'(5 l.._ 2{_512:3'5 — ? 2

(a)y = z_ql:z} = y' = Ig'{.r] + g{r] -1 =Ig'|[.i::l- -I-_q{z]

T o glx)-1—zg'(x) _ glr) = xg'(z)
OV=@m T VT @ ke
o@D L o _rE@—e(x) 1 zd(x) = o)
x (z)* 2
Ify = flz) = =—— + L then f'{x) = (= +{1I}E]1;I{1} = [I-:l:'z- When x = a, the equation of the tangent line is
H—ﬂ:—lzﬁ{z—a}.mjshmpﬂawmgh{l._zjwheni [u+1}‘{l a) &

E{ﬂ.-{-l}!—a{a-{-—l}:l—u =) 2n2+4ﬂ.+2—u2—u—1+ﬂ.=ﬂ =3 ﬂ2+4ﬂ.+1:'|:|.

. =4+ /4% = 41)(1 =4 /12
The quadratic formula gives the roots of this equation asa = 0 () = = = =2+ /3,

s0 there are two such tangent lines. Since

—2+43  —2+43 -1%¥3
—2+,34+1 -1+.3 -1%.,3

_2+2,8¥,8-3 -1+,5 13%,3
= =—.

1=3 T =2

fl-2++3)=

the lines touch the curve at A(-z +3, 1%@) = (=0.27, =0.37)

and B( =2 = V3, 28 = (=3.73, 1.37).

i::-ﬂ":
g9

R= .q'f“'-zf.qr
[ g

. For f(x) = = = 32 + 52", f'(z) = 1 = 9" + 25z7,

and for g(x) = 1 4+ 32" + 62% 4+ 927, ¢'(2) = 92 + 362" 4 812

9(0)f'(0) - f(0)g'(@) _1-1-0-0 1

la(0)]* IR

. If P(t) denotes the population at time £ and A(Z) the average annual income, then T(E) = P(£).A(t) is the total personal

income. The rate at which T°(t) 15 nsing is given by T'(t) = PO A' (1) + A F(1) =
T'(1999) = P(1999)A'(1999) + A(1999) F'(1999) = (961,400)($1400/yr) + ($30,593)(9200/yr)
= $1,345,960,000,/yr + $281 455,600/ yr = £1,627,415 600/ yr
So the total personal income was rising by about $1.627 billion per year in 1999,
The term P{t)A'(t) = $1.346 billion represents the portion of the rate of change of total income due to the existing
population’s increasing income. The term A(2)P(t) == $281 million represents the portion of the rate of change of total

income due to increasing population.
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SECTION3.3 DERNATIVES OF TRIGOMOMETRIC FUNCTIONS O 101

0.14[S]  _ dv _ (0.015+[S])(0.14) — (0.14[S])(1) _ _ 0.0021
T 0015+ [S] d|S] (0.015 + [S])* T (0015 4 [8])*

duvfd|S] represents the rate of change of the rate of an enzymatic reaction with respect to the concentration of a substrate S.

61 (a) (fgh)' = [(fa)h]' = (fa)'h+ (fo)h' =(f'g+ fa')h+ (fa)h' = ['gh+ fg'h + fgh'
(b) Putting f = g = h in part (a), we have ﬁmx}r‘ =1 =FTF+ 1 f+ F77 =3771 =3[f(=)] [ ().
d Awy d vy — .5 — A
(€) == (¥) = —(e") = 3(e")e” = 3T = 3t

63. For f(x) = x'e*, ['(z) = 2"¢™ + *(2r) = &*(z” + 2r). Similarly, we have
f(z) =e"(z* + 42+ 2)

e

1O

¥ (z) = e*(+* + 10z + 20)

)
] :e’l::.rz+ﬁ.r+ ﬁ}
) = e* (2 + Br 4 12)
)

It appears that the coefficient of = in the quadratic term increases by 2 with each differentiation. The pattern for the
constant terms seemstobe 0=1-0,2=2-1,6 =3-2, 12 =4 -3, 20 = 5 - 4. 50 a reasonable guess 15 that
" (x) = *[z" + 2nx + n(n = 1)].
Proof: Let S, be the statement that f7™(x) = *[x? 4 2Znz + n(n = 1)].

1. 5y is true because f'{x) = e*(x” + 2x).

2. Assume that Sj. is true; that is, f*){z) = [z 4 2kz + k(k = 1)]. Then

F0 ) = = [/99@)] = (20 +26) + 2 + 2w + k(lk = D]e”
= e[z + (2k 4 2)x + (K + k)] = e*[2? + 2(k + 1)z + (k + 1)K]
This shows that 541 18 true.

3. Therefore, by mathematical induction, S,, is true for all n; that is, '™ () = e*[+? 4 2nx 4 n{n = 1)] for every
positive integer .

3.3 Derivatives of Trigonometric Functions

1. flr) =2 sinz = Flz) = 2% cosx + (sinx)(22) = 2® cos x 4 2rsine

3 flr) =e*cosr = ['(z)=e*(=sinz)+ (cosx)e® = e*(cos r = sinx)

5 y =secl tanf = gy’ = sect(sec’ §) + tan @ (secf tan B) = sec® (sec’ # + tan® §). Using the identity

1 + tan? @ = sec” A, we can write alternative forms of the answer as sec 8 (1 + 2tan® @) or secf (2sec” = 1).

T.y=ceost4 tPsint = 3 =e(—sint) + t*{cost) + sint (2t) = —esint + t{teost 4 2 sin t)

2
z - o _[E—LH.III}{].}—I{—EE{ .r:|- 2—tanz 4+ rsec &

9 = m—
R gy g (2 =tanx)* (2 = tan x)?
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102 O CHAPTER3I DIFFEREMNTIATION RULES

sin &
. f(6) = 14 cosd
£6) = (14 cosd)cost = (sinf)(=sinf)  cosf 4 cos® 0 4sin®f  ecosf41 1
- (1 4 cos #)* - (14 cosd)? Tl cost)E T 1 4cost
tsint
By =T

' (14 ){teost + sint) —tsini(1) _ teost 4 sind + P cost 4 tsind = tsind _ {tz +t)eost 4 sint
Y= T+ - (1+1) - 1T+1)°
15. Using Exercise 3.2.61(a), f(#) = fecosh sinf =
S = leos sin# 4 &= zind) sin @ 4+ 8 cos Heosd) = cosd sinfl = & sin® § + @ cos™ 0

= sin# cos# + Beos™ § — sin” #) = Jsin20 + Feos20  [using double-angle formulas)

d d 1 inr)(0) =1 } - S 1 2

17, == (csCz) = == | = = (sin z)( ] p (cos 2) = _LL.MI = = _u..m: = =rscT col T
dx dr | sinx sin” r sin” x sinr sinr

19. i (cot z) = i {:l:.'l..IHI) _ (=in I:]{—}iiIII-} : (cos x){eos ©) _ _55_““ 1-4;:_-:_“2 T __ . _12 — sy
dx dr \sinr sin” x sin” x sin” T

Ny=sinzdeossr = y —eosz—sinz soy'(0) =cosl—sinl=1-0= 1. Anequation of the tangent line to the

curve y = sina 4 cosx atthe point (0,1) sy —1=1{z=0) or y=x+ L

NBy—ecwr—siner = y =—sinr—coss,so0y (7)) =—sinT—cosx®=0—=(=1)=1. Anequation of the tangent

line to the curve y = cos = = sinx at the point (7, =l) sy = (=1} =l{z=7)ory =z =7 =1.

25 (a)y =2rsiny = 3 =2zeosr4sinz-1). At EE i'l'}, (b)

y' =2(5 cos ¥ +sin 3) = 2(0 + 1) = 2, and an equation of the

F] ]

tangent line isy — 7 = 2(x = §), ory = 2.

27. (a) flz) =secx =2 = [(r)=secrtanr=1
(b)

/]
A

29, H(P) =#sind = H(#) =0(cost) 4+ (sinf) -1 = feost 4 sinf =
H () =0 (=sint) + (cosf) -1+ cosl = =fsinf 4+ 2eosd

Mote that f* = 0 where f has a minimum. Also note that f* is negative

[ B

when [ is decreasing and f* is positive when f is increasing.

3. (a) f(o) = 2021

HENC T

secz{sec’ r) — (tanz — 1)(secxtanz)  seczsec’r —tan’r+tanz) 14 tanz

=)=

(sec x)? socfx seC T
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SECTION3.3 DERNATIVES OF TRIGONOMETRIC FUNCTIONS O 103

sin T 1 SN E = cos T
(b} fiz)= tant =1 _ cosx = e =sinr—cosr = ['(x)=cosr—(—sinr)=cosx+sinz
HEC T 1 1
0 I COs I
1 4 tanx 1 tan x .
F = = cos hich is the e fi b).
{c) From part (a), f'(z) = p— p— + p—— cos x + sinx, which is the expression for f'(x) in part (b)

33. f(x) = = 4 2sinx has a horizontal tangent when ['(z) =0 < 14 2osxr=0 < mwsr==1 <
x =2 + 2xn or &F + 2xn, where n is an integer. Note that 2% and 2F are =T units from 7. This allows us to write the
solutions in the more compact equivalent form (2n 4 1) & £, n an integer.

35 (a) z(t) = 8sint = o(t)=2'(t) =Bcost = alt) =z"(t) = —8sint

{b) The mass at time ¢ = 2 has position x(2Z) = 8sin & = 3(£) =4y/3, velocity v(22) = Beos 22 = 8(=1) = =4,

and acceleration a(3f) = —8sin 3£ = —E(ﬁ'—q) = —4+/3. Since v(3X) < 0, the particle is moving to the lefi.

. From the diagram we can see that sin # = /10 < =z = 10sin#. We want to find the rate
of change of = with respect to 8, that is, d=/df. Taking the derivative of = = 10 =in #, we get

dr/df! = 10{cos ). So whenf = I, % =10cos S = lﬂ{%] = 5 fi/rad.

sin Sa . b (sinbx 5 . sinbx 5 sind . o5 5
. i S = i 3 () =3l T = flm T b= =31=3
ol tan G -k sin G 1 t -k Gsin Gt 1 " 2
"i=0sin2t =0\ §  cosBt sin2t]  t—0 B =0 cosBf t—0 2sin2t
. osinGt | 1 1. . i
=6lim S i - 5 i = 6(1)- - 5(1) =
N sin 3o . sin 3o 3 . sindr 3 3 3
- :'Thm—zﬁh( 3 ﬁ) = TR 1'(.—4) =71
45 Divide numerator and denominator by 8. (sin & also works.)
sin & . sinf
- [Tl =—
lim % = lim — g I = a0 ﬂﬂ 5 = 1 = l
-0 &' fan o0 14 —. 1 4 lim sinf [itn  — 1+1-1 2
[i] cos i g—t 0 d—n cosf
cosfl =1 ool =1 cosf 41 i cos” =1 —sin® @

47. lim ———— = lim = limr

g—0 g% =0 ¢ eosB 41 E—-EIEE‘{u.mﬂ-iu 1) e—n 2&2{{_%94‘-1}

_—llilll ginfl sinf 1 1].ir1 hlnﬁ‘_lim sin f i 1

T 20 6 cosB+1  Zamo B o0=d B  d—0cosf+ 1
1 1 1

=]l — ==
2 141 4
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104 O CHAPTER3I DIFFEREMNTIATION RULES

sinr
1-—- - GO T

1 =te & S = s =1 =1
49. lim $ = lim — = lim - - = lim = — =y
z—xf4 SINE —cOST  z—xfa (Sinr —cosx)-cosx  x—mys (sinr—coszr)eosz  r—mpa cosz 1f02
d 3
5. o (sinx) =cosz = o — (sinx) = —sinz = i (sinz) = —cosx = oy (sinz) =sinz.
9 3

The derivatives of sin = occur in a cycle of four. Since 99 = 4(24) + 3, we have o (sinx) = oy (sinx) = —cos .
I

8. y=Asinzr 4+ Beoszx = y = Acosr — Bsinr = g = —Asinzr — Beosx Substituting these
expressions for y, y', and " into the given differential equation y" 4 y" — 2y = sinx gives us
(=Asinr = Beosr) 4 (Acosr = Beinz) =2({Asinr 4+ Beosr) =sinr <
—3Asinz — Bsinzr 4+ Acoszr = 3Beosr =sinr & (=34 = B)sinz 4 (A = 38)cosxr = 1sinx, 50 we must have
=34 -8B =1and A =38 =0 {(since 0 is the coefficient of cos = on the nght side). Solving for A and B, we add the first

equation to three times the second toget B= —L and A = -2

10"
55, (a) iliulI:-iﬁi"I - Hzxzcmmcm.r—rliiu.r{—ﬁinrl :ELHEI-{‘-H'II'.I.QI. S0 sect x = l _

dr dir cos cost x cos? r cos? T
d d 1 0)y—=1({-

(b)) —sece=— = secx tanr = (cos 2)(0) ( l'ill'.I.I:. Sosecr tany = Hm.I .
dx dr cosx cos” T cos” T
d d 14 cot

{c) E{ﬁhlz+tﬂ5:}=3$

csex(=esc?x) = (L4 cotx)(=esex cotz)  esex[=esc? x4 (1 4 cotx) cot x]

ClE T =sine = - -
csc? T csct T

—cacl x4 cot?z 4 otz _ =14 cotx

Li=_ s o CsC T

. . ol =1
SOCOST = Sinr = ————.
CSC I

57. By the definition of radian measure, s = ), where r is the radius of the circle. By drawing the bisector of the angle &, we can

d/2 e ? g 2 g — g 202 62
“Eﬂm“”'z— p T A= Irsing. S0 T R rein(0)2)  eens 2ein(0)2) b sn(8)2)

| This is just the reciprocal of the limit h'"}: 222 — | combined with the fact that as & — 0, £ — Dalso.)

3.4 The Chain Rule

1 letu=g(c) =1+4randy = f(u) = {u Then ji :::z—{q_ =29 = ﬁ

3 Letu = glx) = srand y = fiu) = tanw. Then ;HI = %j—u:{mzu”#]:ﬂmznx.
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SECTION 3.4 THECHAWRULE O
o Gy _ dydu wyf1 =12 vE L ev®
i letu= and y = = —_— ( )_ ' — —
u=g(z) = /Tandy = flu) =" 3 = duds () 3= : 24 24T

1. F(z) = (52% + 2¢%)* = F{I}=4{5I“+2;“}'~‘-%{5;%2:’]=4[5z5+2£33{301-"+ﬁ£]_

We can factor as follows: 4(z%)* (527 4 2)%62?(52® + 1) = 2421 (5% + 2)%(52% + 1)

9 flr) =B+ 1=(5z+ 1)'* = ['(z) =35z +1)""*(5) = T

1. f(0) = cos(8®) = [J'(#) = —sin(6?)- % (6%) = —sin(#?) - (20) = =20 sin(f?)
By=ze™ = y==z fe=22(-3) + e-'h{ZI] = L-h[—ﬂ.r + 2x) _It-xliz — 3z
15 f{t] = ginkt = f{t] =e-“t|[cmii}-b+{5inb£}ﬂ“ . il :e“l:bu.mb!-i-a.ﬁinb!]-

17, fiz) :{2;—3}‘{124-:4- l:l:' =
f{I]:{EI—E}‘-E{Iz-i‘-I-‘{- l:l-"I[EJ:-i- l}+{:52-+-1:+ 1}5-4{21—3}3 -2
=2 =3P + 2+ 1) [(2e =3)-5(2e + )4 (¥ + x4 1) - §]

=(2r =3 +z+ 1) (202 =20 = 15+ 8" +8r+8) = (22 =3 (* + =+ 1)} (2827 = 122 = T)

19. h{t) = (L +1)**(27 = 1)* =
W) =(t+ 1) 3(20% = 1)t 4 (27 =12 2t + 1)~V = (1 + 1)73(20° = 1)*[18¢(t + 1) + (26° = 1)]

= 2(t +1)=V* (2t —1)*(206* + 18t = 1)

I+ l)

V=3 (; i 1)'1“ dd:s (mi 1) = %{Ii-:.j,;z = +{2{_:]1]_2Im

Hoy=

1+ 1Y 1 1

T2 z2 (z+1)F 2/T(x +1)*2

d ;
3. y= EI|:a|.|'||vB‘ = yr - Elnu QE{MI ﬂ:l - {HE’CJ ﬂ}ﬂlnuﬁ"

oo o fut =1V dut =1 (u*=1)7 (u® 4 1)(3u?) - (u® = 1)(3u?)
H{“}—E‘(u3+1) Eu3+1_8{u3+1]? (u* 4+ 1)2

(u® = 1)7 3u?[(u® + 1) = (u® = 1)] E{u“ —1)7 3u?(2)  48u'(u® =1}
(u? +1)7 (w® + 1)2 (w4 1)7 (u +1)2 (w3 +1)°

27. Using Formula 5 and the Chain Rule, r{t) = 10°¥" =

(In 10) 1027

(1) =10°YTIn 102 {2‘.;"} = 1:}*~”|n1:}(2- %rlﬂ) = v
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106 O CHAPTER3I DIFFEREMNTIATION RULES

_ =1
E. H{T] = m
H (2r +1)% - 3(r = 1)%(2r) = (r* = 1)* - 5(2r + 1)%(2) 2{2r+ Dr® = 1P [3r(2r + 1) = 5(r" = 1)]
= 2 + )77 (2r + 1)®
_ 2t =1)(6r" +3r =5 +5) _ 20" = 1)*(r* + 3r +5)

@+ 1 - Er+1r

. By (9), F(t) =508 =

F'(t) = " (tsin 2¢)" = "1 . 2cos 20 4 sin 2t 1) = " =" * (20 cos 28 4 sin 21)

33. Using Formula 5 and the Chain Rule, G(z) = 45/ =

¥ . af=x
G'(2) = 4977 (ln ) 4c [% - r:;-l] =49/ (In4) (~=Cz~2) = =C (In4) 41_2

1 _Eiz
35 yzcm(m)
' = =sin ﬂ g i = =sin e {1 + Eh]{ 292:} -{1=- E'h:]uﬂzl}
L4e2=f doe \ 14 e2= ; 1 4 e2= (14 =)

(L=t =2 (14 e7) 4 (1= ™)) 1=\ —2¢7(2) N 4 ot
= ==l . = =3Il . = = 5N
14 ei= {l + E:d:r],:.! 1 4 g2z {:]_ + E!:}E {:]_ + E.:.'_'::]i 14 ei=

3. y = cot?(sin) = [cot(sind)]” =
¥ = 2[ecot(sin#]] - % [cot(sin #)] = 2cot(sin @) - [— ese?(sin @) - cos 6] = =2 cos @ cot(sinf) esc’(sin #)
39. f(t) = tan(sec(cost)) =

= {HEL{L‘U.H t)) :t sec(cost) = s 2{&[-.‘1.{{.{.7& t))[sec{cost) tan{cos t))] E cos i

= — mee” {HE"{:{{.‘Lﬁ .I,:I:]- ﬁec[cm L:I T.anl:cuei .l} sin b

z
1. f(t) = sin” (e'mz':) = [ﬁi.n(e"“it)] =
PP nty] . R ey sin®eY d
f{t)=2 a-un(e’m ) x h:l.ll(t ) = Ehlr.t(ei ) cm.(e ) o e
= Z.ﬁin(e"l"zt) cm(e'mzt) - e"""zt . % sin’t = Z.ﬁin(e’“"zt) cuﬁ(t'm E) el *t » 2sind cost
= 45in(e"l"2t) cm(e'mz‘) E.m*t sind cost
4. glz) = (Zra™ 4+ n)* =

d
g'(z) = p{2Zra™ 4+ n)*=1. E{Eru:" +n) = p(2ra™ +n)}*~' - Zra™ (lna) - r = erp{lll a)(2ra™ + n)*~la™
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SECTION 3.4 THECHAINRULE O 107

45, y = cos .-'5'm|:|-,u| -,cr;_-:l =cuei{5inl:liu| #;DIIH =1

y' = —sin(zin(tan *.ﬂ‘J::l:I-"'r2 . % (sin(tan mx)) 12 — — sin(sin{tan #z'_l]-l"m : %I{ﬁin{tﬁn :I'r.rzll'l'l"r2 : % (sin(tan 7x))

__ —sin ﬁin{lﬂnﬂr}.cm . o d N I_—shlq.fﬁin{lan'.ﬂ‘r}.cm o) - sec () -
N 2 /sin(tan 7x) (tan =) d-Im = 2 /sin(tanwx) (tan=z) (wz) - =
_ = eos(tan Tx) sec?(7x) sin 4 /sin(tan 7x)

h 2 \/sin(tan 7x)

47 y = cos(sind) = y' = —sin(sindd) - (cos30) - 3 = —Feos 30 sin(sin3F) =
y" = =3 [(cos 36) cos(sin 38)(cos 38) - 3 + sin(sin 36)( —sin 36) - 3] = =9 cos(30) cos(sin 38) + 9(sin 30) sin(sin 36)
=4/l =gect = w _fil—uectj-l‘iz{—aet!tan!}_%.
Using the Product Rule with y' = (—% sect tant) (1 — sect)™"/*, we get

y" = (~}sect tant) [-%{1 — sect) =M (=sect um.n}] +(1 = sect)=1 (=) [sect sec® ¢ + tant sect tant].

Now factor out —1 sec #(1 — sect)=**. Note that —2 is the lesser exponent on (1 — sec f). Continuing,

A

y sec l—Hi:"c!}-x"rz[%lﬂ:‘t_‘ltml2!+{l—}ieti}{}£t2!+tﬂnzt}]

1
)
—-_'!ﬁec! 1 —ﬁa:!}-x"rz{%ﬁeci MD2t+m2£+ tan?t = sec? t = sect tan® .l}

%HEC! l—ﬁ&t!}-xfz [—%.‘&ec!{.‘&ecjl—.'l]+ﬁec2t+l:secj!— l]—ﬁecxt]

(
(
(
= —%sect(l —sect)™? (=3 sec® t + 2sec’ t + Lsect = 1)
=sect(l —mt]'a"m {%ﬁecat—ﬁeczl—%ﬁect-}- %]

sect (3sec” t = dsec” t —sect + 2)
4(1 = sec )3/

hectl['!ﬁer_t-i- 2)y/1 =
4

There are many other correct forms of ", such as g . We chose to find a factored form with

only secants in the final form.

.y=2" = y' =2"In2 At(0.1), ' =2"In2 = In 2, and an equation of the tangent line isy — 1 = (In 2)(z = 0)
ory = (In2)z + 1.

83 y =sin(sinr) = p —ow(sinzg).cosz. At(m,0), ¥ = cos(sinw) - cos 7 = cos{0) - (=1) = 1{=1) = =1, and an
equation of the tangent line sy =0 = =1{x =7),0ry = =x 4 7.

(1™ ){0) =2({=e"") _  2e~=

345 = = = . b
(a) y l+e= u I::].-+-E'-=:]2 |::1+E'-=:]2 (b}
e 2" 21 _ 2 1
At (0,1), 5" = T ~ T+ 1) _ﬁ_i_baanequalmnﬂfme

tangent line sy — 1 = %{I-ﬂ}ﬁl’y: %I-I‘-]..
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108 O CHAPTER3I DIFFEREMNTIATION RULES

5. (a) f(z) = 22 = 2% = 2(2 = £5)** =

2 =2

fla)=z-2=-) ¥ (=2r)+ 2= 1= =) [+ (2=-2%)) = —

" = 0when f hasa horizontal tangent line, f' is negative when [ is

A |
[ = 41, decreasing, and [ is positive when [ is increasing.

1y

59. For the tangent line to be horizontal, f'(x) = 0. f(x) = 2sinz 4+ sinz = f'(r) =2cosz + 2sinr cosz =0 &

Zeoszr(l+sinx) =0 & ewr=0orsinz=—1s0z=3 +2nror 3L 4 Inx, where n is any integer. Now
f(Z) =3and f{22) = =1, so the points on the curve with a horizontal tangent are (X 4 2Znx, 3) and (3£ 4 2Znx, —1),
where rn 15 amy integer.

B1. Fiz) = fla(z)) = F'(z)= f'(a(x)) g'(x).50 F'(5) = f'(9(5)) - ¢'(5) = f'(-2) -6 =4-6 =24

83. (a) hiz) = flg(z)) = h'(z)=1"(9(x))-¢'(x). 50 h'(1) = ["(g(1)) - 4'(1) = f(2)-6=5-6 =30.
(b) H(z) = g(f(x)) = H'(z)=g'(f(x))['(z).s0 H'(1) =g'(f(1))- (1) =g'(3)-4=9-4=36.

65. (a) u(z) = flg(z)) = u'(zx)=f"(g(z))g'(z). Sow'(1) = f(g(1))g'(1) = f'(3)g'(1). Tofind f'(3), note that f is

1_ 1

linear from (2, 4) to (6, 3), so its slope 15 z :2 =-7 Tofind g'(1), note that g is linear from (0, 6) to (2, 0), so its slope

is g _3 = —3. Thus, f'(3)g'(1) = (-3)(-3) =3

(b) v(z) = g(f(z)) = v'(z) =g (fl@))f'(z). Sov'(1) =g (F(1))f (1) = ¢ (2)f (1), which does not exist since
g'(2) does not exist.
(c) wiz) = gla(z)) = w'(z)=g'(g(x))g’(x). Sow'(1)=4g"(s(1))g'(1) = g'(3)g'(1). Tofind ¢'(3), note that g is

linear from (2, 0) to (5, 2), so its slope is E:z = % Thus, ¢'(3)¢'(1) = (2)(=3) = —

67. The point (3, 2) is on the graph of f, so f(3) = 2. The tangent line at (3, 2) has slope % =—=-=Z.
o(z) = /flz) = ¢(=) =3 f(z) =
g'(3) = ;@2 1(3) = 324 (=3) = 3v"_ -3V

®. () Flz) = f(¢)) = F()= ()1 () = e
(b) Glz) = = G'(z)= eﬁz:'%f{.r} = ell=) f'(1)

. r(z) = fla(h(z))) = ©(z) = f'(g(h(x)) o' (h(z)) - K'(z). 50
P(1) = f'(g(h(1))) - o' (h(1)) - K1) = [(a(2)) - '(2) -4 = '(3) -5-4=6-5-4=120

WEIEC:HL.:—:‘.AII:#I::—vnl.m?dkcqﬂ.:-d.-hhﬂ.nuﬁumpthhrh_r#—HWM:—:;&WE—&M-A&ML
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SECTION3.4 THECHAINRULE O 109
T Fx) = f3fAf(=) =
F'(z) = f'(3f(4f(=))) - %[SH‘U{:}H = f{(3f(4f())) - 31 (4f (=) - %(41’ (=)
= f'(3f(4f(=))) - 37 (4f (x)) - 4f" (=), s0
F'(0) = f'(37(4£(0))) - 3/ (4£(0)) - 45'(0) = f'(3f(4-0)) -3f(4-0)- 4.2 = f'(3-0)-3-2-4.2=2.3.2.4.2 = 06.
75 y =e’*(Acos3c + Bsindx) =
y' = e™*(=3Asin3x + 3B cos 3x) + (Acos 3z + Bsin 3x) - 2™

= e**(=3A sin 3r + 35 cos 3z + 2A cos 3x + 28 sin 3z)

= e™*[(24 + 3B) cos 3z + (2B — 3A) sin3z] =

y" = e**[=3(2A + 3B) sin 3x + 3(25 = 34) cos 3] + [(24 + 38) cos 3z + (2B = 3A) sin 3z] - 2¢**
= e** {[=3(2A + 3B) + 2(2B = 34)] sin 3z + [3(28 = 34) + 2(2A + 3B)] cos 3z}
= e™*[(=12A4 = 5B) sin 3z + (=54 4 12B) cos 3x]

Substitute the expressions for y, v', and y" in " = 4y’ + 13y to get

g =4y + 13y = en[[—lﬂfl —58)sindr + (=54 + 12H) cos 3z
= 46™*[(2A + 3B) cos 3z + (28 = 34) sin 3z] 4+ 13¢**( A cos 3z + Bsin 3z)

= e*[(=124 = 5B = 8B + 124 + 13B) sin 3z + (=54 + 128 = 8A = 125 + 134) cos 3z]
= &**[(0) sin 3z + (0) cos 3] =0

Thus, the function y satisfies the differential equation 3" = 4y’ + 13y =0,

1. The use of D, D*, ..., D" i% just a derivative notation (see text page 159). In general, D f(2z) = 2f'(2z),
DEf(22) = 4f"(22), .., D" f(2x) = 2" [V (22). Since f(x) = cosx and 50 = 4(12) + 2, we have
f‘m}{.r} = fw}[;r} = —cis T, 50 D™ cos 22 = =2 cos 2x,

79. 5(t) = 10+ Lsin(10xt) = the velocity afier ¢ seconds is v(t) = &'(t) = 1 cos(107t)(107) = IE cos(10xt) cm/fs.

2t ﬂ _ 2t 2 _ 0.Tx & _ T= ) E
= =54 54 " 54" 54

B1. (a) B(f) = 4.0 4 0.35sin 1 2 @ 0.35c0s A

dB  Tm I
[h}ﬁlf-—l,g—ﬁt m-—«ﬂ.lﬁ.

83. s(t) = 2e~"Msin2xt =
vit) = &' (1) = 2[e="" (cos 2xt)(27) + (sin 2at)e= 1" (=1.5)] = 2&=1-" {27 cos 2ot — 1.5sin 2xt)

1

15
Graph of v Graph of h - /J
i . velogity
1 n { \/ﬁ\_q 2 0 [ \v/‘/‘_‘\\“‘--"" J 2

-1 -7
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110 O CHAPTER3 DIFFERENTIATION RULES

85. (a) Use C(t) = ate™ with a = 0.0225 and b = —0.0467 to get O (t) = a(te®® - b+ ™ - 1) = a(bt + 1)e™.
~'(10) = 0.0225(0.533)e """ 2= 0.0075, so the BAC was increasing at approximately 0.0075 (mg/mL)/min after
10 minutes.
(b) A half an hour later gives us ¢ = 10 4 30 = 40. C'(40) = 0.0225(=0.868)e~"*% =~ —0.0030, so the BAC was

decreasing at approximately 0.0030 (mg/mL) /min after 40 minutes.

dv  dvds dv duv .
87. By the Chain Rule, a(t) = X dadt = da v(t) = v(t) Ta The dervative duvfdf is the rate of change of the velocity

with respect to time {in other words, the acceleration) whereas the derivative dv /s is the rate of change of the velocity with
respect to the displacement.

89. {a) Using a calculator or CAS, we obtain the model () = ab® with a =2 100.0124369 and b == 0.000045145033,
(b) Use ('(t) = ab® In b (from Formula 5) with the values of a and b from part (a) to get (' (0.04) = —6T0.63 pA.

The result of Example 2.1.2 was =670 pA.

=
81. {a) Derive gives g' (1) = % without simplifying. With either Maple or Mathematica, we first get
(=2 _ . (t=2)°
(2t + 1)° (2t 4 1)

g'(t)=19 and the simplification command results in the expression given by Dernive.

(b) Derive gives y' = 2(x® = x 4 1)*(2r + 1)[172* + 62 = 9z 4 3) without simplifying. With either Maple or
Mathematica, we first get y' = 10{2z 4 1)*(2” = 2 + 1)* + 4(22 + 1)°(2" = 2 + 1)*(3" = 1). If we use
Mathematica’s Factor of Simplify, or Maple's factor, we get the above expression, but Maple's s impli £y gives
the polynomial expansion instead. For locating hornzontal tangents, the factored form is the most helpfil.

93. (a) If f is even, then f{x) = f{=x). Using the Chain Rule to differentiate this equation, we get
Fz) = f{-=x) i (=z) = =f'(==). Thus, ['[{—z) = =f"(z), so [ is odd.

(b) If f is odd, then f{x) = = f{=x). Differentiating this equation, we get ['(z) = = f'(=z)(=1) = f'(—=xz).s0 [ is

even.

%. (a) % (sin” x eoenz) = n&in™' & oosz cosnz + sin” = (—n sin nz) [Product Rule]
= nsin""! x (cos nr cos r = sin nr sin ) [factor out ngin® = x)
= nsin" " z cos(ne + x) [Addition Formula for cosine)
= nsin""! zeos(n + 1)z] [factor out =]

(b) % (cos™ z cosnz) = neos"' x (= sinz) cosnz + cos® z(—nsinnzr)  [Product Rule]

= —neos"™ " reos nr sinr + sinnr cos r) |factor out —n cos™ =" ]
= —ncos" ! rsin(ne 4 ) [Addition Formula for sine)
= —neos™ " rsinf(n + 1)z] |factor out =)
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SECTION 3.5 IMPLICIT DIFFERENTIATION O

97. Since 6° = (256 rad. we have 5 (sin0°) = = (sin 1256) = 155 cos 1250 = 125 cos .

dy_dydu
BB,The{'_ha.LnRLﬂeﬂ}sﬂmtdI dud.:’m
d'y  d [dy dy du du
E_d:(d; {.EI dudz) " du:dz gz ) [Foodw Rek]

_[d {dy? du du+dydju_d'y du +dyd”u
T ldu \du ) de | de o dude? T du? | ds du da?

3.5 Implicit Differentiation

1

1. (a) il[".il';r2 -y = i{1:]- = 18zx=2yy' =0 = yy' =18z = y' -
di dx y

P i . . - q
B9z =y’ =1 = y'=9r"=1 = y=20F —Lsoy =+1{9"=1) '*"{13:}=iﬁ.
7 —
(c) From part (a), y’ = 9_1- —Q—I which agrees with part (b)
’ #4027 = 1 ’
d d Lmip 1ocap 1, 1 ' Vi
3. (a) — =—1 = = =0 —y = ===z
{a]dz[v";+u’i} M = 5= T+ = 7Y s <Y NE

b) T+ F=1 = JF=l=yT = y=(1=-y7) = y=1-2y/FT+z,5%

1 ; 1
yxz—E-EI-I‘u-i-l:l——

7
ic) From part {(a), v’ = —Uié = —I-T:E [from part (b)] = —UL_,E + 1, which agrees with part (b).

d ; d ; f ) '
iE[Ij—w-}-yJ]:E{ai} = 2r—dfry" 4+ y(l)]+ 2y =0 = yy —dry =dy-2r =

viy=2)=y—z = y =

T. —{I + =iy +y‘!}=£{5] = 4Ix+1::‘!-2yy'+y2-21:+3y2y'=ﬂ = 2%y + 3y = —4a® =20y

3 ' 2 x
{2I2y+3yi}yr = _hz_zmz = yp — 4r E.ry _ _EI{ZI + 1 :'

2oy 4 3¢ y(2r? + 3y)
2 i
2 (z+u)(2r)—=z(1+y) ;
+1) = = =
e (I+y) W+ (x+u)* w
22 4 2oy —2® — 2y =Wz +y)*y = P 2oy =y(z+y)'y +2YY =

_ (x4 2y)
EIiy+_.b_-y.:+2y.!+I2
Or: Start by clearing fractions and then differentiate implicitly.

.I{.I-I-Ey]:[2y{12+21y+y2}+12]y' ==

d [ :
1. d—l:y:.m_r}:E{Iz+yz} = yl—sinz)4cosz -y =224+ 2y’ = cosz-y =2yy =2r+4ysinr =
4z

2r4ysinr

eosx - =2 i = y'=
y' (oos T = 2y) T 4 ysinr u pp——
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112 O CHAPTER3 DIFFERENTIATION RULES

2

d d iy . ,
B VEFr = (' 4Y) = i) O+ =t ety =

1 1 ' -3 3¢ 1 3 3¢ 1 ‘
— e — = 4 44 = e—— T =4 - — =
2y 24,.-".I+;,r;’r vy S 4y ik 2-..-'J:+1.|'I'II
l—Bz:xa,.-'I-{-y_EyK r+y=1, I,_l—vE-:ll.:R ]

2z +y 2yz+y 7 YT Rzt -1
d d d

15. E{ﬂ“”}:ﬁ'ﬂz—y] =» e"""-E(i):l-y‘ =
N 1 fw L gl
E'lh'wzl'yr = "-'zh'_-n_z'ii'::l-yr = Hr-nz Y =l —
u u u Iul'
y_e-th-
. 1_::9“"|l1lr _y—e""l“ = o= Ty _!-I'{!-I'-E'l”}
¥ e - ¥ ¥ = y:.! _ IE""'rb' - yE [T
u
17 ilml-'{zzy}:i{.r-i-ryz} == ;{Izy'+y'EI}:1+I'2uy'+yz'l =
T dx dr 14 (x%y)?
T gy =14yt 2 o Nt 2E
l-l--z"';,r'*!i‘II oy = d 1+ xiy? ¥ 1 4 xdy? )= d 1 4 xiy*
2y
'
:_1+H 1+ 22 o :_1+I‘y2+y2+14y‘—21¢y
v= r V= r? = Dy = byl
Thay? o

18, iain{ry] = %;—m{: +y) = cos(zy)-(zy +y-1)=—sinfz+y)-(1+y) =
zeos(zy)y + yeos(zy) = —sin(z + y) — ' sinfz 4+ y) =

zeos(zy)y' + o' sin(z + y) = —yeos(zy) —sin(z + ) =

[ cos(xy) + sin(z + y)] ¥’ = =1 [ycos(ay) +sin(z +y)] = ¢ == iﬁf:f:?ui - f:i - ;i

m‘i{f{xﬂrzmz}]“hiflﬂ} = (=) +2* - 3f(@F - f'(@) + [f(@)] -2c = 0. Ifz = 1, we have
SO+ 3P - O +FOP-2)=0 = f)+1.3.2°. f(1)+2*.2=0 =
Ff+12f1)==-16 = 13f(1)=-16 = [f(1)=-3

d ; el
Ea{m‘y1—33y+2wz}=£{ﬂ} = 2ty et = (P 14y )+ 223 4t ) =0 =

4ty 2 = daty e + 2t = =2y 2t = Byt = {4:532—312y+2yx]1':—2.r‘y+:5x—ﬁryz =

i d_:s _ =25 + = ﬁryj
dy — daty? = 3ty + 2yt
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SECTION 3.5 IMPLICIT DIFFERENTIATION O 113

25 ysin2r = zeosly = poeosr.24sine.y’ = e(—sindy 2" 4eos(2y) -1 =

sin2r.y' 4+ 2esindy -y’ = =Zyeos2r 4 eosly = y'(sinlr 4 Zrsindy) = —ZyeosZr 4 eosdy =

¢ =2ycos2x 4 cosly ¢ (=mf2){(-1})+0 w2 1
= .Whenz=STamdy= % hav =t = = = usati f the
sin Zx + 2z sin 2y NI =y anty = g.wehavey D41 x _ grooanequationo

tangent line isy = £ = 3(z = 2

vala
—t
b
=
L=
I
I
H

Nor'mry=y'=1 = Zr=(oy' +y-1)=2yy' =0 = Zr=ry —y=2yy' =0 = Zr—y=xy'+2yy =
3

Zr=y=(z+)y = ¢ = H Whenx = 2and y = 1, we have ' = ﬁ = 'E,ma.neqmumafrhetangent

lingisy=1= %[I—ELGI'HZ %.r— 1}

04y =2+ % —2)! = o4y =22 + 2" —2)(dr+4yy' —1). Whenz =0andy = 1, we have
0+y' =2(3)(2y'-1) = ¢=2'-1 = g =1,s0anequation of the tangent line isy — 3 = 1(x —0)
nr;,r:z-l-%.

M. 2z + 47 =25(x" = ¢") = A + ") (2r 4 y') = 25(2r - 2yy') =
Hr+yy')= +4°) =Bz —yy') = Q'@ +v%) + 250’ = Be —da(z* +4%) =

a5 b

- 2 2
to 25z —dz(x +y) When.r:ﬂandy=1,wehave;,r'="’2""++'fﬂg=-ﬁz—ﬁ,

T 25y + (= + )

so an equation of the tangent line sy — 1 = =z —3) or y= =2+ 8

; 10:* = %
N @)y =5tm-r? = Iy =51 -2 = y'=TI- (b)

l
So at the point (1, 2) we have y' = 10 12 -1 :%,andanequatlnn

-2
of the tangent line sy — 2= Hx —1) or y=J=— 2. l

Bttt =4 = 248y =0 = ¥ =—zf(dy) =

wo ty-l=—z-y' 1y =—z[=x/(4y]] :_143‘2 + z” __14 since T and y must satisfy the
4 iy 4 v 4 47 4 4y orignal equstion ° + 4y° = 4
s,y = — L
.y ==
Mesingdeowzr=1 = cosy.y =sine=0 = gy = —
COsY
w_ sy cosx =sina{=sing)y’  cosy cosx 4 sina siny(sin ) cos y)
- (cosy)? B cos? y

_ cos” g cosT 4+ sin’ siny cos” ycost +sin’z singy

COEE Y COSY COES Y

Using sin y + cosx = 1, the expression for y” can be simplified to y" = (cos” = + siny)/ cos® y.
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114 O CHAPTER3 DIFFERENTIATION RULES

3. Ife =0inxy + ¥ =&, then we get 0 4 ¥ = &, 50y = 1 and the point where = = 0 is (0, 1). Differentiating implicitly
with respect to = gives us =y’ 4+ y - 1 4 ¥y’ = 0. Substituting 0 for = and 1 for y gives us
O41l4ey’' =0 = eyf==1 = y ==1fe Differentiating zy" + y + ¥y’ = 0 implicitly with respect to = gives

uszry” 4y - 14y + ¥y + 3" - ¥y’ = 0. Now substitute O for =, 1 for y, and —1/e for y'.

1 1 " 1 1 2 w, 1 w1 1
D+(—-)+(—-)+ey +(—-){El(--)=ﬂ = ==4ea+=-=0 = a'"=- = y'=-=
[ B [ [ B e [ [

41. (a) There are eight points with horizontal tangents: four at = = 1.57735 and -

n

i
four at = == 0.42265.
3z° = 6 + 2
by = ‘= =lat(0,1)and 5" = % at (0, 2). -1
(b) y =] Y at (0,1) and y° = 5 at (0, 2)
Equatmnsafthelnngent]tmsnreu:-.z+la.ru1y:§.r+2_
N

(©)y'=0 = 3r°—6242=0 = z=1+313
h 4

A

r
1

id) By multiplying the right side of the equation by = — 3, we obtain the first \ ey
-3

graph. By modifying the equation in other ways, we can generate the other
graphs. -
wly” = 1)y -2)

4.3 =z(x =1}z =2)(z=3)

E =

a

-2 C 4] .ﬂ qh

h -3 =3

u(y” = 4)(y = 2) yly + 1)y = 1)y =2) (y+ 1)y =1)y=2)

:I{I—l]{l—ﬂ} :I{I—l}{.r—:!:l- ={I—1]{I—ﬂ]
3 . i A .
=3 3 3 . Ay . —d =i - 4
—

- 3 g —3 ) 4
=y + 1)(y" = )y =2) y(y” +1)(y = 2) yly +1)(v" - 2)

=y(z = 1)(z - 2) =x(r’ = 1){z = 2) =z{x —1)(z* =2)
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SECTION3.S IMPLICITDIFFERENTIATION O 115

43. From Exercise 31, a tangent to the lemniscate will be horizontal ify’ =0 = 25z —de(a® + %) =0 =
.z[25-4{:sj+yj}|={l = 4yt= 4 (1) (Mote that when = 15 0, y is also 0, and there 15 no horizontal tangent

at the origin.) Substituting 22 for £* + y* in the equation of the lemniscate, 2(z* 4 y*)* = 25(z* — y*), we get

16*

2 —y* =2 (2). Solving (1) and (2), we have z° = 22 and y* = 22 mﬂwfaurpmmsare(t—ﬁ 45 )

L5

2 26 2y b .
.—y—jzl - W0 = y':ﬂ—I = an equation of the tangent line at {xo, yo) is

b = I

Flul H
L~

b i i
V=t = j {.r — za). Multplying both sndesb} gives % - i—g = i:: — =2 Since (o, yn) lies on the hyperbola,
ia ¢}

3

L
w.ghaygi_@:ﬂ
] a2

|

47. If the circle has radius r, itsequation is=” + 3" =" = 2r42yy' =0 = ¢’ = _E: so the slope of the tangent line
u

at Pixa, ya) 15 — = The negative reciprocal of that slope is =2 which is the slope of OF, so the tangent line at
o o

——

P is perpendicular to the radius OF.

1 _Elim-'r
14227 1422

el
49, y ={t.u.n-1 z}z = y'= El[t.an-lzjl . d—f_tan-l.z:l =2tan~'x
k=

5.y =sin~'(2x +1) =

1 d 1 2 1
x4 1) = e
) V1= (de? 4z 4 1) VeI —dx =T =z

VeI &

83 Fiz) = IHE'C-Il::Ia} é?-
’ _ 1 Ay IHE )] o1 _ 3 ——
F{I}—I'r—q I {I’:]-I‘-‘:\EL Ha*)-1= .1:"\.-'"1:5_ {f1]—m+. {Iﬂj

55. J:I{l} = cut,'lit;'l + cut.-l{lj".l'_l =

B = — 1 d1_ 1 2 y__ 1 .1,
TR E T I (0 @t 1+ P+l \ F) T I+ B+

Note that this makes sense because h{f) = % for £ > 0and A{t) = ':’2—“ for ¢ < 0.

ﬂ.y:zﬁin-lz-i-ul—r! =
. 1

RV e

+sin™!'yr = — —sin=lr

4 (sin=" 2)(1) + 5(1 = 2%) (=22 = =+ =
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116 O CHAPTER3 DIFFERENTIATION RULES

55, 1 — arccos b4 acosx
-y = arccos| ————
. 1 (a4 beos z){—asing) — (b4 acosz)(=bsinz)
== - - T
I,' b+ acosx\? (a + beosx)
1= | —"=
lh'l (n-l-—bu.mr)

_ 1 (a* = b") sinr

Val i cos?r = 0 = afcostx |+ boos x|

_ 1 (a® = b*) sinz _ ya? =3 sinzx
T Vel —RyTI—coetz a4 beosz] T a4 beos x| |sinz|

Vi =5
ButdD < r < m, 50 sinz| =sinz. Alsoa >b6>0 = -b:.'uo.-i.zE—b}—mma+bcmx}ﬂ.ﬂ1my':ﬂ—.
a<+beosx
- . 1 . 1 gy =1 Tarcsin T
6. f(z) =T =P arcsine = fz) = V1 =17 ———————— e aresing . = (1 =z =27) = ] = ———
=) @=vi==- = =) ===

Mote that f* = 0 where the graph of f has a horizontal tangent. Also note
I that f' is negative when [ is decreasing and ' is positive when [ is

INCreasing,

d
63 Lety =cos™ 'z Thencosy =zand D <y <7 = —HiIlyd—: =1

dy 1 1 1

d.z__ﬁiny_-y-"l_;_-m#y:_\,-"'l—rz.

[Note that siny > 0 for0 < y < =]

B5. = 4+ y* =" is a circle with center O and ax + by = 0 is a line through O [assume a
and b are not both zero). 4y =¢ = x4+’ =0 = ' = —xy, s0 the
slope of the tangent line at F, (g, yq) 18 —xg/yn. The slope of the line O Fy is gz,
which is the negative reciprocal of =xo/yo. Hence, the curves are orthogonal, and the

families of curves are orthogonal trajectories of each other.

BT. y =cx® = y’:&-za.rti.z”+2y”:k[assmnek}ﬂ] = 2r4+dyy’' =0 = !

1
yy' ==z = y'= —% = —ﬁ = —E,mmecur\-'esa.reanhngﬂnal if

e 2 0. If e = 0, then the horizontal line y = ex® = 0 intersects ° 4 2y* = & orthogonally

at (iv@.{l), since the ellipse =° + 2y* = k has vertical tangents at those two points.
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SECTION 3.5 IMPLICITDIFFERENTIATION O 117

B9. Since A® < a*, we are assured that there are four points of intersection. ¥ i
r* ;,r 21’ Eyy vy’ i =%
a
{1]_£_£—1 Z=_Zyww _, wy _ T s R Sy
Az B2 A B — BT T A2
, zB*
=
y * i,|l.."|.2
JREI BEE 2t 2 g 2t
Now mymy = =—— « —— = =—— » — [3). Subdractin LAt 1y = (2), |'|.-esus s+ 5 == — =0 =
v pa®  yA? a*A* y* ). g equations, (1) = (2). g ¥ AT B
2 2 b 2 F-d Dpd 2 2 2 42 x 2 K.} 2 2 2
B b - i} L] B =4
y_2+y_2:::_2_.:_2 = ¥ +2y :Iﬂzi" = y{,+2 }:I{ﬂz ;](4}.Sm|:e
b B A a B Afa B a‘A
2 I2 I'_: .."12 2

al =t = A* +B we have a” = A% = b* + B ThLB,equatmn{-ﬂhemmstBz:ﬁ = ?:m1

2

VB atA?
substituting for IT in equation (3) gives us mamy = ———7 - :.:? = =1. Hence, the ellipse and hyperbola are orthogonal
iy a” s
trajectories.
nla  nlab
7. (a) (P+—){1 —mb)=nRT = PV-Pnbt=——"or =nRT =

d . g =l _ 3 pyemiy _ O
P{Pl Prnb 4 n al i abl }_dP{nHT] =

PV 4 V. l=nb=n%aV=2. V' 4 2nf%abV=* . V' =0 = V(P=nlaV-i42nifabV=Y=nb=-V =

. dv VE(nb =1V

V= —_—
P = n2al’=2 4 Intabl =3 o dP? PV3 — n2al’ + 2ntab

(b} Using the last expression for dV/d P from part (a), we get

dv (10 L)*[(1 mole)(0.04267 L/mole) — 10 1]

dP ~

(2.5atm)(10 L)* = (1 mole)”(3.592 L - atm/ mole”){10 L)
+ 2(1 mole)*(3.592 L2- atm/ mole®)(0.04267 L/ mole)

B =0057.33 L* -
T 2464.386541 L*- atm

=404 L/ atm.

73. To find the points at which the ellipse ° — @y + y° = 3 crosses the r-axis, let y = 0 and solve for =.

y=0 = 2" —z(0)+0°=3 < z=:=+/3 Sothe graph of the ellipse crosses the z-axis at the points (++/3,0).

Using implicit differentiation to find g, we get 2r —ay’ =y 4 2" =0 = Y (Zy—-z)=y-2r & y' = :;_2:

0-2.3 0423
Soy at (v3,0) is ——— = Zandy' at {=+/3.0) is ——— = 2. Thus, the tangent lines at these points are parallel.
(V3.0) s S =3 ( TRV ¢ poimEs At
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118 O CHAPTER3 DIFFERENTIATION RULES

oty by =2 = 2y 4y ety by-1=0 = v (2 +2)==22" =y &

p_ 2wty o 2oy 4y _

Py 2%y +x =1 = 21y2+y=21:2y+1: < y2ry+1)=z(2zy+1) <

y(2ry 4+ 1) =2(2ry 4+ 1) =0 & (2Zry+1)y=-2)=0 & my==lory=z.Buzy=-1 =
.Izy"!-i-ry:%—z?":ﬂ sowemusthave x =g Then =y + 2y =2 = 1455 =2 & £ 428=-2=0 =
(r* +2)(z" = 1) = 0. So z* = =2, which is impossible, or=* =1 & =z =+1. Sincer =y, the points on the curve
where the tangent line has a slope of =1 are (=1, —1) and (1, 1).

7. (a) If y = f~*(z). then f(y) = =. Differentiating implicitly with respect to = and remembering that y is a function of =,

we aﬂf"mj—g = Lmi—i = ﬁ = (7)== m

1 S S
DO RRAL

(b) f(4) =5 = f='(5)=4. By part(a), (f~')'(5

[SIES

M @y=Jz)amdzy" +y' 42y =0 = zJ(z)+ J(z)+zJ(z) =0. lfz =0, we have 0 4+ J'(0) + D =0,
so J'(0) =
(b) Differentiating 3" + ' 4+ zy = 0 implicitly, we get =™ +¢" - 143" + ' +y-1=0 =
ay™ 2y bxy' oy =0,0J"(x) + 2J"(z) + = (z) + J(z) = 0. If £ = 0, we have

0+2/"0)+0+1 [J0)=1lisgiven] =0 = 2J"(0)=-1 = J"(0)=-%.

3.6 Derivatives of Logarithmic Functions

. o 1
1. The differentiation formula for logarithmic functions, & (log, =) = , Is simplest when a = & because Ine = 1.
=5 i

i flz) =sin(lnx) = [fz)=cos{lnz)- i Inx = cos(lnzx) - i = —ﬂﬁ{:I 2)

1 d 1 1 1
s f@)=hs > f@)=z dr( ) =;(_I_2) =1
Another solution: f{:]:ln%:hd—ln::—ln: = f'{.r}:—%.

1 —sinr

L@ =g (L +esa) = @)= ronamiod O ) = (T s

8. glx) = lll{.re-h:l =hr+he**=lhz-2r = g'(z)= i -2

. 1 2sint
1. Fit) = (Int)*sint = F’{:}:{h.tfm,-t+_~,-in:-zlnt-Izlnt(h.tcmH ";")
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SECTION 36 DERNATIVES OF LOGARITHMIC FUNCTIONS O
2 1)° . ’
13 Gyl =In % = ln(2y + 1)® = lu(y* + 1}11"-! =5In(2y + 1) = %].Ill[yj +1) =
u+
. _ 1 1 1 10 u By’ =y + 10
f 3 -—.2——-_- ) - —
) =550 TR A T [ (2u+ (v +1)
1 d 1 1 1
15 F(s) =Inl Flis)= =——Ins = =+ = =
(=) ps = (=) Ins ds e Ins = slns
5 4 F l 1 1
1L T(=z)=2log,z = T(z)=2 n 2+k:g.,2.., 2 n2=2 ﬁ+luﬁ2;|{1nﬂj .

Note that log, = {(In 2) = {Inzj = In = by the change of base theorem. Thus,

2

T'(z) = 2¢ (ﬁ + In.,).

By =fe™ +ze™)=lnfe™ (1 4+z)) =lnle™)+ln{l + =) = =z + In(l +z}) =

B 1 o | F
v 14z 14=x l4x
g 1 a
1 - '— g = ' L] o -j
2. y = tan [ln{ax + b)] = y' =sec?[lnfax 4 b)) ey Rl Iln{ﬂ1+b:]]a1+b
24 Inx

By=yslhs = y =T — +{InI]2v"'_ Nz

o 2{{1;:}-{2““}{1;{'] _Efﬁ—{i +]J|I]-[:1fﬁ}_2—l[2+|nz'_l__ Inx
! @VE) B = T VA T TR

1 d 1

By=Infseczr] = p'=——secx= socx tanr —tanr = y"
seC T

sec T dr

2. I{I} = 1 —Inzx— 1] =

l=In(z=1)]-1=z- =1 (z=1)l=In{x=1)]+ =

=5-E1.'2.I

_x=l-(z—-1)nfr—-1)+=x

’ _ F o] T =]
fi=)= [1=In(z = 1)]* - [1 = Inf{x = 1)]*

_2x=1=(r=1)ln{z=1)
(x = 1)[1 =Infz - 1)*

[z =1)[1 = In{x = 1))*

Dom(f)={z|z=1>0 and l—Infz=1)#0}={z|xz>1 and In{z-—1)#1}

={z|z>1 and r=1#e'}={z|z>1 and r#l+e}=(lL1+e)U(l+ex0)

EEI—I!

2. f(z) =In(z® =22) = f(a)= ==

: iizih-zl -
Dom( f) = {z | o(zx = 2) >0} = (=oc,0) U (2, =<).

L %{I-{-llll:}:;(l-{h

o

N fir)=ln(z+Inz) = f{:}:m o
Substltuelfnrzmgetf'{l}:; 1+l (1+1)=1-2=2
l4Inl 1 1+E|'
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120 O CHAPTER3 DIFFEREMNTIATION RULES

g 1 .
By=ln(z"=-3c41) = y'=m-{2:—3} = 3'(3) =1 -3 =3, so an equation of a tangent line at

(3.0)isy=0=3{z=3),0ry =3z=9.

B flz)=sinz+nzx = [fz)=ewmz+ iz

This is reasonable, because the graph shows that [ increases when ' is !

positive, and f'(x) = 0 when f has a horizontal tangent,

. flz) = ex 4 Infeosz) = _f'l{a:}:r:-{-— c[=sing) = ¢ —tanz.

Cils I
F(5)=6 = c—tanfi=6 = c=1=6 = c=T
By=(+2°@="+4)" = hy=hlz"+2"(z"+4)7] = bhy=2n(E"+2)+4n(z"+41) =

2x44-

1 1 1621
Sy =2 ——— e f =y e+
y? =42 at + 4 - ¥ ”(;1+2+f’+4)

y' = (= +z}2{zt+4}4( 4r 162" )

a:”+2+z4+4

=1 =1

—— !
| 1 1 4
. y= = 1 =1 = Ilny=-1 =1)=—1Ir 1) =
u 1||'II 1 ny n( 1) niy 2 nI:I ] 2 |{.r + ]-

1 1 1 1 1 x =1 1 27
e e N P = -
v TIzo1 2741 - ¥ y(z{;-l} = +1) = V== (2;-2 :"+1)

. y=2" = Ihy=hsr* = lhy=rhr = yfy=x(lfz)+(nz).-1 = y =y(l+nz) =

vy =2"(l+1Inz)

1
5. y=x""* = lny=Iz** = khy=sinrlhr = y—;:[l'iiﬂI:i'—-i‘-l::lnI}{LmI} =
y x

y’:y{E-i-ln.rtmr) = y =z (E-i-lnrcuh.r)
T x

1
l.y=(cosz)* = hy=lnfeosz)* = hy=zrhewsr = -y ==z c{=sinz) 4+ lneoszr-1 =
u

u =y{lnu.m::— IHIDI) = y =(eosz)*(lncosz — xtanz)
cos T

ﬂ.y:{t&llr}l‘r' = ].IIy:].IIl::T.ElnI]l"r: = Inyzilnt-an:s =
T

1, 1 1 204 Inte 1 = = sec” x In tan x
yy_:s t.an:smz LA a2 v=yv T tanx 2

1
ya':l::mnz]lfz B L y =|::|.':I.T.II]III'_

rtanx =

sec” ¢ lntan o f
ar
x

]nl:-an::)

({.’HCIE&E‘C XL -
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’ . 1 2r 4 Py’
— 2 2 ] 2 —_ 2o L ]
My=h{z"+y") = p _1:1 - {z +y) = y__:sz-{-y"! = ry+yy =2c+y =
; . ’ ;s 2
Y =2y =2 = (P 4y -y =2 = y=——
T U v wy £ |:: u iul':]'ll' T u P

8 flr)=ln(z-1) = f{m]:ﬁ:{m—l]'l = fla)==(z=-1)"" = M@E)=2-1)"" =
Mz)==2-3(z=1)""* = ... = fNg)=(=1)""'.2.3.4. s (n=1x=1)"=(= 1}”";::_11}:':

5. 1f f(z) = In (1 + 2), then f'(x) = —=—, 50 /'(0) = 1.

+
thus, iy ) = iy £ = g L =00 = 0=

3.7 Rates of Change in the Natural and Social Sciences

1. (a) s = f(t) =t* = 8% + 24 (infeet) = v(t) = f'(t) = 3t° = 16t + 24 (in ft/s)

ib) v(1) = 3(1)* = 16{1) + 24 = 11 ft /s

=(=16) £ /(=16)% = 4(3)(24 3 =i
(c) The particle is at rest when v(t) = 0. 3t = 160 + 24 =0 = =19 JI:EH:'} — - lﬁiﬁ '12-
The negative discriminant indicates that v is never 0 and that the particle never rests.

(d) From parts (b) and (c), we see that «(t) > 0 for all ¢, so the particle is always moving in the positive direction.

(e) The total distance traveled during the first 6 seconds () *

(since the particle doesn’t change direction) is =0
=0
flE)=f0)=T2=0=T21.

(2)v(t) =3t" =16t +24 = ih)
aft) = v'(t) = 6t = 16 (in (ft/s)/s or ft/s").
a(l) =6{1) = 16 = =10 ft/s"

(1) The particle is speeding up when v and a have the same sign. v i1s always positive and a 15 positive when 6t = 16 > 0 =
b= %, so the particle is speeding up when £ > % It 15 slowing down when v and & have opposite signs; that 15, when

D<t <t
3. (a) s = f(t) =sin(xt/2) (in feet) = v(t) = f'(2) = cos(mt/2) - (x/2) = F cos(xt/2) (in fi/s)
(b} v(l) = Feos 3 = 3(0) =0 ftfs
(c) The particle is at rest when v(t) =0. Feos Tt =0 & eosft=0 & It=T4nr & t=142n wheren

i5 a nonnegative integer since ¢ = 0.
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122 0O CHAPTER3I DIFFERENTIATION RULES
id) The particle is moving in the positive direction when ©(t) = 0. From part (c), we see that v changes sigh at every positive
odd integer. vis positive when 0 < ¢ < 1,3 <t < 5 7 < <9 and 50 on.
{e) v changes signat ¢t = 1, 3, and 5 in the interval [0, 6]. The total distance traveled during the first 6 seconds is
|£(1) = F(O)] + [F(3) = FOUOI + 1S(5) = FB) + 1(B) = F(B) = 1 = O + |[=1 = 1| + |1 = (=1)| + |0 = 1]

=1+2+24+1=61f

(f) e () v(t) = Fcos(nt/2) =

s —— D a(t) = v'(t) = & [—sin(xt/2) - (7/2)]
3= = (== /4) sin(xt2) ft/s"

5= ' a(l) = (—=*/4) sin(x/2) = —x?/4 it/s’

{hy ° \ (1) The particle is speeding up when v and a have the same sign. From
the figure in part (h), we see that « and « are both positive when

3 <t < 4 and both negative when 1 < £ < 2and 5 < ¢ < 6. Thus,
the particle is speeding upwhen 1 < ¢ < 2,3 <t < 4, and

5 < t < 6. The particle is slowing down when v and a have

opposite signs; that 1s, when 0 < ¢ < L2 < < 3,and 4 <t < 5.

5. (a) From the figure, the velocity v is positive on the interval {0, 2) and negative on the interval (2, 3). The acceleration a is
positive (negative) when the slope of the tangent line s positive (negative), so the acceleration is positive on the interval
(0, 1), and negative on the interval (1, 3). The particle is speeding up when v and o have the same sign, that is, on the
interval (0, 1) when v > 0 and a 2> 0, and on the interval (2, 3) when v < 0 and a < 0. The particle is slowing down
when v and a have opposite signs, that is, on the interval (1, 2) when v > Dand a < 0.

(b)v>0on({0,3)andv < Don(3,4). a>0on(l,2)and a < 0on (0, 1) and (2, 4). The particle is speeding up on {1, 2)

[v=0,a >0)and on (3, 4) [v < 0, a < 0]. The particle is slowing down on (0, 1) and (2, 3) [v > 0, a < 0].

T(a)h(t) =2+ 245t —49° = o(t) = h'(t) = 24.5 — 9.8¢. The velocity after 2 sis v(2) = 24.5 - 0.8(2) = 49 m/s
and after 4 sis v{d) = 24.5 = 9.5(4) = =14.Tm/s

(b) The projectile reaches its maximum height when the velocity is zero. v(i) =0 < 245-08=0 =

24.5
=38 = 25s

4
(c) The maximum height occurs when ¢ = 2.5,  h(2.5) = 2 4 24.5(2.5) = 4.9(2.5)" = 32.625m [or 323 m].

(d) The projectile hits the ground when h =0 & 24+ 245t—-49° =0 &

—24.54 4/24.5% — 4(—4.9)(2
t= JE{-%LQ} ( )@ = o =1y=508s [sincet = 0]

(&) The projectile hits the ground when t = ¢y. Its velocity is v{ly) = 24.5 = 9.81y = =25.3 m/s |downward].
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SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES O 123

9. (a) h(t) = 15t — LBGE* =  wft) = A'(t) = 15— 3.72t. The velocity after 2 s is ©(2) = 15 — 3.72(2) = 7.56 m//s.

3 15 % /15% = 4{ 1L.86 {25
(k)25 =h & 186" =15t425=0 « L= 2(1.86) o t=t =2350rt =2 22 5.71.

The velocities are v(t,) = 15 — 3.72¢; = 6.24 m/s [upward] and v(ts) = 15 — 3.7245 = —6.24 m/'s [downward).

M. (a) A(z) =2 = A'(x) =2z A'(15) = 30 mm? /mm is the rate at which nax) lax?

Ax []

the area 15 increasing with respect to the side length as x reaches 15 mm.
(b) The perimeter is Pi{x) = 4, 50 A'(x) = 2x = %[4:5} = %P‘{z]. The
figure suggests that it Ax is small, then the change in the area of the square x +-vlarl

is approximately half of its perimeter (2 of the 4 sides) times Ax. From the

figure, AA = 2r (Ax) + (Ax)?. If Ax is small, then AA = 2z (Ax) and | )
so AAfAz = 2z. '
13. (a) Using A(r) = mr”, we find that the average rate of change is:

AR =AR) _9r—dm iy AR3) = A@2) _ 6257~ dx

32 1 25-2 056
A(21) = A(2) 441z =4dx
21-2 01

= 4.57%

(i) =41

(b) Alr) == = A'(r)=27r, 50 A'(2) =4x.

{c) The circumference is ('(r) = 2xr = A'(r). The figure suggests that if Ar is small,
then the change in the area of the circle (a ring around the outside) is approximately
equal to its circumference times A, Straightening out this ring gives us a shape that
is approximately rectangular with length 27 and width Ar, s0 AA = 2ar(Ar).
Algebraically, AA = A(r 4+ Ar) = A(r) = x(r + Ar)* = 7r® = 22r(Ar) + x(Ar)™
S0 we see that if Ar is small, then AA = 2rr{Ar) and therefore, AASAr = Zrr.

15 S(r)=4mr? = S'(r)=8mr =
{a) §'(1) = &= fi* /fi (b) 5'(2) = 16x fi*/ft (c) 5§'(3) = 24= £/ 1

As the radius increases, the surface area grows at an increasing rate. In fact, the rate of change is linear with respect to the
radius.

17. The mass is f(x) = 322, so the linear density at x is p(z) = f'(x) = 6.
(a) p(1) = 6 kg/m (b) p(2) =12 kg/m {c) p(3) =18 kg/m
Since pis an increasing function, the density will be the highest at the right end of the rod and lowest at the left end.

19. The quantity of charge is Q(t) = t* = 21* 4 6t 4 2, so the current is () () = 3t% — 4¢ 4 6.

{a) @'(0.5) = 3(0.5)* = 4(0.5) + 6 =475 A b Q1) =31 =41)+6=5A
|continued)
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124 O CHAPTER3I DIFFERENTIATION RULES

The current is lowest when ' has a minimum. Q"(t) = 6t — 4 < 0 when t < £. So the current decreases when t < 2 and

increases when t > 2. Thus, the current is lowestat t = 2 5

H. Withm = '"'lﬂ(l - —)-Iﬁ,
F= 2 (me) = m—{u1+vi{m1—m(l-z—z)—m '“*”'"‘“[‘% (“ﬁ)-m] ('2_*) 7

—ma(1-5) " o[ (1 5) + 5] - v

Note that we factored out (1 = v /c?)~*/? since —3/2 was the lesser exponent. Also note Thal {r.r} =a.

23. (a) To find the rate of change of volume with respect to pressure, we first solve for V7 in terms of .

, c &V C

() From the formula for dV/d P in part (a), we see that as P increases, the absolute value of dV'/d P decreases.
Thus, the volume is decreasing more rapidly at the beginning.

{c}ﬁz_ldv_ 1( f.“-)_ . _C 1

VaP~ "V F) T [PV)P CP F

5. In Example 6, the population function was e = 2* ny,. Since we are wipling instead of doubling and the initial population is
400, the population function is na(t) = 400 - 3*. The rate of growth is n'(t) = 400 - 3' - In 3, so the rate of growth after

2.5 hours is n'(2.5) = 400 - 3*® - In 3 = 6850 bacteria/hour.

1860 — 1750 110 2070 = 1860 210
A @ = gy — o0 - 10 ™ T T -1 10 ¢

(1 4 mz)/ 2 = (11 + 21) /2 = 16 millionfyear

1980; my = 150 = 3710 _ 74O _ 5280 — 4450 _ 530
*THM = 1080 — 1970 . 10 ™™ T Tooo — 1980 10

(rmy + mg)/2 = (74 4+ 83)/2 = 78.5 million /year

=83,

ib) P(t) = at® + bt 4 et + d (in millions of people), where o == =0.000284900 3, b = 0.522433122 43,

e 7 —6.305 641 306, and d = 1720.586 081.
(c) P(t) =at* + bt" +ct +d = P'(t) = 3at” + 2bt + c(in millions of people per year)

{d) 1920 corresponds to t = 20 and F'(20) == 14.16 million/year. 1980 corresponds to ¢ = 80 and

F(B0) = T1.72 million/year. These estimates are smaller than the estimates in part (a).

() f(t) = pg" (where p = 1.43653 x 10° and g = 1.01395) = f'(t) = pg lng (in millions of people per year)
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(f) (20} == 26.25 million/year [much larger than the estimates in part (a) and (d)].

F'(B0) = 60.28 million/year [much smaller than the estimates in parts (a) and (d)].

(g) P'(85) = 76.24 million/year and f'(85) == 64.61 million/year. The first estimate is probably more accurate.

29. {a) Using v = ﬁ{ﬂz - ,_2] with & = 0.01, { = 3, P = 3000, and p = 0.027, we have v as a function of r:
Ly

o(r) = %{n 012 = r2). ©(0) = 0.925 em/s, v(0.005) = 0.69T cm/s, v(0.01) = 0.
P _. y . P
(b) vir) = m{ﬂz —r{] = o'(r)= m{—ir}:—ﬁ When ! = 3, P = 3000, and ; = 0.027, we have
3000r

v(r)= ~30027)3" '(0) = 0, v"(0.005) = —92.592 (cm/s)/cm, and v'(0.01) = —185.185 (cm/s) fem.

(c) The velocity 15 greatest where - = 0 (at the center) and the velocity 15 changing most where r = i = 0.01 cm

(at the edge).

3. (a) C(z) = 2000 + 3z 4+ 0.01z* + 00002 = '(x) = 04 3(1) + 0.01(2x) + 0.0002(3x?) = 3 + 0.02x + 0.0006z"
(b) C'(100) = 3 4 0.02(100) 4 0.0006(100)* = 3 4 2+ 6 = $11/pair. C”(100) is the rate at which the cost is increasing as
the 100th pair of jeans is produced. It predicts the (approximate) cost of the 100t pair.
(c) The cost of manufacturing the 101st pair of jeans is
C(101) = C(100) = 2611.0702 — 2600 = 11.0702 = §11.07. This is close to the marginal cost from part (b).

x i rp'(z) = piz) -1 rp'(x) = p(x
33.{&}:1{.17}:% = A(z)= P{}IQP{] = P{LP{]
Afz) >0 = A(x) s increasing; that is, the average productivity increases as the size of the workforce increases.
(b} p'(x) is greater than the average productivity =  p'(z) > A{z) = p'(z) > @ = zp'(z) > plz) =

zp'(z) = plz) >0 = M}ﬂ = A(z) >0

B/ot=l (3c+~.ﬁ 9c = )_],.(1.:+¢'gc_}-h.2 =

1+.lﬂc”-s U2 (18c =8
ﬁ 1 d' [1“:"4"*"'{!']"-'_] zl:: c) (18 )
3e 4 40 —Br:df-' 3c+ +0e? = 8
34 O =4

VBT —Be _ 3V —Bc40c—4
" 3e+ v9e2 - Be chz-a.c{ac+xfgc2-a.c]'

This derivative represents the rate of change of duration of dialysis required with respect to the initial urea concentration.

P'l-' PV 1

3. PV = nRT T =
== = [10)(0.0s21) _ 0.821

(PV). Using the Product Rule, we have

dT
iy 321 o POV (O +VOP (0] = 50 821 [(8)(=0.15) + (10)(0.10)] =~ —0.2436 K /min.
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o d”

39. (a) If the populations are stable, then the growth rates are neither positive nor negative; that is, S = 0 and o = 0.
ib) “The caribou go extinet” means that the population is zero, of mathematically, © = 0.
d” d'ﬁ . - .
(c) We have the equations —— = aC’ = bC'W and —— = —cWW +dCW. LetdC/dt = dW/dt = 0, a = 0.05, b =0.001,

¢ = 0.05, and d = 0.0001 to obtain 0.05C — 0.001CW =0 (1) and —0.05W + 0.0001CW =0 (2). Adding 10 umes

(2) to (1) eliminates the C'W-terms and gives us 0.05C — 0.5 =0 = ' = 10W. Substituting ' = 10W into (1)
results in 0.05(10W) = 0.00L{10W )W =0 < 05W = 00IW*=0 & S0 =W =0 =
W({EN=-W)=0 < W =00or50. Since O = 100, C' = 0 or 500. Thus, the population pairs (C, 1) that lead to

stable populations are (0, 0) and (500, 50). S0 it 15 possible for the two species to live in harmony.

3.8 Exponential Growth and Decay

1. The relative growth rate is %% = 0.7944, 50 % = 0.7944F and, by Theorem 2, P(t) = P(0)e"- ™8t = 2,.0-7944t

Thus, P(6) = 2" ™4 = 234 99 or about 235 members.
3. (a) By Theorem 2, P(t) = P(D)e* = 100e*". MNow P(1) = 100" =420 = & =£0 = k=42
So P(t) = 10040t — 100(4.2)".
(b) P(3) = 100(4.2)* = T408.8 = 7409 bacteria
(c)dPfdt =kF = F(3)=k.-P(3)= |[In4.2}{lﬂﬂ[4.2}"] |from part (a)] == 10,632 bacteria/h
(d) P(t) = 100(4.2)' = 10000 = (4.2)' =100 = ¢=(In100)/(ln4.2) = 3.2 hours

5. (a) Let the population (in millions) in the vear ¢ be P(t). Since the initial time is the year 1750, we substitute ¢ — 1750 for ¢ in

Theorem 2, so the exponential model gives P(t) = P(1750)* =17 Then P(1800) = 980 = 790£ (180017300 _,
= =M o mZR =50k = k=g In=2 = 0.0043104. So with this model, we have

P(1900) = T90£*1900=1730} = 1508 million, and P(1950) = 790e51950=175) = 1871 million. Both of these
estimates are much too low.

{b) In this case, the exponential model gives P(t) = P(1850)e*t-1%30)  —  P(1900) = 1650 = 1260e* (190018500
I8 — k(50) = k=& Ini8 = 0.005393. So with this model, we estimate
P(1950) = 1260195015500 - 9161 millior. This is still too low, but closer than the estimate of P(1950) in part (a).
(c) The exponential model gives P(t) = P{1900)e*(t=19%) = pP(1950) = 2560 = 1650419301900}
In 28 — k(50) = k=2 In 3 = 0.008785. With this model, we estimate

P(2000) = 1650 2000=1900) —~ 3079 million. This is much too low. The discrepancy is explained by the fact that the

world birth rate (average yearly number of births per person) is about the same as always, whereas the mortality rate
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SECTION3.8 EXPOMENTIAL GROWTHAMD DECAY O 127

{especially the infant mortality rate) is much lower, owing mostly to advances in medical science and to the wars in the first
part of the twentieth century. The exponential model assumes, among other things, that the birth and mortality rates will

remain constant.
d
T. (a) If y = [N20:] then by Theorem 2, Ey = 00005y = p(t)=y(0)e= 0000 — (p=000051
(b) y(t) = Ce=0M0 — g = L~ —pg = _00005t=In09 = t=—2000In09z=2211s

9. (a) If y(t) is the mass (in mg) remaining after ¢ years, then y(t) = w(0)e* = 100*
y(30) = 100e™* = 3(100) = =21 = k==(In2)/30 = y(t)= 100"/ = 1p0.2-1/3%

(b) y(100) = 100 - 2=1/30 = 9 92 mg
(c) 100e=0n30 =1 = _(In2)t/30=Ini; = t=—30m001 ~ 199 3 years

11. Let y{t) be the level of radioactivity. Thus, y(t) = y(0)e™* and k is determined by using the half-life:

Iny; In2
—k(5730) _ —s7a0k _ _ _ : _
w(5730) = zy{ﬂ} = y(D)e yl[[ll} = e _% = =5T730k _ln% — k__Br, = =m0
; tin2
If 74% of the "*C remains, then we know that y(¢) = 0.74y(0) = 0.74 =~ AAT0 - 1074 = —
i
¢ = -5T30n0.T1) 450 ~ 2500 years

In
13. Let ¢ measure time since a dinosaur died in millions of vears, and let y(t) be the amount of K in the dinosaur’s bones at
time ¢. Then y(t) = y(0)e™"" and k is determined by the half-life: »(1250) = Ly(0) = y(0)e™ ™ = Ly(0) =

Ir In2
Tt oL o _1250k=lni = k=-— lzl.:]_lzlﬁl] To determine if a dinosaur dating of 68 million years is

possible, we find that y(68) = y(0)e~*"*) = 0.963y(0), indicating that about 96% of the K is remaining, which is
clearly detectable. To determine the maximum age of a fossil by using “*K, we solve y(t) = 0.1%y(0) for t.

11 0.001
p(0)e~* =0001y(0) < e~ ™ =0001 = —kt=In0001 & t= —{I:EW 7z 12,457 million, or

12.457 billion years.
. dl” dl” -
15 (a) Using Newton's Law of Cooling, 5= = k(T = T,), we have 5= = k(T — 75). Now lety = T = 75, 50

y(0) = T(0) = 75 = 185 = 75 = 110, 50 y is a solution of the initial-value problem dy/di = ky with y{0) = 110 and by
Theorem 2 we have y(t) = y(0)e"! = 110
y(30) = 110e™* =150 -75 = M* =I5 =18 = p= Lin2 goy(t) = 11055 (#) and
y(45) = 1103 (2) ~ 62°F. Thus, T(45) = 62 + 75 = 137°F.

BT =100 = y(t) =25 y(t) =110eH(8) 225 = b =B = FinB=n =

30 In 2%
t = =l = 116 min.
In ==
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dT d
17. T = k(T — 20). Letting y = T — 20, we get d_:I = ky, so y(t) =y{[|l:]-ekt. w(0) =T(0) =20 =5-20 = -15, 50
y(25) = y(0)e*™ = —156*** and y(25) = T(25) — 20 = 10 — 20 = =10, 50 =15** = =10 = % =2 Thus,

= — 15t In{2fE)e g simply, P - § = = &]u’za =

25k = In($) and k = & In(2),s0 y(t) = y(0)e*
ket _ {E]tﬂa = y{l] — —15. {;]u’ia_

(a) T(50) =20 4 y(50) =20 — 15 (3" =20 -15. () =20 - £ =133°C

(b)15=T(1) =20+y(t) =20 -15- (3)* = 15.(3)" =5 = (3 =3 =

= 67.74 min.

(t/25) ln(%} = ].II{%J = = ﬂEIn{%]fhl{%]

19. (a) Let P(h) be the pressure at altitude h. ThendP/dh = kP = P(h) = P(0)e** = 101.3¢"".

P(1000) = 1013 = 87.14 = 1000k =In(3) = k=gmh(FE) =

P(h) = 1013 e =(82) 50 P(3000) = 10136 =(H}) = 645 ko

(b) P(618T) = 101.3 ¢ 8 2(#r4) = 30,0 kpa

i
2. (a) Using A = An(l + 1) with Ag = 3000, r = 0.05, and t = 5, we have:
T

(i) Annually: n = 1; A=3000(1+ &2)™" = 8352884
(i) Semiannually: n =2, A =3000(1 + L05) %% — §3840.25
(iii) Monthly: n = 12; A =3000(1 + £92) ™ = $3850.08
(iv) Weekly: n = 52; A =3000(1+ 8.05) 2% — $3851.61
(v) Daily: n = 365; A '=3000(1 + 205) %5 = 3850 01

(vi) Continuously:

A = 3000095 = §3852 08

(b) dA/dt = 0.05A and A(0) = 3000.
39 Related Rates
L dV _dVde _ ,ds
W= = =T

3. Let » denote the side of a square. The square’s area A is given by A = &*

. Differentiating with respect to ¢ gives us

di o dA
5 _Eaﬁ When A = 16, s = 4. ‘*suhsmuunnelmrsandﬁfur— 7 Bivesus —= = 2(4)(6) = 48 cm?fs.
5 V=arth=n(5)"h=257h = AV _osrdt o 395 dr_ 3 m/min
i di dt df 257
o ds dr ds _ o,
T.5=4ar" = o = 4x - 2r 7] =i =47-2-8.2 = 1287 em” fmin.
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SECTION39 RELATEDRATES 0O 129

dr dy dydr 1 i 3 dy 3
9. = /2 land — =3 — =——==(2 1742 .2.3= ——— Wh =4 —=—=1.
@y =yi=+ dt = W dzd 2t 7 M TR
2 2 1,3 1 iy
by=+2zx+l = y =2r4+]l = dr=y -1 = zr=gzy —Ea.rldﬁzﬁ
d.r d.zdy dr
=y-a= Whe =12, y=+v20=25 - = ala) = 23.
& dgar Y=o Whenz ¥ 50 7 =5(3)
d . . o dx dy d= dx dy dz
i, — (2% Py = —1o Dy — 4. 3 2o — ) — a0
@ty +a)=q0 = =g yd!+ i = rFxtvg g

de _ _ dy d= -
== Bdi_-'laru:ll[.r._y._] (2.2,1), then 2(5) +2(4) + 1= =0 = — ==I8.

13. (a) Given: a plane flying horizontally at an altitude of 1 mi and a speed of 500 mi/h passes directly over a radar station.
If we let ¢ be time {in hours) and = be the horizontal distance traveled by the plane (in mi), then we are given

ﬂ"lﬂ‘ldr,-"d! = 500 mij'll.

(b) Unknown: the rate at which the distance from the plane to the station is increasing {c) il
when it is 2 mi from the station. If we let y be the distance from the plane to the station, '7
then we want to find dy/di when y = 2 mi.

{d) By the Pythagorean Theorem, y° = z° + 1 = 2y (dy/dt) = 2z (dz/dt).

dir 3
{e}I=§E_—{5m] Sincey® =z 4+ Lwheny =2,z =3, %0 d! %{m]:zswﬁa 433 mi/h.

15 (a) Given: a man 6 fi tall walks away from a street light mounted on a 15-fi-tall pole at a rate of 5 fi/s. 1f we let ¢ be time (in 5)

and  be the distance from the pole to the man (in fi), then we are given that dc/dt = 5 fi/s.

(b) Unknown: the rate at which the tip of his shadow i1s moving when he is 40 fi {c)
from the pole. If we let i be the distance from the man to the tup of his 15
d 6
sha:lﬂw{mﬁ},Thenu.'ewa.ntlnﬁm:lal[.r+y}when.r=4l]ﬁ_
x ¥
15 x4y 3
{d}B}'mmJLﬂrmangles,?: = 1ly=6zs+6y = W=6zr = py=3=
v
ie) The i ntﬂwshadawmvesataratenf—{ +y)= 4 -}-2 —EE—E{S}—ETUSL
P TrMEG\TTIT) T3 T T
. dx d g
17. y ‘I.Jl.-’n:;m:g.u.'lim|‘.‘nmI=IEF:DmJJ»’ham:IE!"'=2-Erm|,.r“h.:‘::2+1,||2 =
d= dr dy d= dr dy d= 1/ dr dy
2 — =22 pay— s —=r—4y— —=—rx—+u—|.
z x - w e T T a Y a T @ -(Id:+ydt)
After 2 hours, z = 2(60) = 120 and y = 2(25) =50 = == ./120¢ 4+ 50° =130,
1 dr  dy)\  120(60) + 50(25)
e U(Id: ”.:u) 130 mi/
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130 O CHAPTER3I DIFFERENTIATION RULES

- d d y :
19. i ‘l.iil.-'em':eghj'l.':el'n‘.‘rm'_j—:l:=41’t|.-’s.-3m:l{.!—i:=Eni"tJ.F:?L:‘:{r+1,|-:|1+5{]n|]2 =
X - d-
i z 2= -= =2z + y}( ‘ﬂ) 15 minutes after the woman starts, we have
Yo
¥ = = (4 fi/s)( 20 min)(60 s/min) = 4800 ft and y = 5. 15 60 = 4500 =
- p = = /T2500 + 1500)7 + 5007 = /56, 7TI0,000, 50
dz x4y dz 4800 4 4500 33"'
—_——=— = — i B s
i £ ( ) 3/ 86,740 'DUGI: 5) = ' B6T4 B/

2. A = 1bh, where b is the base and h is the altitude. We are given that % = 1 em/min and % = 2 em* /min. Using the

dA l(bdh db
T2

- E+fE).Wh&nh:.'ll]andﬂ.:l[l],we}mvelmz%b{ll]] = =10 =

1 b dbs db  4=120
a_m,mz_i(m-1+mi) = 4= Eﬂ-+1l]E = 2= 0 = —1.6 cm/min.

d I : ;s
3. 1o [ Wearegwenthatd—:=35I-:m,-"handd—;i=25kmfh_ ;*=|:;_-+;,r:|2+1t:l|:]-J =

! d = dr dy

2 — =73 — |. At 4:00 PM, £ = 4(35) = 140 and y = 4{25) = 100

dt {I+y}(d£+d'£) = =4(38) v =4(25) =

. ) == /(140 + 100)% + 100% = /67,600 = 260, s0

d= x4y jfdr dy l-ﬂ]+lﬂD T20

_— — — e — 80 35425 = 554k
A a z (au & Sen o0 T =y m/h.

. dv
2. If ' = the rate at which water is pumped in, then e ' = 10,000, where
A
V= %m—zh 15 the volume at time {. By similar tnangles, ==

1
5= F = F_Eh ==

v

8, o8 dv » dh _
%#{%h] h=EK = i g-h R When i = 200 cm,

e

dh

= 20 cm/min, so ' = 10,000 = %{mnj“{zu} = = 10,000 + @w == 289,253 cm’fmin.

. 025 03 025 The figure is labeled in meters. The area A of a trapezoid is
\ " = / Z(base; + bases )(height), and the volume V" of the 10-meter-long trough is 10.A4.
N ]
Thus, the volume of the trapezoid with height i is V' = (10)2[0.3 4 (0.3 4 2a)]h.
0.1
i 0.25 1 F_E 2
By zimilar triangles, A=85 =3 so2a=h = V =>5(0.6+h)h=23h4+5hk".
]
dV dV dh dh df 0.2
MHOW — — 0.2 =(3 + 104)— —_— = — When i = 0.3
NET T ama T BHIMTE = F =3rion ek =05
dh__ 02 02 ml.-"mm im]»’rnlm::rrEf:rt‘-..r"mml
dt — 3+10(03) ~ a3 3
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SECTION39 RELATEDRATES O 13

dv 1, 1 _(h\* xh®
29. Wi enthat — = 30 fi*/min. V = =ar*h = =n = | h= —
e are given = Jmin ST h = 2a| 5 =
v _dvdh . wh'dh _ dh _ 120
dt — dh dt T4t dt — wh?

Whenh =10/, 2t = 120 _ 6

10— 0.38 ft/min.

31. The area A of an equilateral triangle with side = is given by A = /3"

% =1v3-2¢ % = 1/3-2(30)(10) = 150+/3 em® /min.

33. From the figure and given information, we have = +yt =17, j—:‘ = =0.15m/ s, and
wall

dx
— = 0.2m/ s when z = 3 m. Differentiating implicitly with respect to ¢, we get

dy

dr dy =0 = y—= -—Id—I. Substituting the given
dt et

Ayt =L = 2e— 42y
¥ T dt

information gives us y(=0.15) = =3(0.2) = y=4m Thus 3* + 48 =17 =

L*=25 = L=>5m r grounc
35. The area A of a sector of a circle with radius r and angle 8 is given by A = £+0. Here r is constant and 6 varies, so

% ; jjﬁ The minute hand rotates through 360° = 2x radians each hour, m% = lrz{h] = wr® cm® /h. This

answer makes sense because the minute hand sweeps through the full area of a circle, m+, each hour.

dv . dP
v —p
ar TV =

37. Differentiating both sides of PV = C with respect to ¢ and using the Product Rule gives us P

dl’ Vv dP . a dr dV 600
=P a When V" = 600, P = 150 and T = 20, so we have T IED{

20) = =80. Thus, the volume is

decreasing at a rate of 80 cm®/min.

11 .1 _ 1 1 _ 180 _ 9 400 11,1
3. With R, = 80 and R, = 100, — L1809 o r=2 pifferentiating £ = L 4+ 1
fH Hy = stand e R W "wR, " # 100 sooo  do0° " p - erentaing B = oot &,
1dR _ 1dR, 1 dR, dR . 1dR, 1 dR,
th tot have ——m — = ——— — = — —= —_— = i m—— e —= | When R, = 80 and
wihrespectiotbwelave T =" ®E @ W& = @ A TR T i
dR 107
R =100, = = | (03 0.2 0.132Q/s.
: *dt [m2 )+ muﬂ{ }] 510 /s

#1. We are given df /dt = 2°min = I rad/min. By the Law of Cosines,

¥ = 12° 4 15" = 2{12)(15) cos f = 360 = J60costd =

dx i dr 180 sin & dif o
9z _ eensing 2 dz _ 180aind af s
ZId-t 'iﬁl]mnﬂdt = 5 — TR When & = 60°,

_ 180sin60° 7 _ av3 _ VTx

da: E
3689 = 360 60° =+189 =3 — = —= = — = 0.39G L
=4 oS W V21 d.', s3I 90— 3750 21 i m,min
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132 O CHAPTER3I DIFFERENTIATION RULES

43. (a) By the Pythagorean Theorem, 40007 + y* = £, Differentiating with respect to ¢,

dy df d
wenhtamzyﬁ_zt‘ Wekrmﬂmd—;:_ﬁmﬂfs,mwhenyzﬂml}ﬁ, £ ,
{ = /I0007 + 3000F = /T5,000,000 = 5000 ft
A0
3000 1800
and——“dy 600) = —— = 360 fi/s.
T4t = 5000 000 =% /s
Y i d g oy g, ! 1 dy df cost @ dy
b) Here tanfl = —— —t 9:_(_) st = - Y urhe
(b) Here tanf = mem - = (tanf)= (mem) = =Cfp=mma = = oo @ n

_ dy _ _ o 4000 _ 4000 _ 4 (4/3)"
¥ =3000 ft, = = 600 fi/s, €= 5000 and cosf = —— = —o _5’md£ ~ oo (690) =0.096 rad/s.

x o i ldzr F AT . 1dr
e 5 TUETEE T =3 6/ "F@; !
d.: 5t 2% 10
— = —n(v—r) ——#kmfmm [F= 130 mi/h] 5

d .
47. We are given that d_: = 300 km/h. By the Law of Cosines,

v =2 4+ 1% = 2(1)(x) cos 120° = =* +1-2z(-3)=z"4+z+Lso

dy dr dr dy 2r 4+ 1dx W -
oy W _ o 9L 4 Y _ZITF T Afier 1 minute, r = 39 — 5k
VETEmYE T m T Ty Mher i mim w - oNm =
— dy _ 2(5)+1 1650
VE W = 5 .'—{ 0) = = /h.

49. Let the distance between the runner and the friend be £. Then by the Law of Cosines,
£% = 2007 4+ 100° =2 - 200 - 100 - cos # = 50,000 — 40,000 cos 8 (=). Differentiating

df el .
implicitly with respect to t, we obtain 2¢ i =40,000( = sin &) e Now if I is the

distance run when the angle is 8 radians, then by the formula for the length of an are

1 dtl 1 dD 7
on acircle, s = v, we have I = 1008, s0 8 = — —_— =
&=r 100 0 = T =100 & = 100 To substitute into the expression for

%,wemuikrmw.ﬁinﬂalmenm when £ = 200, which we find from () 200¢ = 50,000 = 40,000 cos8 <

cosf =1 = sinf=,/1— (1] = 215 Substituting, we get 2(200) % = 4000048 ( 1) =

df fdt = TT“"ﬁ =2 6.78 mfs. Whether the distance between them is increasing or decreasing depends on the direction in which

the runner 15 running.
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SECTION 3.10 LINEAR APPROXIMATIONS AMD DIFFERENTIALS O 133

310 Linear Approximations and Differentials

1 flrj=2"=2"4+3 = [fr)=3c" =2r, 50 f(=2) = =0and f'{=2) = 16. Thus,
Li{z) = f(=2) 4 ['[=2)(x = (=2)) = =0 4 16{x + 2) = 16z 4 23
Lflz)=yT = fl=z)= %I-["u = 1/(2/Z),s0 f(4) = 2and f'(4) = I Thus,

Lix)=fl4) 4 ff4)iz=4) =24 Lz =d) =24 trx=1=3r+ L

5 flr)=v1=-z2z = [f'2)=

so f(0) = 1and '(0) = —4.

2,,51-_;‘
Therefore,

VI=z = f(z) = f(0) + f(O0)(z =0) =1+ (=3 z =0) = 1 = §=.
S04/00=yT=01=1-201) =095

and 0.99 = /T=0.01 = 1 — £(0.01) = 0.995.

1 flz) =ln(l+z) = f(z)= —sn_,l"{ll}}_l]andf{} . I

Thus, f(x) == f(0) + f'(0)(x =0) =04 1{z) = =. We need [ {—IHM
— ||
1

In(14x) =0.1 <z < In(l 4 x) 4 0.1, which is true when

=0.383 < x < 0.516. L /
8 flr)=¢T+ 2 = f(z)= 1+ 2x)=*4(2) = 31+ 2x)=%14 50 :

F{0) =land f'(0) = . Thus, fz) = f0) + [0}z =0) =1+ 1z 4+l

We need §TF 22 —0.1 < 1 + 2z < T+ 2z + 0.1, which is true when L =

=0.368 < = < 0.6TT.

—iL5 1
0

11. (a) The differential oy is defined in terms of dx by the equation dy = f'{z) dz. Fory = f(x) = ze™**,

flz) =ze™ (=d) 4 e~ . 1 =™ (=dr 4+ 1), 50 dy = (1 = dr)e™"dxr.

() Fory = () = VI=. £(0) = 0 = 1) (=16") = -2 oty = -2

(b) Fory = f{v) = :_:
Fiw) = 1+ v“}{-{ﬂlni :;— v)(2v) _ =201 El}:}.{ 1-o%)] _ {l_ibif:::z - :4:;}21
sody = ﬁ dv
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134 O CHAPTER3 DIFFERENTIATION RULES
15. {a}y:zz‘rm = dy:e*"fm-ll—ad.r:ﬁe’fmdr
(h)x=0anddr=01 = dy=1%""(0.1)=00L

I

T (aly=v3+E = dy= %[3 + 22 Y2 (21)dx = ﬁ.ﬁ
I

1

(-0 = 5(=0.1) = —0.05.

(Br=landdr=<0.1 = dy=

By=flz)=z"=4z, s =3, Az =05 =

Ay = f(3.5) = f(3) = =175 = (=3) = 1.25

dy = f'(z)dz = (22 — 4) dx = (6 — 4)(0.5) = 1

Ny=flz)=yz=2, =3 Azr=08 =

Ay = f(38) = f(3) =vIB-1~0.34

1 1
wz-z'ﬁ_ 2(1)

dy = f'(z)dz = (0.8) =0.4

23. To estimate (1.999)°, we'll find the linearization of f(z) = =" ata = 2. Since f'(z) = 4", f(2) = 16, and
F'(2) = 32, we have L{r) = 16 + 32(x = 2). Thus, =* == 16 4 32(x = 2) when r is near 2, so

(1.999)% = 16 + 32(1.999 — 2) = 16 — 0.032 = 15.068
By=flz)= YT = dy=3iz""*dz. Whenz = 1000and dx = 1, dy = £(1000)~*/*(1) = g, s0
V1001 = f(1001) = f(1000) 4 dy = 10 4 = = 10.003 = 10.003.
Ny=flz)=e" = dy=e"dr Whenz =0and de=0.1,dy = enl:l].l:l- =10.1, s0
e = f(0.1) = f(0) +dy=14+01=11
B y=flz)=secx = ['(r)=secxtanzx so f(0)=1and f(0) =1-0=0. The linear approximation of [ at 0 is
S0} 4 F{0){z = 0) = 1 4 0(z) = L. Since 0.08 is close to 0, approximating sec 008 with 1 is reasonable.

Hy=flz)=1z = [z)=-=1/z" s0 f(10) =0.1and ['(10) = —0.01. The linear approximation of [ at 10 is
F(10) 4 f'(10)(z = 10) = 0.1 = 0.01(z = 10). Now f(9.98) = 1/9.98 = 0.1 = 0.01(=0.02) = 0.1 + 0.0002 = 0.1002,

s0 the approximation is reasonable.
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SECTION 3.10 LINEAR APPROXIMATIONS AND DIFFERENTIALS O 135

33 (a) If = is the edge length, then V = 2" = dV = 3a* dex. When = = 30 and dx = 0.1, 4V = 3(30)*(0.1) = 270, so the
maximum possible error in computing the volume of the cube is about 270 em®. The relative error is caleulated by dividing
the change in V, AV, by 1. We approximate AV with 17,

Relalive efmof = = ——= =3—=3
Vv Vv 3 T

AV dV  3a'dr  _dr (E) -
Percentage error = relative error x 100% = 0,01 x 100% = 1%.

(b) S =6z = dS=12rdr. Whenz =30and dr = 0.1,d5 = 12(30)(0.1) = 36, so the maximum possible error in

computing the surface area of the cube is about 36 cm®.

I "

AS _dS _ 12zds 24;_2({:_1
~“\ 30

Relative error = == —) = 0.006.
Percentage error = relative error x 100% = 0.005 = 100% = 0.5%.

35 (a) For a sphere of radius r, the circumference is O = 2 and the surface area is § = 477, 50

! [ e 2 L2 B4
r==— = S=dr =— = dS==0dC When O = 84 and dC' = 0.5, dS = —(84){0.5) = —,
2x 2 x T T T
B4 B4
50 the maximum error is about — == 27 cm”. Relative error == — ‘h =0.012 = 1.2%
T ‘:. 342;’:1'

] K
by V= 2m = 24 Cy = "q_ = dV = _LC?dC. When C = 84 and dC = 0.5,
3 3 \2x (T 22

dV = 2[34] (0.5) = 1764 , 50 the maximum error 1s about % = 179 em®
w2 )

dV 1764 /x* 1
The relative error is approximately Vv = W =5 = 0.018 = L.8%.
I A V=arth = AV =dV =2rrhdr = 2arh Ar
{b) The error is

AV =dV = [#{r + ﬁr}zh - #rjh] = Zxrh Ar = 7rih + 2rrh Ar + ﬂ{ﬂr]jh = arih = Parh A = ﬂ{ﬂr]zh.

Vv Vv AT =(V/R-)dR d i
WV=RI = I:E = dI:—R—dH Therelatweelmrlncalcmm.mgjusTaTz%_ =

Hence, the relative error in calculating I is approximately the same (in magnitude) as the relative error in i

o d
a. {a}d::ﬁd;:ﬂd;:ﬂ {h}d{m}——[m]d.r—cd—:dr—cdu
o du  dr _du dr
d du du dir diu
I{d}df_uv]_z{uu}i‘:_ HE+L‘E _uEdI+uEdz_udu+ndu
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13 O CHAPTER3I DIFFERENTIATION RULES

(E)da:: e dr 5 _ e 2 de :Udu—judn

v r L

o)
ifyd(z") = %
43. (a) The graph shows that (1) = 2,50 L{z) = f(1)+ {1}z = 1) =5+ 2{zx = 1) =2x 4+ 3.

F(0.9) = L(0.9) = 4.8 and f(1.1) = L{1.1) = 5.2.

ib) From the graph, we see that f'(x) is positive and decreasing. This means that the slopes of the tangent lines are positive,
but the tangents are becoming less steep. So the tangent lines lie above the curve. Thus, the estimates in part (a) are too

large.

3.11 Hyperbolic Functions

1. (a) sinhD = (" —=e~%) =0 (b) eosh0 = (" + ™) = L{141) =1

3. (a) cosh(ln5) = 3(™® 4+ =) = %{5+ I[e'l“"':]--’} =2(54+5"") = %[5 + %J ==

{b) cosh 5 = 3(e” + &%) = 74.20095

5. (a) sech = L :lzl ib) cosh=! 1 = 0 because cosh 0 = 1.
cosh 0 1
1. sinh{—x) = [~ —e=l=)] = ™ — &)= —F(e7F — ") = —sinhzx

9. coshr 4+ sinha = 2(e® + ™) 4 2(e® = ™) = £(2e%) = ¢*

1. sinhx coshy + coshz sinhy = [$(e" = e™)|[2(e” + e7¥)] + [3(e” + €™%)][3(e" = e™¥)]

= ;—[I[e-lﬂ" 4T T e= ") + {EE-'-H — ST g Y e ")

= (2" — 2e7F V) = LY — e~ =) = sinh(x 4 y)

13. Divide both sides of the identity eosh?z —sinh®r =1 by sinh® 2

2 a2
cosh“xr  sinh”r 1 . .
—_— = —— = — = cothz=1=wch®z
sinh®“x sinh”x sinh*

15. Putting y = x in the result from Exercise 11, we have

sinh 2x = :-ii.llll{:l: + z] = sinh x cosh x 4 cosh x sinh ¥ = 2sinh x cosh =,

_ sinh{lnr:l _ f_s_'l'n' - e-lu']fﬂ _x— {e-lnzj-l _x—- =t _x—- lfz _ {:52 - lL-".I =1
7. t.anhl{ln::] - L‘U.Hlll::].ll.]::]' - f_s_'"'” + e‘l“']fﬂ T x4 I{el""]‘l T x4z~ x4 lfz - {:l:": + lL-".I T4l

19. By Exercise 9, (cosh r 4 sinhx)" = (¢®)" = " = cosh nr 4+ sinh nr,
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SECTION3.11 HYPERBOLICFUNCTIONS O 137

1 3
. sechx = sechas = — = —
e = bz © O *TE3T s
cosh? x —sinh*z =1 = :-iinhj.I:chlle—l:{;]z—l:l,—f = hin]lI:% [because = > 0.
1 1 3
hr = wrhf = — = —
e sinh & = e 413 4
sinhx 43 4
tanh xr = tanhy = — = —.
= shy 3f3 5
I SRS S
o II_T.iI.T.Ih.E oo I_dfﬁ e
gf - =T =T . 1 == 1=0
B - Ser——h vy
. B gf —e=" g* a e =1 =1
(b} 2l!lllm: tanh x _IEEISE —e‘+c" e _lll-ﬂlx = +1 __l:]-+ 1= =1
EF -
ic) ].|m sinhz= Hm — — = oo
I—aD
E =T
{d) lim sinhr= lim £ e
= o= 0 2
2
{e) ].|m sechr= lim ————=10
oo gT 4 =T
s - . 14e™™ 140
(f) ].II'.[I LUHII_:IELm.r_'_:IHI:cﬁ_m_l [{'}!'. Uifpﬂﬂ{ﬂ}]
cosh

(2) lim cothx = lim
=it

i e = oo, since sinh x — 0 through positive values and cosh o — 1.

(h) lIlm cothx = lim c‘_'m'l = =00, since sinh x — 0 through negative values and cosh x — 1.
P z—n— sinhx

(1) lim cschr= lim ——— =10
=0 Frmm fF - p=E

sinh gf —p=" ] — =2t 1-=0
(1) lim .’mlI = lim el lim —_—c
Feaon g

= et T 2 2

25 Let y = sinh~' x. Then sinhy = = and, by Example 1(a), cosh® y = sinh®*y =1 = [with coshy > 0]

cosh iy :1,,.-"'l+ﬁi1|l|2y = /1 + 2 S0 by Exercise 9, e¥ =sinhy + eoshy == 4 1427 = y :ll‘.l.{I+ -.,.-"l-+-::i].

sinh i (e¥ —e™H) /2 ¥ L. |
27. (a) Let y = tanh™' x. Then = = tanh == = —_= = o =1 =
(a) v o * B coshy ~ (e¥ 4e=¥)/2 ¥ ¥ 41 TeT e

, , ; 1 1 1
l4z=e—me®™ = 1iz=e®(l-x) = £¥= tr = h:ln(i) = yzﬁln( +I).

l=x l==x l==x
(b} Let y = tanh™" =. Then r = tanh gy, so from Exercise 18 we have

E,'_!pzl-l‘-luﬂlly:l-i-.r = 2y=In 14= - y=%|n lj )
1 =tanhy 1==x l=ux l=ux
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138 O CHAPTER3I DIFFERENTIATION RULES

o}
29, (a) Lety = cosh™'z. Thencoshy = randy >0 = Hinhyd—y:l =
¥

dy 1 1

dr ~ sinhy \,.""c{r-.'hj y=1

1
= ——— [sincesinhy > 0fory > 0]. ©Or: Use Formula 4,
Vit =1

dy dy 1 1 1
b) Let y = tanh™" = Then tanhy =+ = hym— =1 = —= — = I )
(b} y anh™" x anhy = x sech™y o7 dr ~ sechly  l1—tanhly 1-22

Or: Use Formula 5.

1
{c)Lety = csch™ = Theneschy = = =cschy cothy ﬂ =1 = — ==———— By Exercise 13,
dx dx cachy cothy

eothy = +/esch? y 4 1 = +/2T £ 1. Ifr > 0, then cothy > 0, s0 cothy = /=7 4 1. If r < 0, then cothy < 0,

- dy 1 1
socothy = =4/ 4 1. Ineither case we have — = =—0 0 0 - — =« ———"_
ey S dr cschy cothy | =] VEE+1

o,
id) Let y = sech™' z. Then sechy = ¢ = —ﬁa:hytan]lyd—y:l =
T

dy _ 1 1 1

== == = = =—————. |Mote that y > 0 and s0 tanhg > 0.
dr sech y tanh y sechy 1'.‘,-"_'[ —sech™y Tyl =1x l ]
. 1 1 1
Let y = coth™! = Th thy =2 — cach? ﬂ:]. ﬂ:— = —
{e) y =coth™ = Thencothy =z = csch”y == = I by T—ecothly T—o2

by Exercise 13,

3. f(z) = tanh T = f'(:}:m.ﬂﬁiﬁ:mn”ﬁ(zjg): e

33, A(z) =sinh(z?) = A'(z) = cosh(z?) % () = 2z cosh(z?)

Or: G(t) = sinh(lnt) = %I{e'“ memtny =1 (: - %) ~ G'(t) = %(1 + L) _+l

oy =i o g = e I Gih 3. 3 = 36503 ginh 3

3. g(t) = teoth T+ 1 &

|

g'(t) = .E,[—f_'a-int:h2 M(%{!j + 1:]'1-"2 -2!)] + {cut.hm;i{l} =cothyEZ + 1= .",.:j"=“ csch? v+ 1
=cash™ /T f = N S )= 1 ! — 1
Hy=ch™F = y {ﬁ]”-l‘ﬁw_] NS ENARE W~y

43, y = xsinh~(z/3) = VO + = =

f o gl 1/3 2r _afE T T e aelfE
y = sinh (E)+Im-ﬁ_hmh (i)+ﬁ_ﬁ_mnh (E)
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SECTION3.11 HYPERBOLICFUNCTIONS O 139

45 y = :.ulll-‘{sec z)] =

’ 1 d (seex) = secx tanx _ secx lanx _ secx lana

v= 1— (secx)? dr l=seclzy  l=(tan®r<4+ 1)  =tan®zr
BEC T 1/ cos 1

P = = = - = —cECT

tan x sl If OO T sn.x

d 1 b 1/ cosh®

47, — arcla.n{t.u.nll ;1:'_]-—J [laul.h .1:]- G J: = "h_:h = 5
dx 1+ (tanhx)? dx 1+ tanh®z 1+ (sinh® )/ cosh™ =
1 1

= LU&".I. 4 5|:|'_||-_|_2 -l:ue.h D [b}l Exercise l'&] = sech 2¢

2 2md
49. As the depth d of the water gets large, the fraction L gets large, and from Figure 3 or Exercise 23(a), t.u.nll( ; )

'?L 2md gL fgL
L = ) = 1)=4/=—.
approaches 1. Thus, v = \’u - |( ) 3 1 ;

5. (a) y = 20cosh(z/20) — 15 = y' = 20sinh(zx/20) - & = sinh(z/20). Since the right pole is positioned at = = 7,
we have y' (7) = sinh & = 0.3572.
(b} If «x is the angle between the tangent line and the x-axis, then tan o = slope of the line = sinh %, S0

o = tan™" (sinh %) =2 0.343 rad == 19.66°. Thus, the angle between the line and the pole is # = 90° = a == T0.34°.

53. (a) From Exercise 52, the shape of the cable is given by y = f(z) = — cm.h( P,?_I) The shape is symmetric about the
Pg

T
y-axis, so the lowest point is (0, f{0)) = (l.'l_. —) and the poles are at x = +100. We want to find T when the lowest
Pg

T k
point is 60 m, so — =60 = T = 60pg = (60 m)(2 kg/m)(9.8 m/s?) = 1176 ﬁ , or 1176 N (newtons).
g

The height of each pole is f(100) = — mh(”g 'Tlm) = 60 cosh (%) = 16450 m.
Pg

(b} If the tension is doubled from T to 2T, then the low point is doubled since T =60 = 2 = 120. The height of the

Pg rg

T - 100 100
poles is now f{100) = —Lmh( ) =120 Lmh(lm) 7= 164.13 m, just a slight decrease.
g

85 (a) y = Asinhmz + Beoshmze = ¢ = mAcoshmz + mB8sinhms =
y" = m® Asinh mx + m” B cosh mx = m*(A sinh mz + B eoshmz) = m’y
(b) From part (a), a solution of " = By isy(x) = Asinh 3 + Beosh 3z S0 —4 = y(0) = Asinh 04+ Beosh( = B, s0
B = =4 Now y'{.r:]- =3Acosh3r = 12sinh3r = 6= y'l[[ll:]- =34 = A=2 s0oy=2sinh3r = 4cosh33zx.
57. The tangent to y = coshx has slope 1 wheny' =sinhz =1 = z =sinh='1 =|.'r.l{1 -+-\.-"E"},b}' Equation 3.

Sincesinhr =land y = coshx =+/'1 +5in]|2z,weha\-'ex_'mhz: V2. The pont 15 {In{l-{n ﬁ],u"ﬁ]
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140 O CHAPTER3 DIFFEREMNTIATION RULES

59. If ae® 4 be™ = acosh{x 4+ 3) [or asinh{x 4+ 3)], then

ae” + be

== %{e‘“’ﬁ *+ e-!-ﬁ] =3 [e’eﬁ +e™" e-'d] = [%eﬁ]e* + (%e-ﬁ]e-z. Comparing coefficients of &

and &=, we have a = %eﬁ (1) a.rn:il!r:i%e"51 (2). We need to find o and 5. Dividing equation (1) by equation (2)

givesus & =+e™ = (#) 23= In(+3) = B8=3ln(£3). Solving equations (1) and (2) for ¢ gives us

ande? =t— s0 —=%— = a’=ztdab = a=2+Eab
%™ b

() If > 0, we use the 4 sign and obtain a cosh function, whereas if £ < 0, we use the — sign and obtain a sinh

function.

In summary, if o and b have the same sign, we have ae® 4 be™" =2 \.-"n.b{.‘u&ih{::-i- %ln H, whereas, if @ and b have the

opposite sign, then ae® + be™ = 2/—absinh(z + 3 In(=%))-

3 Review
TRUE-FALSE QUIZ
1. True. This is the Sum Rule.
3. True. This is the Chain Rule.
i — L1 -1;2_.“:\-""-]' .F[I}
5 False.  — W)= VT) -1z =3/ . which is not ——== TN
7. False. i {10%) = 10" In 10, which is not equal to x10°=".
9. True. i (tan® ) = 2 tan r sec” &, and i{ﬁt’cEI} =2 secx (secr tanz) = 2 tanx sec” r.
. d - — i 2 _ i 2
Or: dr{&r-_{ )= - (14 tan“x) = dI{t.H.I‘.I. x).
11, True. Ifplz) = ape™ + apoy 2™~ + - 4 @y + ag, then p'(z) = na,z™! + (n = Lago 2"~ + + -« 4 a,, which is
a polynomial.
r
13. True. If r{zx) = y then ') = Q[I}P;[T][ }‘]'Jj'r}q {I}, which is a quotient of polvnomials, that is, a rational
q e
function.
15 Tee.  glx)=x" = g'(z)=52" = ¢'(2)=5(2)" = 80, and by the definition of the derivative,

i {I:I' '?{2} !{2} — 5{2}4 = &0,

:—-2
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EXERCISES

Ly= {Iz + .I;!:I"' = = 4{1 +I":| {EI + 1.:3} —4{1: :Ix{l + I:l I{Z + 3.1:] 4.:7{: + l}ul[ﬂa: + 2}

—_—r 42 ; . — 3 1 _ — 3 1 1
1 =L afz _ 1,u+2 F E LR P ¥ R e - e _ 2 -
i 7= x i b y 2.: EI ¥ ZVE e T3
S y=zsinmz = 3y = .rzi:cmi mx)w + (sin7x)(2x) = z(7reos 7z 4 2sin7x)
7y =1 e (O = (1 =14 AP ) =t =1)] B
R T gl = (1 4 1)2 - (14 4 1)2 Tt 12
1 l4Inx
9 y=In(xl ' = Inz) = —lnzl)=——
Y (zlnz) = v :|l:|n.r|:'I nz) rinr (I I+ o ) rinx
1 1 1 I 1
Another method: y = In(zlnz)=Inzx+lnlhzr = y==4 —.=—= iy
r Inr = rlnr
11.;;:1.-“".;::{1&*.-"; =
y':h“{;(cmv';):+u.mf;(v"— v"—[—am‘u"'_ ' -"'r‘:)]-{-c{m\-'"_(i ".I"l)
. s\VE —Vz sinvz
=%.r"‘“\(—!..-"".;tai.ll!.-""J_:+1:{115*.-"';)=mlH IE',-"'_IHII. z
x
13‘;;:21,:!: N y,:Izlit"“]' plf= {12] z{g1;={ IHIZ}_E,Ifxl:EI]=_£1£:{1+EI}
e (z2)® xl o
d d 2 P . B I
15 = (g4 xcosy) = == (zy) = ¢y +z(=sinyg y)4+comy-1=x"y +y-2r =
dx dx
2y — cosy

y'—zﬁhly-y'—rzyr:m—cwy = f_l—rﬁi.lly—zz:l-yrzzry—cmy = y'=.—2
l=—xsiny —x

1
2 Jarctanx (1 4 x2)

1 g o
1. y = Varctanz = y' = El:ﬂ.rct-xzu'l:.l::l"""z I (arctan ) =

I
19.y=ta:|(l+—t2)
ymsect( L)AL et ) —v2)  1-£ L
' L482 ) et V1422 1+ (142 TR \Ir e

Hoy=3 mx y = 3““‘{|:n 1} dil[.r In I} =3* l""l:ln 3] (I . i +Inx- 1) = 3'““1{]“ 3}{1 4+ In .r:l-
' T

23y ={1 - 1'1]-1 =
¥ = =1(1 = 2=) 2 ~(=1"2)] = =(1 = 1/2) "%~ = —((z = 1)/2) "z~ = —(z = 1)

5 sinfzy) =z =y = cos(apy)oy 4y 1) =2 =3 = zeos(zply' 49 =2z —yeos(zy) =

2 — yeos{zy)

vlrcos(ay) +1] =2 —yeos(ay) = ' =y
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142 O CHAPTER3 DIFFEREMNTIATION RULES

1 d 2

7.y =log,(1+ 2 P - —
y=log(1+22) = =g &Y = g ms

- 1 -2 1 - .
. y=Insinr - zsin"r = y = ceosr— 5 - 2einz-oosr —eolx —sing oS

=inxr
1
oy =ztan™ 4z "=z ———— 44 tan"4x) 1= ——— 4+ tan~ ' 4
u rtan I:: } = v F4 1+{4I:|2 <+ tan { } 1+15.1__£+ {Il’.
. y = ln|sec 5z + tan x| =
1 . S sec S (tan 5 seC oo
y’:—{HECEIIEHIIEI'EI-{‘-HE'CJE:E-E}:GHH{ ey l:&ﬁecﬁa:

seC DT 4 tan 5o 260 5 < tan Sx
3 y=cot(3z° +5) = py = =csc(32" + 5)(bz) = =Gz cse”(3z° + 5)

T y:sin{lmlu’l +ri} = y =cm{t,anvl +zi]{seczvl+;i][3zzf{2vl -I-zi]]

By= t-anj{sinﬂ:] = [limll,:e-.'inﬂl'l]2 = g = 2[tan(sinf]] - sr-_lcj{sin ) - cos i

VEFIL(Z=z)° . v 1 =5 7
Ny=——"—""— Iny =31 1 Aln(2 =x) =TI 3 == -
u =+a) = Iny=3Fn(r+1)4+5n(2=x) =Tln(z+3) = y 2{I+l]+2—:r. o =
L VEFI@E2-2[ 1 5 T ] oo 2=2) (3 —55c—52)
YT T @37 |20z+1) Z-z r+3 Y T e Erl(z 43

B.y==x HiIIhl::Ij] = y' =zcosh(z") 2z + sinhl:Ijj -1 =2 EUH".I.{IE:I + sinh{z")
45 y =Infeosh 3x) = 3" =(1/ecosh 3z)(sinh 3z)(3) = Itanh 3=

1 coshr

47. y =cosh='(sinhz) = p = ———————— - cshs = —————
Wisinhz)* =1 VEinh*r =1
489, y:cuﬁ{e"lmh) =
¥= —ﬁin(em) . {e tan )' = —5h|(em) eV #(tan 3x)~'* . sec?(32) - 3

=3 m.(em) v/ in = sec” (3x)

2 +/tan 3z

M) =vHFT = () =44+ 1)V d =244 1) =
FU)=2(=5)(4t + 1)=** .4 = —4/ (4t +1)*"7 50 f(2) = —4/9** = &
B+ =1 = 6L +6" =0 = == =

_ _piet) = 2f(suty') _ _5ety’ [y — a(=ay®)]
¥y = {y.'-],z - ym U - T

I (e T
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85 We first show itis true forn = 10 fz) = 2™ = [(z) = ze® 4 & = (x4 1)e*. We now assume it is true

forn=k: f*Nx) = (x + k)e*. With this assumption, we must show it is true for n = k + 1
40 (z) = f: f‘“{ﬂ] = ﬁ [(z + k)e] = (z + k)e* + & = [(x + k) + 1]e” = [z + (k + 1)]e".
Therefore, f™(x) = (x 4 n)e® by mathematical induction.

ﬂ.y:-iﬁin:.r = y =4.2sinreosT. At{E l} y=8- 5 —Eﬁ so an equation of the tangent line

sy=1=2v3(z=§),ory =23z +1=73/3.

; 2eosx
= THdanr = 3 =2%(1+4sinz)"V* deossr = ————o
Y EI: ) W14 4dsinzx

At(0,1),%" = = 2, 50 an equation of the tangent line sy — 1 =2(z =0),0ry =2 4+ 1.

=B

BlLy=(24z)™ = ¢y =024z =)+ 1= [=(24z)+ 1] =" [-z-1).
At(0,2),y" = 1{=1) = =1, 50 an equation of the tangent line sy — 2= =1{zx = 0),0ry = —x + 2.

The slope of the normal line is 1, so an equation of the normal line sy =2 = Wz =0),0ry = = 4+ 2.

63 (a) flzx)=z/5 =2 =

-1; Em —_F H5==x=
[) —‘[ (5=2)~" '”]*v’_ TV e e e e

_ =z4+10-2r 10-3z
T a2z 25—z

(b) At(L,2): f(1)=1%

S0 an equation of the tangent line isy = 2= (z =) ory = Iz + 3.

At(4.4): fl(4)=-3=-L

S0 an equation of the tangent line sy =4 = =1{z =4} or y = =z 4 8.

(d) 4.3 The graphs look reasonable, since f* is positive where [ has tangents with

positive slope, and f is negative where [ has tangents with negative slope.

4.5

v N

—15

B y=sinr4+cosr = p —owr=sinr=0 & csr=sinrandl <z <3x & z:%nr%,mm&pﬂmm

are (£, 2 ) and (%, —1.-"5}
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144 O CHAPTER3I DIFFEREMNTIATION RULES

6. flz) =(z—a)z=b){z=¢) = [flz)=(z=b)z—c)+(z—a)lz—2c)+ (x—a)(lx-=1b).

f{z] {x—b]l{:—1:'}+{x—a}{z—c}+{r—u]{r—b}= 1 + 1 + 1
f{a:] [z =a)iz=b){z=2<) r=a zx=b zx=¢

O flz)=(z=a)iz=b){z=¢) = WIn|f(z)=hjz—a|+h|jc=-bl+n|jc—¢ =

Flay 1 1 1
f{I}_I—n z—b+.r—-|:'

69. (a) S{z) = flz) 4+ g(z) = S)=Ff(z)+5(z) = S)=F(1)+4(1)=34+1=4
(b) P(x) = fz)g(z) = F(z)=f(z)g'(z)+ g(z) f(x) =
F(2)=f(2)g'(2) +9(2)f(2) =1(4) + 1(2) =4+ 2=6

I(z) gx) f(z) = flz)g'(x) _

(c) Q=) = E = Qz)= HEE
)= g1) (1) =f(1)g'(1) _3(3)=2(1) 9-2 7T
- le(1)F* - % "9 9

(d) Clz) = flgl=)) = C'(=)=[(g(=))g'(z) = C(2)=F (g(2)g'(2)=/(1)-4=3-4=12

M. flz) =a"g(x) = [(z)=2"g'(z) + g(x)(22) = zzg(x) + 2g(=)]
B f(z) =[g@]" = f(=)=2[g()] (=) = 29(z) ¢'(x)
75 f(z)=g(e*) = [lx)=4g'(e)e*

M) =lalee) = f)= e (o) = gz

g(z)
_ M=) gl=)
. hiz) = m =
W (x) = [f(z) + g(x)] [f(z) g’ (x) + glz) ['(2)] = f(z) g(z) [f'(x) + g' ()]
[f(x) + gi=)]"
_ U@ o) + f(2) o) S (z) + S(x) o(2) '(2) + [a(2)]” £'(z) = f(x) 6(z) S (z) = f() o() o' (2)
[f(=) + g(=)]"
_ L@ [s(=)]" +'(=) (=)

[f(z) + g(=)]"

81. Using the Chain Rule repeatedly, i(x) = f(g(sindz)) =

W {x) = f(g(sin =) - % (g(sindz)) = [(g(sindx)) - ' (sindx) - % (sindx) = f(g(sin 4x))g"(sin dx){cos 42)(4).

’ 1 ! 4
8. y=[In(z +4)]" = y':ﬂ[ln{:+4]]1-m-1:2niI_:-d}an:ly':ﬂ & Infz+4)=0 <

r+4=¢" = r4+4=1 & zx==3, sothetangent is horizontal at the point (=3, 0).

rwmlucmwh_q.um#wm“h_pd.gﬁ._w--u.u,mn.mu_.#—H,-qm_rh-n._ﬁ_ha.*_u.mp
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ﬁy:f{r}:uz-i-bz-{-c = _f"[::}:h.r-{ub.%kmwl‘hatf[-l}:ﬁand_f'l[s}:—i,sn—za.-lubzﬁa.nd
10a 4 b = =2. Subtracting the first equation from the second gives 12a = =8 = a= —%. Substituting -% fior e in the

first equation gives b= 32 Now f(1) =4 = 4=a+b+ecsoe=4+ 3% — L =0andhence, f(z) = —32" + La.

87, s(t) = Ae~ cos(wt +4) =
v(t) = #'(t) = Afe=" [—wsin(wt + 8)] + cos(wt + 8)(—ce™)} = —Ae™" [wsin(wt + 8) + ccos(wt + §)] =
a(t) = v'(t) = —A{e~" [w? cos(wt + §) — cw sinfwt + 8)] + [wsin(wt + &) + ccos(wt + §)](—ee=)}
= =Ae™[w” cos(wt + §) = cwsinfwt + §) = cwsinfwt + §) = ¢ cos(wt + §)]

= =Ae~[(w® = ¢*) cos{wt + &) = 2ewsin(wt + §)] = Ae~[(e? = w?) cos(wt + §) + 2ew sinfwt + 4)]
B. a)y=0"—12t+3 = v(t)=y =3 =12 = a(t)=v'(t) =6t
ib) v(t) = 3(t" = 4) > 0 when t > 2, s0 it moves upward when t > 2 and downward when 0 < t < 2.

ic) Distance upward = y(3) — p(2) = =6 = (=13} =T,

Distance downward = y(0) — y(2) = 3 — (=13) = 16. Total distance = 7 + 16 = 23.

(d) n ie) The particle is speeding up when v and a have the same sign, that is,

“ when t = 2_ The particle is slowing down when v and a have opposite
v signs; that is, when 0 < ¢ < 2.

i 7 i
psiton

—15

9. The linear density p 15 the rate of change of mass rn with respect to length .
= I(l +-v"';) =z+2? = p=dmfdr=1+ %u";,smhe linear density when x =4 is 1 + 241 =4 kg/m.
93. (a) p(t) = y(0)e" =200 = (0.5) =200"* =360 = =18 = 05k=hl8 =
k=2In18=In{18)" =In3.24 = y(t) = 200" = 200(3.24)"
{b) y(4) = 200(3.24)* = 22,040 bacteria
{c) ¥'(1) = 200(3.24)" - In3.24, s0 o' (4) = 200(3.24)* - In 3.24 = 25910 bacteria per hour
{d) 200(3.24)° = 10000 = (324)'=50 = tIn324=In50 = ¢=In50/In3.24 = 3.33 hours
5. (a) C'(t) = =kC(t) = C(t) = C(0)e~" by Theorem 3.8.2. But C(0) = Cy, so C(t) = Cpe™*,
{b) C(30) = 1Cy since the concentration is reduced by half. Thus, 2% = Cpe™*™ = Inl=-30k =
k==xIn3i = 3=In2 Since 10% of the original concentration remains if 905 is eliminated, we want the value of ¢

such that C'(t) = L Ca. Therefore, =5 = Cpe™" =% = 01 ==t(In2)/30 = t=-322In0.1=100h
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7.

101.

If = = edge length, then V' = & = dVfdl = 3z defdt =10 = dzfdt =

dS/dt = (12z) dx/dt = 122[10/(32")] = 40/x. When = = 30, dS/dt =

. Given dh/dt = 5 and dz/dt = 15, finddz/dt. z* =2 + h* =

d r:b: dh dz 1. _ - _

h =45+3[5] =60and x =15(3) =45 = ==+45* 4+60* =75,
dz 1

50 7= ﬁ[lﬁl:aﬁ] + 5(60)] = 13 fi/s.

We are given dfffdt = —0.25 rad/h. tand = 400f/z =

dx o, A
=4 cotf = E:—aﬂ]ﬂcm‘ Q‘E.Wt‘lenﬂzi,

dx -
- = —400(2)*(=0.25) = 400 fi/h.

40 _ 4
a0 — 3 ©

11];’{3:52:]- and § =6z =

f1

m* /min.

103. (a) filz) = $T ¥ 3z = (1 4+ 3=)* = () = (1 + 32)~*?_s0 the linearization of f at e = 0 is

Liz) = f0)+ f(O)(z=0) =1 417 2 = 14 2. Thus, §Tr 3z = 142 =

Y103 = &1 4+ 3(0.01) = 1 4 (0.01) = 1L.0L.

(b} The linear approximation is 4’1 4 3x = 1 4+ z, so for the required accuracy

we want 414 3z = 0.1 < 14z < ¢T 4 3z + 0.1. From the graph,

it appears that this 1s true when =0.235 < r < 0.401.

05 A=x"+ -}#Hm}z = (l + E}:r.z = dA= (2 + E;I:sd'a:. When = = 60

107.

and dr = 0.1, dA = (2 4 Z)60(0.1) = 12 + ZF, so the maximum error is

approximately 12 -+ T == 16.7 em”

YT+ h=2 d ] 1 _4 1 1
1 - = |— v"'; = —.z-"” = - —
3
h=0 f dx w16 4 o 16 4{\."4 ].E:I 32
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5. Jim J].{..tm..;_.‘,-"']_i_ﬁin; _ {\.-'rl+t,a.n1'—\.-'r1+al:n.z 1,."'1+l.|.t|.z+v"'l+h1||.I}
z—il} r? 1—-” r‘{q,.-'I T+ 41 +sinx ]

{l-l-—la.na:}—{l-l-—si.nz] 51||J:I[ll,n"c{:|h1'—l:| COs T

linr sinz (1 = cos x) L4 cosx
:_'DI"{\-H + tanx 4+ /1 +51||J:}u_mJ_- 14 cosr

2
sinT-sin T

{1,.-"1 + tanx 4+ 1,.-"'1 +M||J:}L1.m: + cos x)

. a
. sl ) 1

i —
=l T ) =0 [v'l+T,imI+\-"1+ﬁin.r}cma:{l+u.mr}

3 1 _1
=V ATV 0+ 3

Il
—
=
g
|nr
=

. % [f(2z)] == = [f'(22)-2=2" = ['(2z)= 32" Lett=2z Then f'(t) = %I{%E] = 1,50 ['(z) =

Coprright W6 Cengage Learsimg. A0 gy Rienerved. Wy ot be coped, scanned, or deplacaied, m whok or in pert. Du o chociners sights, sorme thind party comte moy be spprened from the diock andier o hepierial.

— lire
] I:’{v"ll + tanz 4 /1 +:-ii||I} !—'Ur"{\.-'rl + tanx 4 /1 -I-amz] COS T

Esbirrea rovars: b decmcd that asy wepproncd content doc st mateuly affet e overall kerming cxpencsce. Umgage | sameng rewrves the nght te renovs ackdial comiant o sy bne = vebeguon g o com reours o,

147




Coprright W6 Cengage Learsimg. A0 gy Rienerved. Wy ot be coped, scanned, or deplacaied, m whok or in pert. Du o chociners sights, sorme thind party comte moy be spprened from the diock andier o hepierial.
Esbtrrea rovarn S decmcd that s wepproncd content doc By affect the ovorall bermirg cupencece. Uagage Lcameng rescrves the nght 0 remens sckdtamal oot 2t 2z hine o vebusguent gt s icton regues i




[1 PROBLEMS PLUS

1. Let a be the z-coordinate of (). Since the derivative of y = 1 = =” isy" = —2u, the slope at (@ is —2a. But since the triangle

is equilateral, 10/OC = /3/1, so the slope at €} is —/3. Therefore, we must have that —=2a = =3 = a =2

Thus, the point € has coordinates (""TT 1= (jﬂ)j) = (-"25 i) and by symmetry, ° has coordinates (—%._ %)

i ¥ We must show that » (in the figure) is halfwvay between p and 4, that is,

Y=t + bt

r = (p + ¢)/2. For the parabola y = ax” 4+ bz + ¢, the slope of the tangent line is
given by 3" = 2ar + b An equation of the tangent line at =z = p is
y = (ap® + bp + c) = (2ap + b)(z — p). Solving for y gives us

\"}/ v = (2ap + b)x — 2ap™ = bp + (ap” + bp + <)

or v=(2ap+ b)z + ¢ — ap” i1

Similarly, an equation of the tangent line at © = q 15
y=(2ag +b)z+c=ag® ()
We can eliminate y and solve for = by subtracting equation (1) from equation (2).
[(2aq + b) = (2ap + b)]z — ag” +ap” =0
(2ag = 2ap)r = ag* = ap*
2a(g — p)r=alg” - p)

y=at+plla—p) _ptg

2a(g —p) 2

Thus, the r-coordinate of the point of intersection of the two tangent lines, namely », is (p 4 ) /2.

3. Using _f'{u:j] = lim

il L=

a5 g'(x)

. we recognize the given expression, f{x) = lian :
— -
with g(x) = secx. Now () = g"(F). so we will find g"(x). g'(x) = secxtanr =

g (x) = sec rsec® r + tan rsec rianr = sec z(sec” r + tan” ), 509" () = ﬁ{ﬁz +13) =2(241) =3/2.

7. Lety = tan™" x. Then tany = x, so from the triangle we see that

] -1y e T ) —_—

sin(tan~' z) = siny = e Using this fact we have that 1+ 1 .
. —dr sinh o sinh x

sin(tan™'(sinh x)) = = = tanh:x.

\.-"rl 4 sinh? cosh x

Hence, sin™'{tanh =) = sin™"(sin({tan™"(sinh x))) = tan™="(sinh z).
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150 0O CHAPTER3 PROBLEMSPLUS
"
8. We use mathematical induction. Let S5, be the statement that F{sﬂ:‘ z + cos' £) = 4" cos(de + nwf2).
5y is true because
d .. 4 4 ] I . . 3
E[:-un x4 o8’ r) = 4sin” r cosx = deos” z sinzr = 4sinr cos x (sin” r - cos” ) x

= —4dsinr cosr cos2r = =2s5in2r cos?2 = —sindr =5i|1{—4.r:|-

=|:ue-s[% - (=4x)) =cm[%+a1r] =4"-1£m{4z+n%] whenn =1

od*
MNow assume Si is true, that is, = (sin®z + cos® z) = 4"~ cos(4x + kZ). Then

g

d
T

sin® x4+ cos® z) = :—z [%{sin"z +eostx)| = = [4"'1 cos(4x + k)]
= —4*=!gin(dx + kF) - i (4 + k%) = —4" sin (4 + k%)
= 4" sin(—dx — k§) = 4" cos(§ = (—dr = kF)) =4 cos(dx + (k+ 1) §)

which shows that S5, , is true.

Therefore, L (sin® x 4+ cos® x) = 477" cos(4x + nF ) for every positive integer n, by mathematical induction.
dr®
Ancother progft First write
sin® & 4 Lm‘.r:{singz-i- rl:uziﬂ!z':]-2 —2sin"zeos’z=1 —%siuQZI: 1=21(1=cosdz) = 3 4 %cosdr

4" intz peostr) = S (341 =L g o LA TR x
Thenwe}wvedrﬂ[sm T 4 cos” 1) ( + cmd:)_4-4 cm(d.r-l-n )_4 l.‘l.n'i(4I+:l'I!- )

Tdrt \4 4 2 2
11. We must find a value xq such that the normal lines to the parabola y = =* at = = %y intersect at a point one unit from the

points (+xa, x5). The normals toy = x* at = = %y have slopes — 55, and pass through (%0, z33) respectively, so the
o

nommals have the equations y = = —ZL[I— xp) and y = x = EIL(I.F ). The common y-intercept 1s 5 + %
Ly L]

We want to find the value of o for which the distance from (0, x5 + 1) to (o, x3) equals 1. The square of the distance is
(zo =0)" + [x5 = (=3 + é}]z =zp+i=1 & zo= :I:hg. For these values of o, the y-intercept is =3 + £ = ¥, 50
the center of the circle is at (0, 3).

Another solution: Let the center of the cirele be (0, a). Then the equation of the circle is 2° + (y — a)? = 1.

Solving with the equation of the parabola, y = =%, weget 2 4+ (z¥ —a)’ =1 & F+1'=2Zar"4+a'=1 &

' 4 (1 = 2a)x? + a® = 1 = 0. The parabola and the circle will be tangent to each other when this quadratic equation in =*
has equal roots; that is, when the discriminant is 0. Thus, (1 = 2a)* =4({a* =1) =0 &

l—da+4+4a” —da” +4=0 = da =5, s0a = . The center of the circle is (ﬂ,%].
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CHAPTER3 PROBLEMSPLUS O 151

13. See the figure. Clearly, the line y = 2 is tangent to both circles at the point

—

(0, 2). We'll look for a tangent line L through the points (e, &) and (e, ), and if

such a line exists, then its reflection through the y-axis is another such line. The

slope of L is the same at (a, b) and (c, d). Find those slopes: 2 +3° =4 =

ﬂI-{-Eyy;:ﬂ = I|||'=—E [:—%] andz2+{y—3]2=1 =
W

9 b Wy =3y’ =0 = gy =——= |==—Z |
x4+ 2y =3y v 3 i—%

2
Now an equation for L can be written using either point-slope pair, so we gety — b= —%[1: —ua) [ar y= -%a: + GT + b]

2

3{.1:--:'} [Dry = -ﬁr+ ﬁ +d]. ﬂwslupesmeequal,m-% ==

[ i

d=3

andy =d= =
u P =

be . 2 e
d-3=—.Smcel[c_.d}]sasnlmmnuf:s2+{y-ﬂ}j=l_.mha1.'e:-2+[d—3}1=1,sn:‘+(—) =1 =
Lr ] Lrs

al 4P =a = Fla®+bt)=a® = 4 =a® [since(a. b)isasolutionofz®4+y* =4) = a=2c

be b b a’ e*
Nowd =3 =— d=3+4 —,s0d =3+ —. The y-inte ual, s0 — + b= d
W - = +2E,5|3 +2 y-intercepis are eq ,sn-b+ d-3+ 1=
2 z 2 z
i (a/2) b a a b 3 a 3 y
—+b= 34 - —d b= = 3= (2 2a” 4+ 26 = 6l + b
T+ e +( +—2) = [b+ a5+ +—2|{] =3 + a” 4 b+ =3
2 2 2 E, b 10 2 2 4 a3 4
a®+b*=6b & 4=6b & b=iltfollowsthatd=3+5=—.a"=4-bt'=4-3= = a=3/2

2 _ 2 _ 2 _ _ 2 (4372 4
ande”’ =1=(d=3)'=1= ()" =2 = E—%ﬁ.M,LhﬂSEﬂLﬂtlﬂﬂy—i——T =

L)
11

y—3=-2v2(z-$v2) & y=-2y2z+ 6. lisreflection has equation y = 2v/2x + 6.
In summary, there are three lines tangent to both circles: y = 2 touches at (0, 2), L touches at {%v’i %} and {év‘ﬁ 5_:;“ .

and its reflection through the y-axis touches at (—3+/2, ) and {—%ﬁ__ %"]

15 We can assume without loss of generality that & = 0 at time ¢ = 0, so that # = 12x¢ rad. [The angular velocity of the wheel
is 360 rpm = 360 - (27 rad)/ (60 s) = 127 rad/'s.] Then the position of A as a function of time 15

sinf sinf 1
A= (40cosd, 40sin ) = (40cos 1278, 40 5in 127t), so sina = l.;rm = l;jll = “; :E:ﬁin 12mt.

dix 1
(a) Differentiating the expression for sin o, we get cos o - =3 127 »com 127t = dx cosfl. When # = % we have

———s

. 1 Vi V3V TT_ . da _4meosE 2r 43

sina=—sinfl= — speosa=y/1l=| —| =/ —ad — = —F = —— = —— =G50 mdfs
3 f G 12 i CUE O 11712 w1l

{b) By the Law of Cosines, | AP|* = |OA|* + |[OP]" = 2|0A||OP|cosf =

120° = 40° + |OP| = 2- 40|OP|cosf = |OP|" = (80cosf) |OP| — 12800 =0 =
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152 O CHAPTER3 PROBLEMSPLUS

|DP| = %[Sﬂcmﬁ + /6400 cos* § 4 51,21]]} = 40cosd %+ 4!]1..-'1:{_1553-4- B= 4U[L1mﬂ+ 8 +{_'LEI:EJ Cm

[since |OP] > 0]. As a check, note that || = 160 cm when & = 0 and |(2P] = 80 /2 cm when 8 = z

(c) By part (b), the z-coordinate of P is given by = = 40(cosf + vE + cos2 8 ), 50

dr _ drdf 4!]( inf 2 eos B sin f e )cm,.-’s
—=——= 1] ———— —_— )
2B F cos2 0 VB cos2 B

& = 25 d@r ) 127 = —4B0w=ind| 1 +
In particular, dx/dt = 0emys when & = Dand de/dt = =480 cm/s when 8 = 3

d
17. Consider the statement that E{Eﬂz sinbr) = v sinfbe 4 nd). Forn =1,

o (%" sin br) = ae™ sin be 4+ be™ cos be, and

i
re™® sin(bx 4 #) = re®*[sin br cos @ 4+ cos b sinf] = re™® (E sin b 4 = cos bcr) = ae"" sin br 4 be™" cos bx
r r

since tanf = 5 = sin# = Eaunr.h.w.u-uﬂ': 2. So the statement is true for n = 1.
[} r r

Assume it 15 true for n = k. Then

a4
T

“Fsinbx) = i [r* e sin(bx + k#)] = r*ae®® sin(br + kB) + r*e*“beos(be + kB))
= rke'“[uzii.n{b.r + kb)) + beos(be + k8]

But
sinfbr + (k 4+ 1)8] = sin|(bx + kif) + 8] = sin(bx + k) cos # 4 sin 6l cos(br + k) = & sin(ba + ki) + %cu&[bx + k).
Hence, asin(bx + k) + beos{be 4 b)) = rsinfbe 4 (k + 1)0]. So

+1
dak+l
Therefore, the statement is true for all n by mathematical induction.

(e**sinbz) =r e'“[asm{b.r+£ﬂ‘}+ beos(br + k0)] = rkens [rsin(be + (k+1)8)] = rk+ e [sin(bx + (k 4+ 1)8)].

18. It seems from the figure that as I approaches the point (0, 2) from the right, T — oo and yr — 2%, As P approaches the
point (3, 0) from the left, it appears that r7 — 3% and yr — oo, So we guess that ¢ € (3, oc) and yr € (2,00). It is
more difficult to estimate the range of values for v and yx. We might perhaps guess that =x € (0, 3),
and yy € (=oc.0) or (=2.0).

In order to actually solve the problem, we implicitly differentiate the equation of the ellipse to find the equation of the

2 2
I:ang;emllm.:%+yT=1 = %+ZTyy’=l],sny’=-EE_Hammepmm[mﬂ,yﬂ}ﬂmheelhpse,a.neqmuonnfme
u
4 . ] ]
I.‘allgel‘lllll‘I'EISy—yn=—§E{:5—I-n}ﬂl4.m.r+ﬂyny=4:rﬁ + 0y Thlscanbev.'rmenasT-i-yzy _‘;T“+y?“=1,
o

because {xy., yy) lies on the ellipse. S0 an equation of the tangent line s % + % =1
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kL
Therefore, the x-intercept xr for the tangent line is given by 2P =1 & zr=— andthe y-intercept yr is given
]

yogT 4
f— =1 & ygr=—.
by 4 o

S0 as xy takes on all values in (0, 3), ¢ takes on all values in (3, 2c), and as y, takes on all values in (0, 2}, yy takes on

1 ' E T
all values in (2. 5a). At the point (za. on the ellipse, the slope of the ROMAl [iNe 15 = ——————— and its
(2:2) poiat (0. ) pe. fhe stope v(zo.w) Tz

9 9
equAtion ISy =y = EE{I- xo). So the z-intercept zx for the normal line is given by 0 = yo = IE[IN =ra) =
T Ty

drp 5 D ya
TN == T = = andmey—mterceptywsg,nenh}yﬁ—yu———{ﬂ rg) = yﬁ=-?+yﬁ=-

5o
VIS
S0 as xy takes on all values in (0, 3), x takes on all values in {D, 3). and as yy takes on all values in (0, 2), v takes on
all values in (—32,0).
21. (a) If the two lines Ly and Lz have slopes mg and ma and angles of

inclination ¢, and ¢, , then m, = tan ¢, and my = tan ¢, The tnangle

in the figure shows that o, + « 4 (180% — &, ) = 180" and so

a = d, = ¢», . Therefore, using the identity for tan(z = y), we have

tan iy, — tan dy, and so tan o = J12 =M

La = tanfo, = = -
e (@2 = 1) 1 + tan oy, tand, 14 miyrmy

(b) (i) The parabolas intersect when =° = (x = 2)? = = =1 Ify = 2*, theny' = 2z, so the slope of the tangent
toy=x"at(1,1) ism; =2(1) = 2. If y = (z = 2)*, then ' = 2(x = 2), so the slope of the tangent to

’ . ma = Ty —_— - 4
=({z=2)at(1,1 =2(1 = 2) = =2. Therefore, tana = = = —anmd
y=(zx=2 at(1,1) ismz =2( )] refore, tanar = = T72(<2) — 3

soa = tan™'(3) = 53° [or 127°].
(i) 2? —y? =3and 2® —dr 4+ p? + 3 =0 intersect when z* = 4r 4 (£ =3) +3=0 & 2x(z-2)=0 =
x=00r2, but0isextraneous. If r = 2 theny = 1. If 2 =y = 3then 2 =24y’ =0 = y' =x/yand

=ty +3=0 = -4+’ =0 = y":z-m

, 1) the slopes are m, = 2 and

my =0,50 tana = {355 = =2 = a = 117° At (2, 1) the slopes are m, = —2and m, =0,

0—(=2)

m:z = a=63" [or117°).

50 tana =

23, Since S RO = A0 P = 8, the triangle QO 1s isosceles, so

(| = |RO| = . By the Law of Cosines, «* =z 4+ r* = Zrrcost. Hence,
¥

2
Zr.r::mﬂ:rz,mx:r— Moie that as y — 0%, # — 0% (since
2r cos # ZLLMﬂ'

l — Thus as I* is taken closer and closer

in#l = and h
sin wfir), BNe T — ——— ol ™ T

to the x-axis, the point /2 approaches the midpoint of the radius AC.
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154 O CHAPTER3 PROBLEMSPLUS

sin{u + 2.1::]- -2 sin{u + I:I' + sina

F- M
fi =
-1 sima cos2r 4 cosa sin2r = 2sing cosr = 2eosa sinr 4 sina
= lim,
_ sina {cos 2x = 2eosx 4+ 1) 4 cosa (sin 2o — 2sinx)
= lim =
— 1 Hillﬂ{zfmzr— 1=2cosx 4 1}+cma{25i.n1'cmi.z—ﬂﬁill.r]-
= lim
— sina(2eosz)cosz — 1) + cosa (2sns)(oosx = 1)
_J‘IE.D r?
— K Qfeosxr = 1)[sina cosx + cosa sinz](cosx 4+ 1)
= =m0 o a4+ 1)
— lim -2 sin x [sinf{a 4 x)] — —2 i (R . sinfa + x) = —2(1)? sinfa+0) _ _ cina
==l rcosx 4+ 1) ==\ T cos 4 1 cosl 41
7. ¥ Let f(x) = ¢** and g(z) = kv [k > 0]. From the graphs of f and g,
we see that f will intersect g exactly once when f and g share a tangent
line. Thus, we must have f =gand [ =g atxr=a.
fla)=gla) = £ = kva (%)
o] :I x and fMa)=g(a) = e — k = pE _ k )
2va 1va
k ¢ k ;
S0 we must have kva = —= = (\.-"Jr;) =— = a=1 From(#), e =k /1/4 =
4va 4k :

k=2 =2/ == 3207,

—_— Letk =a+ /af = 1. Then

T 2
By = —— — nreian -
Vvat=1 a*=1 a+val=14cosr
' 1 2 1 {.‘LmIl::k-I'-CLkiI}-I‘-Hi.nzI
= vat =1 var=1 1+sin?z/(k 4 cosx)? [k + cosx)?
1 2 keos x4 cos” x4 sin’ £ _ 1 2 koosx <41

T Var=1 - yvat=1 ) (k+cosz)?+sin’s o=l +ai=1 K +2keosz+1

_k!-l-i'.'kc-:.ma:-{-l—ﬂkcmr—ﬂ_ =1
Vil —1(k 4 2kcosz+ 1) Var —1(K + Zkeosz + 1)

Butk® =2a" + 2a+va®—1—1=2ala+va'—1) —1=2ak — 1, so k" + 1 = 2ak and k* — 1 = 2{ak — 1).

ak =1) ak =1 ; _ -
Soy' = = .Bulak=1l=a"4+ava*=1=1=Fk+a® =1,
Y vaf = 1(2ak 4 2k cos x) va? =1k (a 4 eos x) " . ava “

soy = 1/(a+ cosx).
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CHAPTER3 PROBLEMSPLUS O 155

Hy=2"=-22"-5 = 3 =45" —4& = 1. The equation of the tangent line at = a is
y = (a' = 2a® —a) = (da® = da = 1)(z — a) ory = (4a® = da = 1)z + (=3a? + 2a”) and similarly for = = b. 5o if at
x = aand x = b we have the same tangent line, then 40® = 4a = 1 = 46* = 4b = 1 and =3a® + 2a® = =3b* + 2b%. The first
equation givesa® = b =a=b = (a=>b)(a® 4+ ab+ ") = (a — b). Assuming a # b, we have 1 = a” + ab + b°.
The second equation gives 3(a® = %) =2(a® = ") = 3(a® = *)(a”® + b*) = 2(a® = b”) which is true if a = —b.
Substituting into 1 =a” + ab+ b gives 1 =a® =a® 4+ a® = a=+#lsothata = 1landb = =1 or vice versa. Thus,
the points (1, —2) and (=1, 0) have a common tangent line.
As long as there are only two such points, we are done. S0 we show that these are in fact the only two such points.
Suppose that a” — b* # 0. Then 3(a” — b*)(a” + %) = 2(a” — &”) gives 3(a” + 6") =2 ora” + " = 3.

Thus,ubz{a”+ab+bi}-{a”+b”}=1—%:%,snb=i_ Hem&,uj+#=%,mﬂu"+lzﬁuj =

’ . . . ’ 1 ,

0=9"-6a’+1=(3a"=1)2 %03’ =1=0 = a'== = ¥VF=— =3 = a”, contradicting our assumption
that a® # b°.

33 Because of the periodic nature of the lattice points, it suffices to consider the points in the 5 x 2 grid shown. We can see that

the minimum value of  occurs when there is a line with slope § which touches the circle centered at (3, 1) and the circles

(5.2 slope = —%
%
1]
P

centered at (0, 0) and (5, 2).

© 4y =K

=

To find P, the point at which the line is tangent to the circle at (0, 0), we simultaneously solve % + y* = +* and
y==3z = +F"=r" = F=%r" = z= —&5 r.y = ——2= r. To find ), we either use symmetry or

solve {z—3}2+{y—1}2 =rfandy—1 :—%{I—ﬂ}. As above, wegetx =3 = :ler,yz l-l-:‘%r. Now the slope of

l+m:: T—(— ?’ 'r) 1+ 1k
the line PO is 2, s0 mpg = 24 — ?mrzvﬂﬂ-lull]rzg
[ Poy T i = e 3 — 1@_4 E
) ) o 7 : r

— — _ ¥ . ; ) 2
5\,!"2_9+5[]r_ﬁ\,-'"2_9—3r =3 58r_\,'"2_ﬂ = :-_-‘%.Ew:'llmemlmmm'nwﬂue::n-i:rﬁ::r~.l.}m:h.'3r1':.-Imu:':.l..'n‘Jflslﬂ|:n3E

intersects circles with radius + centered at the lattice points on the plane is r = -"% == 0,093,
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15 O CHAPTER3 PROBLEMSPLUS

h 5h
35. By similar triangles, % =16 = $= T The volume of the cone is
2
. 2, Sh _ m dV 25w, o dh
V=3m'h= %#(E h= ﬁh“,mﬁ Esﬁhz = . Now the rate of
1A
change of the volume is also equal to the difference of what is being added
(2 cm:“jmm] and what is cozing out {kwrl, where 7l is the area of the cone and k
dV’
15 a proportienality constant). Thus, T 2 =kl
dV dh 5(10) 25 1 10
uating the t for — and substituting b = 10, — = =0.3,r = = —,and === —
Eq 2 WO expressions for — - and su ng X LT 16 g an 5 — 16
=2 2 /35T, we get 22X 25"’{1:}}‘{-{: 3)=2- f.rﬁ- 2 2V 125“;4" Bl _oy '25?6". Solving for k gives us
il

256 + 375
2:'] +H To maintain a certain height, the rate of oozing, kxrl, must equal the rate of the liquid being poured in;
T

dv
that is,— T = 0. Thus, the rate at which we should pour the liquid into the container 15

256 4 375 25 5+/2E] 256 4 375
o bt an 11.204 em®/min

kar] = — e — -
"= 250w 2Rl 5 " 8 1%

Copyeight 3046 Conpoge Lemmiog. AB ights Reverves. Moy st b copind, scomm o dmphicate, o whole o . o b et ightn, s shind oty contnt sy b e s the ek e o mptts
Esbirrea rovars b decmacd that as wepy By affect the ovorall bermirg cupencece. Uagage Lcameng rescrves the nght 0 remens sckdtamal oot 2t 2z hine o vebusguent gt s icton regues i




4 [ APPLICATIONS OF DIFFERENTIATION

41 Maximum and Minimum Values

1. A function [ has an absolute minimum at = = ¢ if f{e) is the smallest function value on the entire domain of f, whereas

[ has a local minimum at e if (<) is the smallest function value when = is near e.

3. Absolute maximum at =, absolute minimum at =, local maximum at e, local minima at b and », nerther a maximum por a

mimmum at a and .

5. Absolute maximum value is f{4) = 5; there is no absolute minimum value, local maximum values are f(4) = 5 and

J{6) = 4; local minimum values are f{2) = 2and f(1) = f(5) = 3.

7. Absolute maximum at 5, absolute minimum at 2, 9. Absolute mumimum at 3, absolute maximum at 4,
local maximum at 3, local minima at 2 and 4 local maximum at 2
¥ ¥
4
3
\_/\’/ :
2
| v
1
e s ] I T T R
11. (a) ¥ {b) (<) ¥
. -

N\ |
_,./ 2 .\-L _,..c‘,"/l N

13. (a) Note: By the Extreme Value Theorem, ¥ (b} ¥
f must nor be continuous; because 1f it
were, it would attain an absolute

Iminmum. —l

157
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158 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

15. f(x) = $(3= — 1), = < 3. Absolute maximum

F(3) = 4 no local maximum. No absolute or local

ITLEF NN

3.4

19. fz) = sinz, 0 = x < 7/2. No absolute or local

maximum. Absolute minimum f{0) = 0; no local

I,

A flz) =Inz, 0 < x <2 Absolute maximum

F(2) = In2 = 0.69; no local maximum. No absolute

or local minimum.

¥
14 12, In 2}
L) 1 T
= if=1<z=<0
1. f(z) = i
2=3r fO0<Cx=<1

No absolute of local masimiim,

Absolute minimum f{1) = =1.

Local minimum f{0) = 0.

17 flz) = 1/x, = = 1. Absolute maximum f{1) = 1;

no local maximum. No absolute or local minimum.

=

N flz) =sinz, —x/2 < = £ 7/2. Absolute maximum

F(5) = 1; no local maximum. Absolute minimum

F(—%) = =1L no local minimum.

-4

25 fiz) = 1 = /= Absolute maximum f(0) = 1;

no local maximum. No absolute or local minimum.

N

m \T
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SECTION &1 MAXIMUM AND MINIMUM VALUES 01 158
N flr)=4+3x—3=" = [f(z)=4—-=z [f(z)=0 = == Thisisthe only critical number.
N flr) =22 =32 =36 = [(2)=6c"—6r =3 =6(z" —x=6) =6z +2)(z-3).
fiz)=0 & =z==2 3 Thesearethe only critical numbers.
Baglt)=t"++"+1 = G(t)=4"+3" +2t = t(4" + 3t + 2). Using the quadratic formula, we see that

4% 4 3t 4+ 2 = 0 has no real solution (its discriminant is negative), so g'(t) = 0 only if t = 0. Hence, the only critical number

15 0.
_ w=1
ﬁg{ﬂ]—m
g;{u}z{uj—y+l}{1}-[y-l}[2y—l}=y2-y+1-[2y2-3y+l}= -y +2% _ w(2=-y)

Wi—y+1)2 W=y + 1) -y +12F (FE-y+I1F
gly)=0 = y:l]-,ﬂ.ﬂbeexpresmonyz—y+-lumerequaltuﬂ,sng"[y}emslsfmallmalnurnberi

The critical numbers are 0 and 2.

_3i=2
P

K{t)=0 = 34I=2 = i=% = t=32 h'(t)doesnotexistatt=0,sothe critical numbers are 0 and 3.

I A(E) == U = R() = B Y= 23 2 g)

. Flz) ="z =4)* =
Flz)=a*™ 2z =) 4 (z=4) 2~V = 1=z = 4)[5. 2.2+ (x = 1) - 4]

_ (z=4)(14x = 16) _ 2(zx = 4)(Tz = 8)
- Bi/® - Bt l®

F'{z)=0 = z =4 % F'(0)does not exist. Thus, the three critical numbers are 0, 2, and 4.

T Ta

. f(0) =2cosf +sin*f = [(#)==2sinf 4 2sind cosd. [(#)=0 = 2sinf(cosf=1)=0 = sind=0
ofcosfl =1 = & = nw [nan integer] or & = 2ns. The solutions & = i include the solutions & = 2, so the critical

numbers are @ = nr.
8. f(x) =™ = flx) =22 (=3") 4+ e~ (2) =2e (=32 +2). f(z) =0 = =03

[£=* is never equal to 0). f'(x) always exists, so the critical numbers are 0 and %

45. The graph of [*(x) = 5¢="1*] 4in = — 1 has 10 zeros and exists

everywhere, so [ has 10 eritical numbers.

]

47, flz) =124 4x =2 [0.5]. fliz)=4=2r=0 & =2 [f{0) =12 f(2) =16, and f(5) =T

S0 f(2) = 16 is the absolute maximum value and f(5) = 7 is the absolute minimum value.
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160 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

4. fiz) =2 — 3% — 122 4+ 1, [-2.3]. f'(x) = 6x” = Gz — .'lE:Ef_.l:2 —r=2=6z=2)z+1)=0 =
=2 =1. f{=2)==3, f(-1) =45, f(2) = =19,and f(3) = —&. S0 f{—=1) = & is the absolute maximum value and

f(2) = =19 is the absolute minimum value.

5. flz) =3 =4 = 1227 4 1, [-2,3]. f(2) =124% = 122" = 245 = 124(s" =2 =2) = 122(z+ 1){z=2) =0 &
==1,0,2 f(=2) =33, f(=1) = =4, f(0) = 1, f(2) = =31, and f({3) = 28. So f(=2) = 33 is the absolute maximum

value and f{2) = —31 is the absolute minimum value,

8 f(e) =2+ 024 fl@)=1-== EZI; 1_(=+ 1:;2;-1}

=0 & zr==+1 butx=—1isnotinthe given

interval, [0.2,4]. f'(x) does not exist when = = 0, but 0 is not in the given interval, so 1 is the only eritical nuumber.
F(0.2) =52, f(1) =2, and f(4) = 4.25. S0 f{0.2) = 5.2 is the absolute maximum value and f{1) = 2 is the absolute

minimum value.

55 f(1) =t — 1, [-1.4] f’{t]=1-§¢'2f3=1-m.+ﬁ. flit)=0 « 1:3!,% = .-Ff-*‘:% &
t= () - L:i%:tﬁ. F/(t) does not exist when t = 0. f(—1) =0, £(0) =0,

= =l _-l_-1+3 23 1 1 1 23

4) =4 = $1=2413. 5o fi4 = 4 — /1 is the absolute maximum value and ﬂ —Elsmeahﬂme

minimum value,

5. f(t) = 2cust + sin2t, [0, n/2].
F(t) = =2sint 4 cos2t -2 = =2sint + 2(1 = 2sin’ t) = =2(2sin® t 4 sint = 1) = =2(2sint = 1)(sint + 1).
fi()=0 = sint=Lorsini=-1 = (=% f0)=2 f(Z)=+34+3+v3=2V3=260,and f(I)=0.

So f(Z) = 2 /3 is the absolute maximum value and f(Z) = 0 is the absolute minimum value.

5. flz)=x""lnx, [ldl flz) = =2 . % + {In.r}l{—?.r-x} ==t — 2" lnx = =1 =2lnz) = ¢

4 x

flz)=0 & 1=-2lmhz=0 < 2hz=1 & lnz:% & r=e¢"" = 165 f'{x) does not exist

_Inlj2  Inl=In2 _

= - =4 In2 = =2.T73
727 171 ' e

when = = 0, which is not in the given interval, [£,4].  f{3)

Ine/? _yz_1 1..4 Ind 1
plf? il and - = 12y _
f( ) {31;:] - T = 0.184, fi4)= T — = 0.087. 8o fle"=) = e 15 the absolute maximum

value and _f{ i] = =41n 2 15 the absolute minimum value.
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SECTION 4.1  MAXIMUM AND MIMIMUM VBLUES OO 181

1

Bl. fiz) =ln{=* + z + 1), [-1.1]. f'(z)= izl

2z 41)=0 & r=—%.5imtf.~::”+z+l::-ﬂ-tbrallz,the
domainof fand f'isB f(=1)=In1=0,f(-3) =In3 = —0.29,and f(1) =In3 = 1.10. S0 f(1) = In3 = 1.10 is

the absolute maximum value and f(=2) :ln% =029 is the absolute minimum value.

6. flx) =a"(1=2)b, 02 La>0b6>0
=) ==" -kl = .I:]-b'"{—lj + (1= I:l'b caz®=! =271 - I:]'b-l[:E =1} 4 (1 =x)-q]
= Y1 = 2)*(a = ax = bx)

a

At the endpoints, we have f{0) = f(1) =0 [the minimum value of f]. Inthe interval (0, 1), f(z) =0 < z= 5
L]

f(ﬂib) = (ﬂib)n(l - uib)& = (a fa}ﬂ (u:i;ﬂ)b ~a fb}“ a fb]" - {aiﬂ:;“”'

nb&
bﬂf( ° ) == 7 1s the absolute maximum value.
a+b {u + b}a+
B5. (a) 2.3 From the graph, it appears that the absolute maximum value is about

F(=0.77) = 2.19, and the absolute minimum value is about f{0.77) = 1.81.

-1 |
1.5

{h}fl[.z}:.z:'—rq'-{-ﬂ = f{r}:ﬁz‘—hzzxziﬁzz—ﬂ].ﬂﬂf'l[z}:ﬂ = I:D,iﬁ.
A(=VA) = (-VB) = (-V) +2=- @7 B+ 3R+
={%—%}\/§+2:%\/§+2 { maximum)
a.ndsumla.rly,_f(\/g) = -%\/g+ 2 (minimum).

67. (a) 0.4 From the graph, it appears that the absolute maximum value 15 about

F(0.75) = 0.32, and the absolute minimum value is f(0) = f(1) =0,

that 15, at both endpoints.

(r=22") 4 (22 = 22*) 3z —42"
I =E= _
2\-"1: ! 2z = x* 2\-'"1:—:52

Soff(z)=0 = 3r—42"=0 = 3-42)=0 = z=0ord

b) flry=z/z =27 = ['(r)==.

f(0) = (1) = 0 (minimum), and f(3) = 3 ,,3 - 2 = 223 (maximum).
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162 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

69. Leta = 1.35and b = =2.802. Then C'(t) = ate™ = C'(t) =alte® - b4 e .1) =aet(bt +1). C'(t)=0 =
B+1=0 & t= -% =036h C(0)=0,C=1/b) = —%e'l = —i = 0.177, and ('(3) = 3ae™ = 0.0009. The
maximum average BAC during the first three hours is about 0.177 mg/mL and it occurs at approximately 0.36 h (21.4 min).

mass 1000

7. Thf-'d.f-‘l'lSIt} ISdEﬁI'IEdaSp m v [T:l

(in gfcm®). But a critical point of p will also be a critical point of 1/

d“.—'
[since % = =1000V~* ria and V" is never 0], and V" is easier to differentiate than p.

V(T) = 999.87 — 0.06426T + 0.00850437 % — 0.0000679T* = V'(T) = —0.06426 + 0.01T00SET — 0.0002037T 2.

Setting this equal to 0 and using the quadratic formula to find T, we get

=0.0170086 + +/0.0170086% = 4 . 0.0002037 - 0.06426

T =
2(=0.0002037)

== 3.9665°C or 79.5318°C. Since we are only interested

1000

in the region 0°C < T < 30°C, we check the density p at the endpoints and at 3.9665°C: p(0) = —y
SO

== 1.00013;

1000

1000
P30) = JooeT6oR

== 0.99625; p(3.9665) = 590 0T

== 1.000255. S0 water has its maximum density at
about 3.9665°C.

73. L(t) = 0.014416% — 0.417T¢% 4 2,703t + 1060.1 = L'(t) = 0.04323¢* — 0.8354¢ 4 2.703. Use the quadratic formula

0.8354 + ,/{0.8354) — 4(0.04323)(2.703)

tosolve L'(8) =0. t=
ve L'(t) 3(0.04323)

=4.1o0r 152 For0 < ¢ < 12 we have

L(0) = 1060.1, L{4.1) = 1065.2, and L{12) = 1057.3. Thus, the water level was highest during 2012 about 4.1 months

after January 1.

T (@) vlr) =k(rg =) = krgrl =k* = V(r)=2krgr=3kr’. (r)=0 = ki(2ry=3)=0 =
r=00or %m (but 0 15 not 1n the interval ). Evaluating v at %rﬁ, %m, and ro, we get n{%rﬂ] = %krﬂ*, u[%m} = %h‘,’%,

and v{ry) = 0. Since & > %, v aitains its maximum value at r = $ry. This supports the statement in the text.

(b) From part (a), the maximum value of v is %krﬁ. {c) “

0 Fi

3 ‘I{I II.II r

M flr) == 42" 4241 = f'(z)=101="" + 51 4 1 = 1 for all . so f'(x) = 0 has no solution. Thus, f(z)

has no critical number, so f{x) can have no local maximum or minimum.

9. If f has a local minimum at e, then g{x) = — f{z) has a local maximum at ¢, s0 g'(c) = 0 by the case of Fermat's Theorem

proved in the text. Thus, (e) = =g'(e) = 0.
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SECTION42 THEMEANVALUETHEQOREM 0O 163

42 The Mean Value Theorem

1. (1) f is continuous on the closed nterval [0, 8] .
(2) f s differentiable on the open interval (0, 8).
3) f(0) =3and f(8) =3
Thus, f satisfies the hypotheses of Rolle’s Theorem. The numbers ¢ = 1 and ¢ = 5 satisfy the conclusion of Rolle’s Theorem
since f'(1) = f'(5) = 0.
1 (a) (1) g is continuous on the closed interval [0, 8] .

{2) g is differentiable on the open interval (0, 8) .

g(8)=g(0) _4=1_3 T
b = = = =
Ita that g'(e) = 2 = . = /
ppears that g'(c) = ¢ when ¢ = 2.2 and 6.4 e . 7
ol M|
1 -
1] 1 T
o6)=9(2) _1=3 _ 1 7
(©) g'(e) = 2 = ==
6=2 4 2 PN J|II
It appears that g'(c) = —% when ¢ =~ 3.Tand 5.5. 4 R, ff
L A
1] 1 X

5 flz) =22 =4z 45, [=1.3]. fisa polynomial, so it's continuous and differentiable on B, and hence, continuous
on [=1, 3] and differentiable on (=1, 3). Since f{=1) = 11 and f{3) = 11, f satisfies all the hypotheses of Rolle’s
Theorem. ['{c)=4de=dand f'(e)=0 & 4de=d4=0 & e=1 ¢c=1isintheinterval (=1,3),so 1 satisfies the
conclusion of Rolle’s Theorem.

T fiz) = sin (=/2), [=/2,3%/2]. [, being the composite of the sine function and the polynomial =/2, s continuous and
differentiable on &, so it is continuous on [x/2, 37 /2] and differentiable on (=2, 37/2). Also, f(%) = £v/2 = f{Z£).
fley=0 & Zeos(ef/2)=0 & cos(ef2)=0 & c¢/2=%4nr & c=n+2nt, naninteger

Only ¢ = 7 is in (72, 37 /2), so 7 satisfies the conclusion of Rolle’s Theorem.

9 flz)=1=2" f(=1)=1=(=1)"*=1=1=0=f(1). f(z)==3z"" s0 f'(c) = 0 has no solution. This

does not contradict Rolle’s Theorerm, since f*(0) does not exist, and so f is not differentiable on (=1, 1).

M. flz) =2¢* =324 1,[0.2]. J iscontinuous on [0, 2] and differentiable on (0, 2) since polynomials are continuous and
5(b) = f(a) _f@)=f(0) 31

5 & dr=3= = =1 <& 4r=4 & ec=1 which

differentiable on . f'(¢) = 7 -0 2

isin (0, 2).
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164 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

13 flz) =Inx [1.4]. [ is continuous and differentiable on (0, sc), so f is continwous on [1, 4] and differentiable on (1. 4).

f[c}:ﬂf_’i:_i[ﬂ o %:Hﬂ:{“}:hda-ﬂ:% = czﬁmﬂ.lﬁ,“hmhlsm[l,d}.

1 1
2_\,-';:5 & =1 + c=1 Thesecant line and the tangent line
are parallel.

. f@)=(=3)" = f&)==2(=3"" [d)=f1)=()Aa=-1) = —=——sr=—

E 2 (e=3p 0

3 =f

Zzw = (e=3'==8 = c=3==2 = ¢c=1, whichisnot inthe open interval (1, 4). This does not
& —

contradict the Mean Value Theorem since [ is not continuous at © = 3.

19. Let f{z) = 2z 4 eosx. Then f{—n) = =27 — 1 < Oand f(0) = 1 > 0. Since f is the sum of the polynomial 2 and the
trignometric function cos 2, f is continuous and differentiable for all = By the Intermediate Value Theorem, there is a number
cin (==, 0) such that f{c) = 0. Thus, the given equation has at least one real root. If the equation has distinet real roots a and
bwitha < b, then fa) = f{b) = 0. Since [ is continuous on [a, b] and differentiable on (a, ), Rolle’s Theorem implies that
there is a number r in (a, b) such that f'{+) = 0. But f'(r) =2 —sin+ > O since sin+ < 1. This contradiction shows that the

given equation can’t have two distinct real roots, so it has exactly one root.

2. Let f(x) = z* = 152 4 ¢ for = in [=2, 2]. If f has two real roots a and b in [=2, 2], with a < b_ then f(a) = f{b) = 0. Since
the polvnomial f is continwous on [a, b] and differentiable on (a, b), Rolle’s Theorem implies that there is a number r in (a, &)
such that '{r) = 0. Now f'(#) = 3r* = 15. Since r is in (a, b), which is contained in [=2, 2], we have |r| < 2,50 r® < 4.
It follows that 3r* = 15 < 3.4 = 15 = =3 < 0. This contradicts f'(r) = 0, so the given equation can’t have two real roots
in [=2, 2]. Hence, it has at most one real root in [—2, 2].

23. (a) Suppose that a cubic polynomial F{x) has roots e, < ay < ag < ag, 50 Pla;) = Plas) = Plas) = Plag).

By Rolle’s Theorem there are numbers e, oo, o3 Withay < ¢; < ag, s < cs < oy and ay < ¢y < ay and
FP'(e1) = P'(e2) = P'{ea) = 0. Thus, the second-degree polynomial P'(x) has three distinct real roots, which is
impossible.

(b) We prove by induction that a polynomial of degree n has at most n real roots. This is certaindy true for n = 1. Suppose
that the result is true for all polynomials of degree n and let P{x) be a polynomial of degree n 4 1. Suppose that P(x) has

more than e 4 1 real roots, say a1 < az < aa <+« < @og1 < Gugz. Then Plar) = Plaz) =« = Plang2) =0
By Rolle’s Theorem there are real numbers ci, ..., cog1 Withay < o1 < az, ..., Gag1 < Cag1 < @apa and
Fe1) = voo = P'(eng1) = 0. Thus, the nth degree polynomial 7'(x) has at least n 4 1 roots. This contradiction shows

that P(x) has at most n 4 1 real roots.

Coprright W6 Cengage Learsimg. A0 gy Rienerved. Wy ot be coped, scanned, or deplacaied, m whok or in pert. Du o chociners sights, sorme thind party comte moy be spprened from the diock andier o hepierial.

Esbtrrea rovarn S decmcd that s wepproncd content doc By affect the ovorall bermirg cupencece. Uagage Lcameng rescrves the nght 0 remens sckdtamal oot 2t 2z hine o vebusguent gt s icton regues i




SECTION42 THEMEANVALUETHEQOREM 0O 165

25. By the Mean Value Theorem, f(4) — f(1) = f'(c){4 = 1) for some e € (1, 4). But for every ¢ € (1, 4) we have
() = 2. Putting ['(c) > 2 into the above equation and substituting (1) = 10, we get

fid)=f1)+ feli4=1)=104+3F(c) = 104+ 3-2 =16. So the smallest possible value of f(4) is 16.
27. Suppose that such a function f exists. By the Mean Value Theorem there is a number 0 < ¢ < 2 with

fMe)= ﬂEH@l = % But this is impossible since f"(x) < 2 < 2 for all &, so no such function can exist.

29, Consider the function f{x) = sinz, which is continuous and differentiable on B. Let o be a number such that 0 < a < 27,
Then [ is continuous on [0, a] and differentiable on (0, a). By the Mean Value Theorem, there is a number ¢ in (0, a) such that
fla) = F(0) = F(e){a = 0); that is, sina —0 = (cose)(a). Noweose < 1for0 < ¢ < 27, sosing < 1.a =a Wetooka
to be an arbitrary number in (0, 2x), s0 sinx < = for all = satsfying 0 < = < 27,

3. Let f{x) = sinz andlet b < a. Then f{z) is continuous on [b, a] and differentiable on (b, a). By the Mean Value Theorem,
there is a number ¢ € (b, a) with sina = sinb = f{a) = f(b) = f'(c){a = b) = (cosc)(a = b). Thus,

[sine = sinb| < |cose]| [b =a| £ |a =b]. If a < b, then |sina =sinb| = |sinb =sina| < |b=a] = |a = b]. If o = b, both

sides of the inequality are 0.

33 Forx = 0, fiz) = giz), Si:rf'l[.r:l- =g'(z). Forz <0, f'(z) = -I:lf.:::l-r = —l_lnlr:.l:2 and ¢'(z) = (1 4+ 1fz)" = —lf:i, S0
again f'{x) = g"(x). However, the domain of g(z) is not an interval [it is (—oc, 0) U (0, o0)] so we cannot conclude that

f = g 15 constant (in fact it 15 not).

o -

41

35 Let f(x) =urr.~sin( 1) — 2 arctan /T + §. Note that the domain of f is [0, oc). Thus,

1 (z+1)=(z=1) 2 1 _ 1 _ 1 -0
[ ie—1n2  (z+1) l+z 2z Jz(z+1) z(z+1)
¢l-(I+1)

fil=) =

Then f(z) = C on (0, 2¢) by Theorem 5. By continuity of f, f(x) = Con [0, 2c). Tofind O, we letz =0 =

arcsin{—1) — 2arctan(0) 4+ % = = —E =0+ f =0=0C. Ths, f(z) =0 =

ﬂn‘ﬁin(z: i) = Zarctan /T = I

37. Let g(t) and A(t) be the position functions of the two runners and let F{t) = g(t) = h(t). By hypothesis,
Fi0) = g(0) = h(0) = 0 and fi{b) = g(b) = k{b) = 0, where b is the finishing time. Then by the Mean Value Theorem,
there is a time £, with 0 < ¢ < b, such that ['(c) = w But f(b) = f(0) =0, s0 f'{c) = 0. Since

f'(e) = g'(c) = h'(c) = 0, we have g'(c) = h'(e). So at time ¢, both runners have the same speed g'(c) = h'(c).
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166 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

4.3 How Derivatives Affect the Shape of a Graph

1. (a) f is increasing on (1, 3) and (4, 6). ib) f is decreasing on (0, 1) and (3, 4).
{c) I is concave upward on (0, 2). id) f is concave dowrnward on (2, 4) and (4, 6).
{e) The point of inflection is (2, 3).

3. (a) Use the Increasing/Decreasing (/D) Test. (b) Use the Concavity Test.

{c) At any value of = where the concavity changes, we have an inflection point at (x, f(z)).

5. (a) Since f'(z) > Don (1, 5), f is increasing on this interval. Since ['(x) < 0 on (0, 1) and (5, 6), [ is decreasing on these
intervals.
ib) Since f'(z) = 0atx = 1and f' changes from negative to positive there, f changes from decreasing to increasing and has
a local minimum at = = 1. Since f'(x) = 0atz = 5 and f changes from positive to negative there, f changes from
increasing to decreasing and has a local maximum at = = 5.
7. (a) There is an 1P at = = 3 because the graph of f changes from CD to CU there. There is an IP at & = 5 because the graph
of f changes from CU to CD there.
ib) There is an [P at + = 2 and at =+ = 6 because f'(x) has a maximum value there, and so f"(x) changes from positive to
negative there. There is an [P at = = 4 because ') has a minimum value there and so "' (x) changes from negative to
positive there.
{c) There is an inflection point at = = 1 because [ () changes from negative to positive there, and so the graph of f changes
from concave downward to concave upward. There is an inflection point at = = 7 because () changes from positive to

negative there, and so the graph of [ changes from concave upward to concave downward.

8. (a) flr) =2 =3 =044 = fr)=3r" =6r=0=3(z" =22 =3) = 3(r+ 1){z = 3).

Interval 41 =13 iz f

<=1 - - + increasing on [ —oo, =1)
-l <=3 + - - decreasing on (=1, 3)

=3 + ks + increasing on (3, oc)

(b) f changes from increasing to decreasing at x = —1 and from decreasing to increasing at « = 3. Thus, f(-1)=%5a
local maximum value and f(3) = =23 is a local minimum value.

(c) flirf=bz=6=6{z=1) f'(z)>0 < z>land f"() <0 < =<1 Thus, [ isconcave upward on
(1, =) and concave downward on [ —oo, 1). There is an inflection point at (1, =7).

M. (a) flo) =2 =227 43 = flz)=4r" =4 :at.l:|:.r2 =1) = dx(x 4 1)(z =1).

Interval z4+1 x =1 fi=) i

r< =1 - - - - decreasing on {—og, =1)
—l<xr<0 + - - | increasing on (—1.0)

O<x<l + + - - decreasing on (0, 1)

r>1 + + + + increasing on (1, oc)
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SECTION 43 HOW DERNATIVES AFFECT THE SHAPEOF AGRAPH 0O 167

(b} f changes from increasing to decreasing at = = 0 and from decreasing to increasing at x = —1 and = = 1. Thus,

fi{0) = 3 is a local maximum value and f{£1) = 2 are local minimum values.

(©) fM(x) =12 =4 =12(z" = 1) = 12(z+ 1/V3) [z = 1/V3). f(z)>0 & z<=1/V3orz>1/v3and
fz) <0 & =1/43 <z < 1/y3. Thus, [ is concave upward on (=oc, =/3/3) and (v/3/3, oc) and concave

downward on (—+/3/3,+/3/3). There are inflection points at (+/3/3, £).

sinr

13 (a) flz) =sinz 4 cosx, 0 <2< 27. f(z)=ecosr—sinr=0 = cosz—sinr = 1=
Cis T

tanz=1 = x=Z%or 2 Thus, [z} >0 < cosr—sinr>0 & cosr>sing < 0<z< Tor
Bor<ivand fi(z) <0 & coszr<sing & I<x< I Sofisincreasingon (0, 5)and (28, 2x) and f
is decreasing on (£, Z£).

{b) f changes from increasing to decreasing at = = ¥ and from decreasing to increasing at = = 2% Thus, f(3) = +/2isa

local maximum value and f(2%) = —+/2 isa local minimum value.

) ffiz) ==sinr=cosr=0 = =sinr—cosr = tanr==1 =» x = 2% or ZX. Divide the interval
ry ry

(0, 2x) into subintervals with these numbers as endpoints and complete a second derivative chart.

Interval f(z) = =sinzr—cosz Concavity
0® | rE=-1<0 S
(5. 5) ffm)=1>0 upward

(IF.2x) M) =1-13<0 downward

There are inflection points at (2%, 0) and (£, 0).
15 (@) fiz)=e™ +e™* = [fl(a)=2"=c"" f(z)>0 & 2™ >3 & 31 & x>kl
z>3(lnl-In2) & r>-—1In2[=-0.23] and f'(zr) <0ifr < —3In2 So fisincreasingon (—1In2, =c)
and f is decreasing on (—oo, =3 In 2).
(b} f changes from decreasing to increasing at « = -% In2. Thus,
fl=3n2) =f{ln€f172) = V12 g =T 2 ATy M0V 2 T G Y3 =275 1 25 [ 180
15 a local minimum value.

(e) f"(x) = 4™ + &= > 0 [the sum of two positive terms]. Thus, [ is concave upward on (=oc, 5o ) and there is no

point of inflection.

1 Ef-x-l:{zl+liir-”_Thu:.,f{x]}ﬂlfa:}l

7. (a) flz) =" =z =Ilnx = f'{.:::]-:i.r—l—;: —

|note that = = 0] and ['{z) < 01f0 < = < 1. So f is increasing on (1, oo) and f is decreasing on (0, 1).

(b} f changes from decreasing to increasing at = = 1. Thus, f{1) = 0 is a local minimum value.
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168 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION
(c) f*{x) =24 1/=* > 0forall , so f is concave upward on (0, 5c). There is no inflection point.

19 f(z) =143c" =2 = ['(z) =6z —6zs" =6x(l —z).
First Derivative Test: f(z) >0 = O0<z<land f{z) <0 = x<0orz> L Since [’ changes from negative
to positive at = = 0, f{0) = 1 is a local minimum value;, and since f* changes from positive to negativeat r = 1, f(1) =2 is
a local maximum value.
Second Derivative Test: f"(x) =6 =12z, f{z) =0 & z=0,L f"(0)=6>0 = f{0)=1isalocal
minimum value. (1) ==6<0 = f{1) =21s a local maximum value.

Preference: For this function, the two tests are equally easy.

H. I[I} — V,-;_ {:r'; = .F{I] — %I-JJ"E — %I-:!fd. — iI-de{h]fq. } 2::;1

First Derivative Test: 23T =120 = r> <= sof(z)>0 = z>Land f(z) <0 = 0<x< &

Since f' changes from negative to positive at = = &=, f(5) = 3 — 3 = —3 1s alocal minimum value.
1

Second Derivative Test: " (x) = _Lpmayz 3w

4 16 e 1Ei~.r’.r_f
Flz)=0 & r==% (E)==-16424=8>0 = [f(3)= -3 isalocal minimum value.

6" pLi

Preference: The First Derivative Test may be slightly easier to apply in this case.
23. (a) By the Second Derivative Test, if f'(2) = 0and f"(2) = =5 < 0, f has a local maximum at = = 2.

(b) If f'(6) =0, we know that f has a horizontal tangent at = = 6. Knowing that f"'(6) = 0 does not provide any additional
information since the Second Derivative Test fails. For example, the first and second derivatives of y = (x — 6)*,
y ==(x=6)%, and y = (x = 6)" all equal zero for x = 6, but the first has a local minimum at = = 6, the second has a
local maximum at = = 6, and the third has an inflection point at = = 6.

25. (a) f'(z) > Oand f"(z) < 0 forall =

The function must be always increasing (since the first derivative is always /

positive) and concave downward (since the second derivative is always -~ -

/ it X
negative).

iy

(b) f'(x) < 0and f"(z) >0 forall =
The function must be always decreasing (since the first derivative is always \
i

=

negative) and concave upward (since the second derivative is always ]

positive). \
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SECTION 43 HOW DERNATIVES AFFECT THE SHAPEOF AGRAPH O 189
2 )= f{(2)=Ff{4)=0 = horizontal tangentsat = =0,2, 4. ¥
flz)=0ifx <0o0r2< <4 = fisincreasing on (—oc, 0) and (2, 4).
fiz)<0if0 <z < 20re >4 = fisdecreasing on (0, 2) and (4, o).

fz) =0l <x<3 = [isconcave upward on (1,3).

) <0ifzr<lore>3 = [isconcave downward on (—oo, 1)

and (3, 0o). There are inflection points when = = 1and 3.

29, f'(5) =0 = horizontal tangent at x = 5. y

fiz)<0whenz <5 = fisdecreasing on (—oc.5).

fz) = 0whenz =5 = [ isincreasing on (5, oc).

f(2)=0, f“(8)=0, f(z)<0whenz <2 orz>85,

(=T 3

i 3 i i

fz)=0for2 <x <& = [isconcave upward on (2, 8) and concave dowmward on (—oo, 2) and (8, oc).
There are inflection points at « = 2 and £ = &.

lim f{z)=3, lim f{z)=3 = y=3isahonzontal asymptote.

Ie—aial I = O

M fz)>0ifx#2 = [isincreasing on (—oo, 2) and (2, o).
) =0ifx <2 = [isconcave upward on [—oo, 2).
ffz)<Difx>2 = fisconcave downward on (2, oc).

[ has inflection point (2, 5) = f changes concavity at the point (2, 5).

lim f{z) =8 = fhasahorizontal asymptote of y = Bas = — oo,

lim f(z)=0 = [ hasahorizontal asymptote of y = Das £ — —oc.

33 (a) Intuitively, since f is continuouws, increasing, and concave upward for = > 2, it cannot have an absolute maximum. For a
proof, we appeal to the MVT. Let = = d > 2. Then by the MVT, f(d) = f(2) = f'(e)(d = 2) for some e such that

2<e<d So fld) = f(2) + f{e)(d = 2) where f(2) is positive since f(x) > 0 for all = and f'(c) is positive since
f{z) = 0for z > 2. Thus, as d — oo, f(d) — oo, and no absolute maximum exists.

(b) Yes, the local minimum at = = 2 can be an absolute minimum.

ic) Here f(x) — 0 asz — —oc, but f does not achieve an absolute minimum.
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170 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION
35. (a) f is increasing where f' is positive, that is, on (0, 2), (4, 6), and (8, oc); and decreasing where [ is negative, that is, on
(2, 4) and (6, 8).

{b) f has local maxima where f* changes from positive to negative, at * = 2 and at = = 6, and local minima where ' changes

from negative to positive, at x = 4 and at x = &,

{c) f is concave upward (C1V) where [ is increasing, that is, on (3, 6) and (6, oc), and concave downward (CD) where ' is
decreasing, that is, on (0, 3).

(d) There is a point of inflection where [ changes from (e) ¥
being CD to being CU, that is, at = = 3.

M (a) flz) =2 =122 42 = [(z)=32"=12=3(z" =) =3(z+(z=2). f(z)>0 & z<=2orzx>2
and f'{x) <0 & =2« zx<2 S0 fisincreasing on (—oo, —2) and (2, o) and [ is decreasing on (=2, 2).
(b} f changes from increasing to decreasing at x = =2, so f(—2) = 18 is a local maximum value. f changes from decreasing
o increasing at = 2, 50 f(2) = —14 is a local minimum value.
(© f"(z) =6z. f'(z)=0 & ==0. f"(z)>0on(0,0c)and @ e
F"(z) < 0on (—oc,0). So [ is concave upward on (0, o) and f is

concave downward on (—oc, 0). There is an inflection point at (0, 2).

=)

2. —14)

31 (a) flz) =32 4" 43 = [f2)=2r" —Br=22(z" =4) =22(zx+ 2)(z=2). [(z)>0 & -2<z<0
or x> 2and ffz) <0 & x<-20r0<x<2 S0 fisincreasing on (—2.0) and (2, so) and [ is decreasing on
{—=c,=2) and (0,2).

(b} f changes from increasing to decreasing at = = 0, so f{0) = 3 is a local maximum value.

F changes from decreasing to increasing at « = £2, so f{£2) = =5 is a local minimum value.

© f'(x) = 62> =5 =6(z* = 2) =6(z + 2 ) (x = ). (d M
fMr)=0 & r=+2% ['(z) }Dm[—m, -—\'jg) and (?2‘5 :30) ol
and f"(x) < 0 on (-ﬁ 5‘5) So f is CU on (—:x\ ‘?5') and 5105
(ﬁ, ) and fls(_[h:n( ) There are inflection points at \-‘/I/:: ",v v
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SECTION 43 HOW DERNATIVES AFFECT THE SHAPEOF AGRAPH O 171

4. {a}f:{z]:{z-{-—l]r’—&r—ﬂ = f:'[:::l=5[I+l:l"—5.h'{:.r]=l] E= 5{.1:-4—1}"':5 = {z-{-—l]‘:l =
{I+—1}2:1 = z+l=lorr4l==1 = z=0mwz==2 K'(z)>0 & z<-=2o0rx>0and
iz) <=0 = =2z <0 Sohisincreasing on (—oo, —2) and (0, <) and h is decreasing on (=2, 0).

(b) &{=2) = T is a local maximum value and 4(0) = —1 is a local minimum value. (dy =27 7t

ic) k" (x) =20{x + 1:.:! =0 & z=-=1. h"l[.r:]- =0 & x> =1and
Kz <0 & r<=LsohisCUon(=1,2c)and his CDon (=—oo, =1).
There is a point of inflection at (=1, k{=1)) = (=1, 3).

41 (a) Flz)=zvb—-x =

=3z 4+ 12
26—z

Fliz) >0 & =3z+12>0 & z<dand F'(z)<0 < 4<z <6 50F isincreasing on (—oc, 4) and F is

F'(x) =2 3(6 = 2)"2(=1) + (6 = 2)/2(1) = 2(6 = 2)~"/[z 4 2(6 - 2)] =

decreasing on (4, 6).

ib) F changes from increasing to decreasing at = = 4, so F(4) = 4v/2 is a local maximum value. There is no local minimum

value.
(c) F'(z) = =2{z = 4)(6 = 2)~* = a7 4. 443
F'(@) = =3[ = 4)(=4(6 - 2)"**(=1)) + (6 - 5)™/(1)
= =2 26 =)z = 4) +2(6 ~ 2)] = H |
Lhl X
F"[x) < 0on (=oc, ), s0 Fis CD on (=oo, 6). There is no inflection point. v
45, ‘a} [:[I} — Il.l'l.':I-[I+ 4] = m-zf:: + 4‘171.:":! = 'r:" |::.1-':]' 4 1;"3 + 4 —-J.u":! -iffl-[ + l] 4;‘]:;} {"‘H’{ ] > 0if

=l < z<Dorz>0and C'(x) < 0forx< =1, 50 isincreasing on (=1, oc) and C is decreasing on {=oc, =1).

(b) C{=1) = =3 1s a local minimum value.
(2,642)
- Fm28 -3 —5/a _4[I—2}
(c) C"(z) = 3= _ 22=58 = 1= —2) = Y
C"x) < 0forD <z« 2and ") > 0forz < Dandx > 2,50 C is

concave downward on (0, 2) and concave upward on (=oc, 0] and (2, oc).

There are inflection points at (0,0) and (2, 69/2) = (2,7.56). =1 _”

47. (a) f{#) =2cosf +cos" 0, 0<H < 2xr = [f(0)=—=2sin+ 2cosf (= sind) = =2sind (1 + cos ).
fe)=0 < #=07and2r f(6) >0 < w<B<2rand [(#) <0 < 0<8<x Sofisincreasing

on (7, 2x) and f is decreasing on (0, 7).
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172 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

i(b) f(x) = =1 is a local minimum value.
(c) F(0)==2zinb(l +cosf) =
(0 = =2sind (—sin#) + (1 + cosd) (=2 cosf) = 2sin" 6 = 2cosf = 2eos" @
=2(1 = cos’0) = 2eost — 2eos” @ = —dcos” 0 = 2cosl 4 2
= =2{2cos" § 4 costl = 1) = =2(2cosé = 1)(cosd + 1)
Since =2(cosfl 4 1) < 0 [for@ £ =), f(8) >0 = Zeosf=1<0 = cmb<i = F<f<Fand
Fie) <0 = cosfl>3 = 0<@<fori <f<2x S0 fisCUon {' "'"}and_J"JsLDan {l] ‘}and

(3E. 2). There are points of inflection at ($. f(5)) = (5. 3) and (3. F(F)) = (£. 3).

8. f(r)=1+ % - ﬁ has domain (=0, 0) U (0, 50).

@ lim (1+i—r-%) =Lsoy=1isaHA lim (1+i—$) = lim_ (%) = —oo since

(42 =1) = =1and * — Dasx — 0% [a similar arsument can be made for = — 0~], so x = 0 isa VA
2 _
==
or x> 2. 5o f is increasing on (0, 2) and f is decreasing on (=oo, 0) and (2, o).

B f@) ==+ 5 ==5(=2) f&)=0 & =2 f(x)>0 & 0<z<2adf(z)<0 & z<0

(c) f changes from increasing to decreasing at = = 2, so f(2) = 2 is a local ie) T s

maximum value. There is no local mimmum value. T f

@ ["(@)= 5= %= 2(=9). f'£)=0 & z=3["@@)>0 =

r>»3and f'(r) <0 & r<0om0<zr<3 SofisCUon(3, 00)and f

15 CD on (—oc,0) and (0, 3). There is an inflection point at (3, 5.

5. {a}lli-.l_uxliu"'fd-l-l—x:l = oo and

VI5+1+I I 1

Ilrn (vz? +1—I}—]-“T' (Vet+ 1=z }af"j_+-17 lﬂim+1

=050y =015a HA.

= 1. Since

x x
. ain
V41 Vvt 41

b) flzr) =vzidl=zr = flx)= < 1 forall x, f'{x) < 0, so f is decreasing on E.

() No minimum oF maximum
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SECTION 43 HOW DERNATIVES AFFECT THE SHAPEOF AGRAPH O 173

{I2 -+ l}lf'-!{:l} —_ %{IH + 1]—1}2{21_}

d T) = ;
(d) () (V=F1) (e)
2 2 _ x”
_ {I + 1:]' {Ij + 1}”’2 _ {:52+ 1:'-—.1:2 _ 1
= 241 =@ 0 S @rppr

so fisCUon E. No IP
53. (a) L - i 1 =0,50y =015a HA. There 5 no VA
Spem = Im = =tsoy= : :

z 2

ib) filz)=e"" = [fzx)=e""(=2z). fz)=0 & z=0 fz)>0 & z<0and fliz) <0 &

x> 0. So fisincreasing on (=oo,0) and [ is decreasing on [0, oo).

ic) f changes from increasing 1o decreasing at x =0, so f(0) = 1 isa local maximum value. There is no local minimum
value,

(d) f"(z) = == (=2) + (=2x)e=* (=22) = =2~ (1 = 227).
Mz)=0 = ! :% = Izilfv'i. _f"l::.r:l- =0 &
< =1/y2orz>1/v2and f'(z) <0 & =1/v2<z<1/V2 So
fisCUon (—oc, —1/vZ) and (1/vZ,2c), and f is CDon (—-1/vZ,1/VZ).

There are inflection points at (ilfv’i e‘l"”).

85 f(x) = In(1 = In=x) is defined when = > 0 (5o that In = is defined) and 1 — Inx > 0 [s0 that In{1 — In =) is defined).
The second condition is equivalentto 1 > Inx & x < e, so f has domain (0, £).
(@) Asxr = 0% Inr — =00, 50l =Ilnz — ocand fz) = oo Asxr — e~ Inzr — 17,801 = lnx — 0% and

flx) — —oc. Thus, = = 0 and x = e are vertical asymptotes. There is no horizontal asymptote.

1 1 1
(b) f'(z) = T (—;) = —m < Don (0,e) . Thus, f is decreasing on its domain, (0, £) .
ic) f'{z) #0on (0,e), so f has no local maximum or minimum value. ie) N

=zl =Inz)]'  =x(=1/z)+(1=Inx)
(@ £(=) == £l =lnz)® £2(1 = Inx)?

_ Inzx

T T E(I—Inz)

so f"[z) >0 & lnxr<0D & 0<x<l Ths, fisCUon(0,1)
and CD) on (1. ) . There is an inflection point at {1, 0] .

57. The nonnegative factors (x + 1)° and (x — 6)* do not affect the sign of f'(z) = (z + 1)*(z = 3)%(z = 6)%.

S fllz) >0 = (z=3)">0 = x=3>0 = x> 3 Thus, fisincreasing on the interval (3, 0c).
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174 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

59. (a) 2 From the graph, we get an estimate of (1) == 1.41 as a local maximum
| /,I"—-""""— value, and no local minimum value.
— A ey a _ r41 _ l==x
k/_ I{I}—m = fim]_{ﬂ-}-ljﬂh'
= g f(z)=0 & x=1 f(1)= 3 =v2isthe exact value.

ib) From the graph in part (a), [ increases most rapidly somewhere between = = —% and r = —%. To find the exact value,

we need to find the maximum value of f7, which we can do by finding the critical numbers of '

2 = =
Mx) = Z o321 o = 3EMIT 34T corresponds to the minimum value of f'.
(=2 + 1)** 4 4

The maximum value of [ occurs at x = :’;}E mz =028,

61. f(z) =sin2rx 4 sinds = fzr)=2cm2r44eosds = ["(z) = =4sin2r = 16sinds

{a) From the graph of f, it seems that f is CD on (0, 0.8), CU on (0.8, 1.6), CD on 1L5f

(1.6, 2.3), and CUJ on (2.3, &). The inflection points appear to be at (0.8, 0.7),

(1.6,0),and (2.3, —0.7).

[
=

-,
-

(b) From the graph of [ (and zooming in near the zeros), it seems that f is CD on
(0,0.85), CU on (0.85, 1.57), CD on (1.57.2.29), and CU on (2.29, 7). /\

Refined estimates of the inflection points are (0.85, 0.74), (1.57, 0), and \/ T
(2.29, =0.74).

_‘!u . .

a2t +2° 41 i
ﬂf{:}zﬁ. In Maple, we define f and then use the command :

plot (diff(diff (£, x) ,x) ,x=-2_.2) ;. In Mathematica, we define f

(2]

=]

and then use Plot [Dt [DE[£,x],x], {x,-2,2}]. We see that f* = O for \/

x < =0Gandxr > 0.0 [=003] and f* < 0 for =06 < x < 0.0. So f 5 CU

on (=oc, =0.6) and (0.0, oc) and CD on (=0.6, 0.0).
65. (a) The rate of increase of the population is initially very small, then gets larger until it reaches a maximum at about
t = B hours, and decreases toward 0 as the population begins to level off.
{b) The rate of increase has its maximum value at t = 8 hours.
{c) The population function is concave upward on (0, 8) and concave dowmward on (8, 18).
(d) At ¢ = &, the population is about 350, so the inflection point is about (8, 350).

67. If D(¢) is the size of the natiomal deficit as a function of time ¢, then at the time of the speech ['(t) = 0 (since the deficit is

increasing), and D () < 0 (since the rate of increase of the deficit is decreasing).
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SECTION 43 HOW DERNATIVES AFFECT THE SHAPEOF AGRAPH O 175

69. Most students learn more in the third hour of studying than in the eighth hour, so F{3) — K(2) is larger than K(8) — K(7).
In other words, as vou begin studying for a test, the rate of knowledge gain is large and then staris to taper off, so K'(t)

decreases and the graph of K is concave downward.

. S(t) = At"e=* with A = 0.01, p =4, and k = 0.07. We will find the 200
zeros of [ for f(t) = tPe=bt,
F1(t) =t (=ke™") 4 =M (ptP=1) = =M (=kt? + pt*=")
F'(t) = e~ (=kpt"=" + plp — 1)tP=%) 4 (=kt* + pt*=1)(—ke="")
= t*=2e=* _kpt + p(p — 1) + k212 = kpt] !
="M (K = 2kpt 4 p* = p)

Using the given values of pand k gives us f(t) = t*e="97{0.0049¢* = 0.56¢ + 12). So S"(t) = 0.01"(t) and its zeros
are { = 0 and the solutions of 0.0049t* = 0.56¢ + 12 = 0, whichare t; = 22 = 28 57 and f2 = %2 = 85.71.
At ty minutes, the rate of increase of the level of medication in the bloodstream is at its greatest and at ¢ minutes, the rate of

decrease is the greatest.
73 fiz) =ar’ 4+ be’ +ex +d = f'(z) = 3ax" + 2bx 4 c. ¥
Lo o
We are given that f(1) =0and f(=2) =3,s0 f(l)=a+b+c+d=0and (=D

f(=2) ==Ba+4b=2c+d=3 Also f'(1) =3a+ 2b 4 c=0and

f{=2) = 12a — 4b 4 ¢ = 0 by Fermat's Theorem. Solving these four equations, we get

——
11

=]

L

-

a=4b=1% c==4 d= I sothe functionis f(z) —1{2r1+3.1:2-12:5+?]

75 (a) f(z) =" +az” + bx = f'(x) =3z" +2ar 4+ b. [ has the local minimum value =33 at = = 1/v/3, so
f(FZ)=0 = 1+ Za+b=0 () and f(E)==3/F = 5OB+ia+iB==35 @

Rewrite the system of equations as

3v3a 4+ b

%n -+ %\-ﬁb = —%Uﬁ (£}

Il

I

—
-
=

and then multiplying (4) by =2+/3 gives us the system

=1

243 + b
-3v3a = 2 = 2

Adding the equations givesus =b=1 = b= =1 Substituting —1 for b into (3) gives us
FVia-1=-1 = 3/Ia=0 = a=0Ths f(z)=2"-=x

(b) To find the smallest slope, we want to find the minimum of the slope function, f*, so we'll find the critical
numbers of f'. flr)=r' =2 = flr)=32"=1 = ["(z)=6zx. f(z)=0 & =x==0
Atz =0,y =0, f'{x) = =1, and j" changes from negative to positive, Thus, we have a minimum for [ and
y=0==1{x=0), or y = =x, is the tangent line that has the smallest slope.
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176 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

14z , 1+ ) =(1+)(22) 1-2x—2
Ty=13=2 T V= 1+ 2% =+
v (142 (=2=22) = (1 =22 =) - 2(1 4+ £2)(2x) _ 2(1 + 2*)[(1 4+ £?)(=1 = ) = (1 = 2z = 27?)(22)]
T [+ =) B A+
_-l—z—z' =2’ =22 4+42"+2") 2’ +3a" —32-1) 2z-1(z"+4x+1)
- (1+z)* - (1+z7) B 1+

Soy'" =0 = x£=1-2+3F leta==2=+/F b==24 T ande = 1. We can show that f(a) = %{1 —vﬁ},
f(b)=2(1++/3),and f(c) = 1. To show that these three points of inflection lie on one straight line, we’ll show that the

slopes ma. and ma. are equal.
M@ =fw) _1-3(01-V3) _F+5V3_1
T T e—a T 1-(-2-v3) 3+v3 4

CJ@=f) _1-1(14v3) 1-31vE 1
T e=b T 1=(=24v3) 3=-v3 4

e B

Mike

T y=rsinr = y =zreosr4sinr = " =—rsinr4Zesr y" =0 = Zeosr=rsinr [whichisy] =
{Eu.n-u::lz ={:55ir.1:r.::]2 = deostr=z"sin"r = 41:{.1&21:::2{1 - cos” :5:] = deosr4rfestr=x" =
cos? J:{4 + Iz} =1 = deos” :l:{;v:2 + 4]- =4z = j,.ll‘!{;r2 + 4] = 4z since y = 2eos x when y" = 0.

81. (a) Since f and g are positive, increasing, and CU on I with " and ¢" never equal to 0, we have f > 0, ' =0, f" > 0,
g>0,9'>0,¢" >00nl Then(fg) = f'a+fd' = (fa)"=r"9+2fd+[d" > "9+ f¢" >0l =
fgisCUon I

{b) In part (a), if f and g are both decreasing instead of increasing, then /' < D and g" < 0 on I, so we still have 2f'g" =0
ond Thus, (fg)" = Meg+2f e 4+ fo" 2 g+ fo" >0onf = [fgisCUon I asin part (a).
(c) Suppose [ is increasing and g is decreasing [with f and g positive and CU]. Then f* > Dand ¢" < Oon I, s02f'g' =0
on I and the argument in parts (a) and (b) fails.
Example 1. [ =(0,2c), flz) = 1:2, glz) = 1/x. Then (fg)(x) = z”, w (fg) () = 2r and
(fe)'(z) =2 > 0onI. Thus, fgisCUon I.

Example2. [ =(0,00), f{x) =4z /T, g{x) = 1/x. Then (fg)(z) = 44/, 50 (fg)'(z) = 2/+/T and
(fg)"(x) = =1/v'z* <Don I Thus, fgisCDon I.

Example 3. [ = (0, =), f{z]:x{gl{.r}:lf:. Thus, { fg)(x) = =, so fg is linear on I
8. f(z)=tanz—z = [(z)=sec’c—1>0for0<z < ¥sincesec” > 1for0 <z < 5. So f isincreasing
on (0, F). Thus, f(x) > f(0) =0fwr 0 <r < & = tanc=z>0 = tanr>zful<z< i
85. Let the cubic function be f(z) = ax’ + b’ 4+ ex +d = f(x)=3az" +2bx+e = f"(2) =6ax + 2b.

So fis CUwhen Gax + 26 >0 & x> =bf(3a), CDwhen x < —bf3a), and so the only point of inflection occurs

when = = —b/f{3a). If the graph has three r-intercepts =, x2 and x;, then the expression for f(z) must factor as
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SECTION 43 HOW DERNATIVES AFFECT THE SHAPEOF AGRAPH 0O 177
fiz) = alx = 21)(x — 22 ){z — xa). Multiplying these factors together gives us
flz) = alg® = (z1 + 22 + )z + (z122 + 123 + T233)x — T17273]

Equating the coefficients of the z*-terms for the two forms of f gives us b = —a(x; + x4 + ;). Hence, the z-coordinate of

—afri x4 xa) zTidxadas
3a - 3 '

. . ]
the point of inflection §—oe ==

87. By hypothesis g = f* is differentiable on an open interval containing . Since (e, f(e)) is a point of inflection, the concavity
changes at x = ¢, so f"(x) changes signs at = = ¢. Hence, by the First Denivative Test, ' has a local extremum at r = ¢,
Thus, by Fermats Theorem f*(¢) = 0.

Bﬂ.UsmglheFa.clt‘rm|z|=u@,wehavelhatg[z}=z|.r|=.ru'g — g'[:}:ﬁg+@=2@:2lr| =

g'(x) = 22(2*) " = 2 < Oforz < Oand g"(z) > 0 for = > 0, so (0, 0) is an inflection point. But g" (0) does not

|«

eIt

81. Suppose that | is differentiable on an interval I and f*{x) > O for all = in I except = = ¢ To show that | is increasing on f,

let ay, x4 be two numbers in I with x; < o,
Case | ) < x3 < ¢ Let.J be the interval {x € I | ¢ < ¢}. By applying the Increasing/Decreasing Test to f
on J, we see that  is increasing on J, so f{x, ) < fx2).
Case 2 ¢ < x1 < x2. Apply the Increasing/Decreasing Testto fon K = {z € [ |z > c}.
Case 3 x1 < za = c. Apply the proof of the Increasing/Decreasing Test, using the Mean Value Theorem (MVT)
on the interval [x1, x2] and noting that the MVT does not require f to be differentiable at the endpoints
of [x1, x2].
Case 4 ©=x, < x5 Same proof as in Case 3.
Case § @z < ¢ < xz. By Cases 3 and 4, f is increasing on [z, ¢] and on [e, x2], s0 fz1) < fie) < fzs).
In all cases, we have shown that f{x1) < f(x2). Since x1, zo were any numbers in [ with x; < x2, we have shown that [ is

increasing on .

ﬂ[a}f{r}:r‘minl = f’{x}:x"cml( 1)+5iul{.113]=4335jnl_;2._w1_
x x x x x

=
gz,—,}=f'(2+”i“§)=2f'+ftxm = ¢(z) =82"+ f'(z)

hiz) = z"'(—z + sin :i) ==2z"+ f(z) = K(z)= —8z® + fiz).

1
4 -
— (O ' sin— =10 1
(=) - 1(0) = lim L = lim =* sin —. Since
=10 z=l) T x =0 T

It is given that f(0) =0, so f'(0) = lim

- |z Erasiul < |2*| and lim |=*| = 0, we see that f'(0) = 0 by the Squeeze Theorem. Also,
! A q
F A x—
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178 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

g'(0) = 8(0)* 4 f'(0) =0and h'(0) = —=8(0)* + f'(0) =0, 500 is a critical number of f, g, and h.

= sin 2nw = 0and cos
I LTin

For £a,, = % |7 a monzero integer], sin =cosInm = 1,50 f'(xs,) = =23, < 0.

! i ! = sin[ﬂn + l}# = 0 and cos

For o447 = sin
+1 :
(Z2n + 1)= Tagpl Tap4l

= cos(2n 4+ 1)7r = =1, 50
flzenp) = r%,ﬂ_, = 0. Thus, f* changes sign infinitely often on both sides of 0.
MNext, g;{I?H]' = Au + -F[I?H]' = Au Egn = I%n{s‘rﬂll = 1} <0 fbrI:ﬂ“ < %’ bt

g’ (T2n41) = Brdnpr + Tingr = Trngr (ST2ns1 + 1) > 0 for zanga > =1, 50 g’ changes sign infinitely often on both
sides of 0.

Last, h;{:zz.g] — _'E'IEH + f’{mnl — -BEEH -Ign = _Igﬁ{ﬂ_p_d”_ + 1} < 0 for xe, = —i and

W (zapg1) = —Eiz:%,,+1 + oty = aipg (=Bxagg + 1) > 0for oy, < %, so k' changes sign infinitely often on both
sides of 0.

1 1
{b) f{0) = D and since sin — and hence =* sin — is both positive and negative inifinitely often on both sides of 0, and
I I

arbitrarily close to 0, f has neither a local maximum nor a local minimum at 0.

1 1
Since 24 sin= > 1, glx) == (2+ sin = ) = 0 for x # 0, s0 g(0) =0 is a local minimum,
T

Since =2 4 sin L < =1 hiz)= 1:"(-2 4 sin l) < 0 for £ # 0, s0 h(0) = 0is a local maximum.
I F 4

4.4 Indeterminate Forms and I'Hospital's Rule

Mobe: The use of MHospital's Rule is indicated by an H above the equal sign: £

1. (a) lim 1(=) is an indeterminate form uft}pe E

==a g(x)

ib) !In._u.% ﬁ i = 0 because the numerator approaches 0 while the denominator becomes large.

(c) lim P:,EI; = 0 because the numerator approaches a finite number while the denominator becomes large.

id) Ifglii_uﬁ plx) = oo and f(z) — 0 through positive values, then _l.u.u IE :; = oo |For example, take a = 0, p(z) = 1/,
and f(x) = «*.] If f{x) — 0 through negative values, then i % —oc. [For example, take a = 0, p(x) = 1/z°,

and f(x) = =] If f(z) — 0 through both positive and negative values, then the limit might not exist. [For example,
take a = 0, p(z) = 1/=*, and f(z) = =]

(e) lim —— plz)

+a g(z)

i an indeterminate form of type =,
= =]

3. (a) When = is near a, f(x) i1s near 0 and p(x) is large, so f(x) — p(x) is large negative. Thus, .ll—l-“- Flz) = plz)] = =
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SECTION 4.4 INDETERMIMATE FORMS AND LHOSPITAL'SRULE O 179

(b) lim [p(z) — g(x)] 15 an indeterminate form of type 0o — oo,
(c) When x is near a, p(x) and g{x) are both large, so p{x) + g(z) is large. Thus, lim [p(z) + g(z)] = ==.
5. From the graphs of [ and g, we see that lim f{x) = 0 and lim g{z) = 0, so I'Hospital’s Rule applies.
==l =

lim f'(x
= lim fgzj =z )

‘(x)  limg'(x)

a9

— 1

_I'2) _

lim flx)
a(2)

F—ad g{I}

1.8
=2 g %

7. fand g = ¢* = 1 are differentiable and g' = ¢* # 0 on an open interval that contains 0. ].i_r.:::I flz) =0 and lil'}:I glx) =10,
x I
so we have the indeterminate form % and can apply I"Hospital’s Rule.

@) upg S@ 1
M1 e T

=1

Note that Iil%f’{:s] = 1 since the graph of [ has the same slope as the line y = z atx = 0.
Il

" =2r =8

r=4
Nore: Alternatrvely, we could apply I"Hospital s Rule.

{1:—4]{.r+2} _
=4

9. This limit has the form 8. lim
=i

IIHI{I+2]_4+2—E

:—-4

e P 3x* — 4z 1
1. This limit has the form 2. 1 = lim ° ===
0 o B—1 r—1 322 3
Neve: Alternatively, we could factor and simplify.
13. This limit has the form 2. lim —— = & Jim 2% = lim  tanr = =occ.
reafmfm#+ 1 =s8inx  sofmfn+ =COST  sxjo)+
) e gt 21
15 This limit has the form %. litn — = lim = Q =2
t=0  zint t=sih s 1
1=sinfl g =cosfl g sinf 1
17. This limit has the form 2. Li —_—= —_— =i _——
e al—-E:fz 1 4 cos 28 ﬂ—l-'lru,.fz =2 sin 26 ﬂ—]-'lru,.fz =deos 4
. . 1 .
19. This limit has the form 2. lim BEE jy W2 _ 2 g
X T o E-.1,—-1.|"'-! o \-"'.;

2. lim [(Inx)/2]

quotient (In =)/z. L'Hospital’s Rule does not apply.

. =1y, & B
i H o _ & :!__ —
23. This limit has the form 3. !I_IH oy !—-'} =4 = g L m!: {1}
25. This limit has the form 2.
i VI 22 =VT=Tr g o 3(14+20)71% 2 31 —42)=1/%(—4)
=il xr =il 1
i ( 1 + 2 ) 1
=limn [ —mt——= ==+ —==
=0 \ ST+ 2r  J1=4azx W1 ..,a"
x x
. oo e—l—zﬂ, E_lﬂ'i_i
27. Tl*nsllmjthasihetmnn. l]i‘.[:} = = lim o —L!-]._I-I:Ié 7 =3
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. tanh = b0 1
2. This limit has the form % lim ——— 2 lim 5 === ; =—-=1
=—0 Lanrz w0 SECT @I sec- () 1
o=l — =
31. This limit has the form & Jim S2_Z 8 g UV =2y, 1 1,
F=ill T 2 =all 1 P - 1
S 3 w343 . F(zrlni4l) . ornd4+l 1
3. Thislmithasthe form 5. o = ™ 33 +=% 33 +%0 W3 In3
Infl4x)  Inl 0

35. This limit can be evaluated by substituting 0 for . llrn =0

R S | 1+1—1_T
37. This limit has the form £, so0 "'Hospital’s Rule doesn’t apply. As = — 0%, arctan(2r) — O and Inx — —oc, 50

lim an:l.aull{ﬂ.z:l- -0
o lnx -

(]
s g T =1 _afl)
39. This limit has the form 7. lim . [forb£0] = ln-n.I = = —{”
. . Eﬂhx-l‘l"—I H =sinE4x H =cosr4+1 H . sinxr H .  cosE 1
41, This limit has the form 2. | = lim = lim =1 = lim —— = —
e omE o T b R P so0 122 eob 2z a0 21 24

43. This limit has the form oo - 0. We’ll change it to the form g.

sin(x/x) u . cos(xfz)(=m/z")

IllI.ISIEIHIII{HJI'II} ZIIEI;.:_ = lim —— :Hllll.'x;ctml[#fx] =a(l)=m

1z 2 = =1/z
45, This limit has the fiorm 0 - oo, We'll change it to the form g. lim sin 5z ese 3z = lim ——— 2 lim DCos 5 = 5-1 =2
£ z—0sindr r—0doosdxr 3.1 3
47, This limit has the form 00 - 0. Bm 2%~ = Iim 23 & Em -2 = lim e
: ' F— o _l—rxrlf_:—-sc Dy _:—r-:x; D _.'r—--'_h: e -
49. This limit has the form 0« (=oc).
Inx w 1)z 1 2

L, Iz tan(re/2) = W, T o (S D o (melD - (=2 =

54. This limit has the form oo = oo,

] x 1 . rlnr=(r=1) u z(lfz) +Ilnz =1 . Inx
=1\ =1 In =1 [z—=1)}In=z = (z=1)1/z) +Inx ==11—=(1/z)+Ilnzx
2
glmllf—r I,:lirn il z;zl
z—-llf +]_JJ'.I e =114 141 2

53. This limit has the form oo = oo,

. 1 1 . ef=l=xn B e =1 o et 1 1
im | — = = lim ———— = lim ————— = lim = ==
=it \x et =1 z=irt (e =1) =i+ ze*4e* =1 ot xe" e+ 04141 2

55. The limit has the form sc — oo and we will change the form to a product by factoring out .

lim {z—ln:s]: lim z(l—ln—I = oo sice lim In_zg lim l'{E:l].

Ie—aial X =30 X = ial I =0
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57. ;,r:.z"q = Ilny=+Tlnz so

. . . Inr gy T
lim Iny = lim = Inx = lim = lim = =2 lim =0 =
vl .—-n+""!_ e E _z—-n+‘r
lim =¥ = lim &% =" = 1
x=sill+ x=aill+
1 . o Im(1=22) w  =2f(1=12x)
= - e = — -— = = =
59, y = (1 — 2x) = Iny In{l 2x), m-l.lf'_'l:l In g l]irér - l||_1-|'éI 1 2 =
|1|'n|[1—2.r:]-1""l = lim 'Y = &=%
=il E=aill
51.;;:.1:1"'{1"‘) =3 Iny:;lna:,su lim Iny= lim ! Inr = lim II.—Ié lim 1lI;—:E:—l =
- 2= 1+ =it 1 =7 z=slt l=r 21+ =1
lim ¥0=%) = Qim &™¥ =e=! = 1
F=—a1+ F=al+ e
1/ Inzw .. 1z
6Bl y==x = lny=(lfz) Inz = llrn Iny = lim — = lim —=0 =
=30 I =0 1
lim =%* = Jim ™Y =" =1
Il el
4
In{dr <41
65 y = (dor 4+ 1)*"* = Ilny =cotr ln{dr + 1), 50 Iun Iny = lim M L lim ‘h-_fl =4 =
1_..u.+ tanx i+ SBCdT
lim {4:5+l] = lim "% =gt
=it =0t
6. y = (1 +sin3c)"* = Iny= L ln(l 4 sin 3zx) =
T
In{l 4 sin3r /(1 4 sin3x)] - 3cos3 3 3 3-1
lim Iny = lim w 2z lim [L/(1 + sin3x)] - 3 cos 3z = lim b =3
F—siit il xr Pa— 1 ,_.a.+ 14 :.-un'ia: 140
Iun (1 +sin32)Y/* = lim ¥ =&
=i+ 2=+
69, i From the graph, if x = 500, y = 7.36. The limit has the form 1*°,

r
] 23" 2

'-r-_ wa‘y:(l-i——) == IIly:IIII(1+—) =
T T

1 2
! o W(142fz)w . 142z ('F‘)
0 sop g, Inw =0 T -y

=2 lim z; =2(1)=2 =

2 x
lim (l Ee —) = lim ™Y = ¢* [ 7.39]

E ] T ]

G B nf'{ 2 _ 2.

. From the , it appears that Iim —_
We calculate lim M = lim e -1 e lim !

E—all q{:s] w0 23 4 dx x—0 'i-:ll.:2 + 4 Z

—0.5
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182 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

x ] 2 T

. € H .. et H e H [
T3, lim =— = lifn —— ] —— e = i — =
oo g z—so pa®=l oo pfn — 1)zn=2 z—cc 1l

75. lim ! = lim —'I'H. Repeated applications of I"Hospital s Rule result in the
T

x H
——— = lim

xoe 2T 41 woee 322 4 1)=12(2r) s

original limit or the limit of the rempmca] of the function. Another method is to try dividing the numerator and denominator

1

i 1
x —_— -
by -“'9‘3 v’z +1 Hf.zﬂfrz 4+ l,-".rJ 1..-'1 + 122 1

M flz)=e"=ex = [z)=e"=e=0 & =¢ & z=hece>0 fz)=¢ >0, fisCUon

o =3 =
(=00, oa). ||rn [L =cx) = lim [I(L —e)] =L, Now lim = £ lim ET = oo, 50 L; = oo, regardless

B S0 a E—amt L t s

of the value of e. For L = lim (e* = cx), & — 0, 50 L is determined ]
=

by —cx Ife > 0, —ex — oo, and L = oo If e < 0, —ex — —oo, and

L = —=c. Thus, f has an absolute minimum for ¢ > 0. As ¢ increases, the —jn = = 10
minimum points (Ine, ¢ — eln ), get farther away from the origin, o= :',*j
e
L
t‘.".:. =5 >

=l

i34 i34
79. First we will find lim (1 + 1) . which is of the form 1%, y = (1 + 1) = lny= mtln{l + 1},5::-
TL i T

o= S0
In(1 —r/n”
lim Iny = lim r1i1n(1+£) =1t lim M 2 =1t lim L]z t him = =
L —— L n LR 1/n nmsc (14 #/n)(=1/n?) a1 4 a.f:n:

LT
lim y =e™. Thus, asn — oo, A = zln(l + L:] — Age™.
n

Fa—el

. M M
81. (a) lim P(t) = li =M
(@ lim P(t) = lim t—— s = 75 A0

It is to be expected that a population that is growing will eventually reach the maximum population size that can be

supported.
(b) lim P(f) = lim M = lim M N ! = f‘hek!
M=o Y j— M=F 1 p—— M M=o 1
14 ————p=ht 14| —=1]e=" —e
P I

Poe™® is an exponential function.
83. We see that both numerator and denominator approach 0, so we can use |"Hospital s Rule:

v2a%z — ' —ajfaaz u 2(2a’x = )" (20" = 42?) _u{§]{MI]-ifﬁﬂ2

Ii = lim
;I_l.r.l,. a - -I-'_u;; 1—-4 [u.r:!:l'xf"'f_'h.z:z:l-
%{Zﬂaa _ Et}-lfﬂ{zﬂ.‘l - 4&3] - %ﬂa{uzu]-un

~Haa®)~7*(3aa?)

3 {ud:]—lf:.!l::_a:!:] - %uﬂ:{ﬁﬂ:}-h’.ﬁ- — %u _ i{i ] s
= —Tai(at)-ot - T= aftl = o
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. 1 .o {1
85. The limit, L = lim [z-r*‘h. (ﬂ)] — lim [I—x‘!ln(—+1)].Le1£=lfr,snas.r—s-:c,t—nl]+.
T i

I B Y
) 1
.11 o ot=In{t+1) u Tl o tfit+1) 1 1
L=1 —==n{t+1)| = lim ——— = lim —/——— = lim ——— —_
i, [ = e ] = i S L iy k= SR < i s =

Nove: Starting the solution by factoring out = or 2? leads to a more complicated solution.

87. Since f(2) =0, the given limit has the form 2.

E:;”“h}im”ﬂ il"ﬁ.a”“m'af‘ﬂ{“&r}'s =1'(2)-3+4 f(2)-5=8f(2) =8-T=56

89. Since gianr‘{: + k) = flz = k)] = f(x) = f(z) = 0 (f is differentiable and hence continuous) and .l!iu:a 2h =0, we use

I"Hospital s Rule:
i LEHW =S =) 4y, SEARD =S =D L@@ 2 _ g,
il 2h h—0 2 2
feth) = fz=h) is the slope of the secant line between !
2h v=fixi
e+ hi—fAv—&

(z =h, flz—=hk))and (z + k., f{z+ k). As i — 0, this line gets closer |

to the tangent line and its slope approaches f'(x).

':'I Xk & xth *
R i C oy _ 1
8. (a) We show that lim —— = 0 for every integer n > 0. Lety = —. Then
L B ‘ x?

i _f{:l: -lfz " 0oL :I'I:y"-l ﬂ ! ) u! _
l]i:ql} JC —__]EJ_"-_[_".J {Iz}n _plﬂig_ﬁ'_ylfl;c p” _-"_JEILE—!‘_D =
lim ﬁf}. = lim I”—{E}- = lim =" lim &l = 0. Thus, f{0) = lim M = lim ﬂi"- =0
T 2 —uih Ijﬁ F—uih F— Ijﬂ il = =l I

{b) Using the Chain Rule and the Quotient Rule we see that {")(z) exists for = 0. In fact, we prove by induction that for
each r = 0, there is a polynomial p,, and a non-negative integer k,, with f)(z) = p,,(z) f(z)/2"" for £ # 0. This is
true for n = 0] suppose it is true for the nth derivative. Then J'(x) = f(x)(2/z), so

FUEN ) = [ [plu(x) f(x) + palx) £ (2)] = kaz"" = pa(x) flz)] =4
= [2*pl () 4 pa(2)(2/2") = knz*="pa(z)] f(2) ==
= [e**3ph(2) + 2pa(z) = knz*=** po ()] f(z)2™ Bl t )
which has the desired form.

Now we show by induction that ™) (0) = 0 for all n. By part (a), f(0) = 0. Suppose that f'"){0) = 0. Then

rn:{I]. (@) fla)fat L palx) S(z)

g-—-ﬂ Ekn+l

IEHJ{E} _thn]{m =

- E—all 2—-

(nd1) — &
fe+(0) = lim

= l|m P,,_l::I:ll qu :s{{ _31 =p,(0).0=0
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4.5 Summary of Curve Sketching

Ly=flz)= 2 430 = .rzlir-i- 3) A. fisapolynomial, so D =R H.
B. y-intercept = f(0) = 0, z-intercepts are Dand =3 €. No symmeiry
D. Noasympote E. f'(z) =32" + bz =32(z+2) >0 & z<=2o0r

x > 0, 0 f is increasing on {—oc, =2) and (0, o2), and decreasing on (=2, 0). 0
Lk Ly X

F. Local maximum value f(=2) = 4, local minimum value f(0) =
G. f'(g)=6z+6=6z+1)>0 < z>=LsofisCUon (=1, 00) and

CD on (=g, —1). IPat (-1,2)

I y=fz) =z =4z =If_.z:! —4) A D=R B. z-intercepts are 0 and é‘q, H.
y-intercept = f(0) =0 C. Nosymmetry [ Noasymptote
E fllz) =4 =4=4(" = 1) =4z =1)[z" +2+1) >0 & z>1s0

f 15 increasing on (1, oc) and decreasing on (—oo, 1), E Local minimum value

f(1) = =3, no local maximum G, f"{x) = 122 > 0 for all =, so f is CU on ™
{—:xh,-::c}. NolP

5. y=flz)=x{zr=4)" A D=R B. r-intercepts are 0 and 4, y-intercept f(0) =0 . No symmeiry

v

D. Noasymptote H.
E flz)=z-3(x =424+ (z=4* 1= (z —4)*[3z + (z - 4]]
=(z =4 1z =4) =4z =1)(z =4’ >0 &

x > 1, so f is increasing on (1, o) and decreasing on (—oo, 1), i ENT
F. Local minimum value f{1) = =27, no local maximum value 12~
G. f'(z) =4[z =1)-2(z =4) + (= 4)* - 1] = 4(z = 4)[2(x = 1) + (z = 4)]

=4z =4)(3z=6)=12{z =4}z =2) <D &=

(=27

2 <450 fisCDon(2,4) and CU on (=oo, 2) and (4, oc). 1Ps at (2, =16) and (4, 0)

Ly=flz)=1z" - 32" + 16z =x(22' — 52+ 16) A. D=R B. z-intercept 0, y-intercept = f{0) =
C. f{=x) = =f(z), so f is odd; the curve is symmetric about the origin. D, No asvmptode
E fliz) =2 =8 + 16 =(z" = 4)* = (z + 2)*(z = 2)* > Oforall = H.
except £2_so f s increasing on B E There is no local maximum or (2. ﬂ]
minimum value.

G. ['(z) =4’ — 16z =dz(z’ —4) = dx(z + 2)(z-2) >0 = 2, - 25)
—2<e<0orx>2 50 fsClUon(=20)and (2, o0}, and f is CD on

(LU ] X

(—oo,=2) and (0, 2). IPat (=2, —228)_(0,0), and (2, &

Copyeight 3046 Conpoge Lemmiog. AB ights Reverves. Moy st b copind, scomm o dmphicate, o whole o . o b et ightn, s shind oty contnt sy b e s the ek e o mptts
Esbirrea rovars b decmacd that as wepy By affect the ovorall bermirg cupencece. Uagage Lcameng rescrves the nght 0 remens sckdtamal oot 2t 2z hine o vebusguent gt s icton regues i




SECTION 4.5 SUMMARY OF CURVE SKETCHING O 185

Ly=flzl==zflz=1) A D={z|z#1}= (- 1)U(l,ox) B z-intercept =0, g-intercept = f{0) =

C, MNosymmetry DL lim =l soy=11saHA lm L =oo, lim =oo,s0r=115a VA,
x—toc r=1 Pl =1t =1
-1)= -1 . .
E. f'(z)= -z _ <Oforz# 1,50 fis H. »

R FE
decreasing on (—oo, 1) and (1, 2c).  E No extreme values y=1

2
G fliz) = —=>0 & z>1s0fisCUon(l >)and 0 r

(z=1)7

CDon (—oo, 1). No IP

.y=flz) =

T -z fl=x) =
i E {1-:}{2-1]_2-;&”1-?&1' There 15 a hole in the graph at (1, 1).

A D={r|z# 12} =(=00, 1)U(L.2)U(2,00) B. z-intercept =0, y-intercept = f{0) =0 €. No symmetry

D. lim ==l soy==lisaHA lim = oo, lim = =oo,50xr=215aVA
z—eton D= g p—ai— 2 =1 Tpmit D=
(2=a2)(1) = x(=1) 2 v
E. Jr-r{ }_ {2 I}! _{2_112 =0 I_I;EI__E],safus H. x=2
increasing on (=oc, 1), (1,2),and (2, oc). F. No extrema 1. 1)
G ffz)=2(2=2)"" = — 0 £
=1
f”{z]:—d{i—z}'ﬂ{—l'_l:ﬁ =0 & z<2s0fisClUon /’—

(==, 1) and (1,2), and f is CD on (2, =c). No IP

I I

-1 (z+2)z-2)

y-intercept = f{0) =0 C. f{=x) = =f(x), so [ is odd; the graph is symmetric about the origin.

1. y=f(z) = p A D= (=og=2]U({=2,2)U(2,00) B. r-intercept =10,

. !]iril_'_ .1.'"! i JI_:I-.I;'.I._ flz) = —oa, !_|'1.|_|12+ flz) =:3-D,!_].-|E:!_ flx) = —oo, 30 £ = +2 are VAs.

I[;l:j - 4]{1} - .1:{2.:] _ x? + 4

s -1  (E-4

e = ;|:2 -

=050y =0i1saHA E. _,I"{I]I =

< Oforall xin D sofis
decreasing on (—oo, =2), (=2, 2]}, and (2, o).

F. No local extrema H. _ ¥

. f1(e)= - =) - 2t = )02

25(z® = 4)[(z* = 4) = 2(=* +4)] i, 41

= (= — 1)1 W *
_ _2u(=2*=12) _  2z(x* 412)

(22 =4 T (x4 2)3(x-=2)" =1

fz)<Difr < =20r0 < = <2 50 fi5CDon (=ocg, =2)and (0, 2), and CU
on (=2, 0) and (2, oc). IP at (0, 0)
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186 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

- _I[.I"!+3-:|—3_ 3
2243 2£+3 =2+ 3

15 y=flz) = A D=R B y-intercept: f{0) =

z-intercepts: flz) =0 & =0 C f{—=z)= f{z),so [ iseven, the graph is symmetric about the y-axis.

2

=2 G

D.  lim -3 {1_24‘_3]2 = I::.|:2+3:]2'

z—teoo 22 4 3

=1,s0y =1lisaHA NoVA. E. Using the Reciprocal Rule, f'(x) =

flg) >0 & z>0and fiz) <0 & =x<0,s0 fisdecreasing on (—oc,0) and increasing on (0, sa).
F. Local minimum value f{0) =0, no local maximum.

(z2+3)-6—6x-2(z" +3)- 2

n flx) = & 137 H. } y=1
s{x +3)[(z* +3) —42”] _ 6(3 —3z")  —=18(z+ 1){z—=1)
(=2 +3) T (=43P (= +3)°

L 4
F"(x) is negative on (—oo, —1) and (1, =) and positive on (-1, 1), 3 3

so f is CDvon (—oo, =1) and (1. 0o} and CU on (=1, 1). IP at (£1, 1)

17. y:f{z]:I:l A D={zr|z#0} =(=cc,0)U(0, =) B. Noy-intercept; z-intercept: flz) =0 <= z=1
Fa
. . r=1 . I=
C. Nosymmetry [D. lim =0,s0y=01aHA. lim = =00, s0xr=0i5a VA.
: “ = (O =il

' l=(r=1)22 =x'42r =(r-=12)

E. fiz)= =) = prr =— Lo x>0 & D<e<2and fz) <0 &
x < Dorz>2 Thus, fisincreasing on (0, 2) and decreasing on (—oc,0) H. ¥
and (2, 0¢). F. No local minimum, local maximum value f(2) = 1. 29 31
; u 1 X
. £+ (=1) = [=(z = 2)] - 3=* zr'*-sz‘_z{;-ﬂj
G- f=)= @) P
F{x) is negative on | =oo, 0) and (0, 3) and positive on (3, oc), so fis CD
on (=oc,0) and (0, 3) and CU on (3, cc). 1P at (3, 3)
I-:! :52
19, y = fz) = pryr i EIDE@E =270 A, D=(=oc.=1)U(=1.2c) B. y-intercept: f(0) = 0; z-intercept:
flz)=0 & z=0 C. Nosymmetry D. zﬁilx ::::- T =3 +'L‘r$x =1,s0y = 1isa HA Iiul__f{z] = oo and
, _ _ («* +1)(3") =2*(3”) 32" _
:_]-.IEI:L-'_I{I}— so,sor=-=lisaVA. E [f'{z)= =11 I:J:ﬂ'+1:|1 =) >0forz# =1

(not in the domain) and = 2 0(f = 0), so f is increasing on {=oc, =1), (=1, 0}, and (0, o), and furthermore, by Exercise

4.3 91, f is increasing on (=g, =1}, and (=1, 2c). F Nolocal extrema
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SECTION 4.5 SUMMARY OF CURVE SKETCHING O 187

(@ +1)(62) - 32 R(=* +1)(32%)]

G [ = @+ " '
_ @+ 1)) + 1) =327 _ 6x(1 — 2% (117 4)
=+ 17 EEEeE | y—
fE)>0 & r<=lord<xz< 3t [=0.79],50 fis CUon (=oc, =1) and 0. O !
(u, f@) and cnm{-l,u}w(ﬁ.x]. There are IPs at (0, 0) and (Q/ES;) r=-

Hoy=flr)=(z=3Wz=2""=32"" A D=[0,=) B. z-intercepts: 0,3; y-intercept = f(0) =0 C. No

. ) Hr=1)
1 242 :tI-uz =3~z = 1) =
“ 2z

so [ is increasing on (1, oc) and decreasing on (D, 1). H 7

symmetry . Noasymptote E. f'(z) = >0 & z=>1,

F Local minimum value f{1) = =2, no local maximum value

- - g MHr+1 .
G fMx) = 1 1‘”4‘-%1’ :‘LMZ%I MI{I-}-I}:%}DM"I}G‘ n\_-/’t v
so f1s CU on (0, o). No 1P iL—2)

Boy=flz) =yl pr=2= 1“,-"{{:1'-}-2]{:—1} A D={z|(z+2)z=1) =20} = (=oc, 2] U[l, )
B. y-intercept: none; r-intercepts: =2 and 1 €. Mo symmetry D, No asvmplote

2r 41

EVI5+I—2‘

fl)>0 = z>=3and f'(x) <0 = =x< =% so(considering the domain) f is increasing on (1, oo and

E flz)=4(="+z=-2)""22+1) = f'(z) =0if £ = —%, but —3 is not in the domain.

[ is decreasing on (—oo, =2).  E Mo local extrema

et +z=2)Y2) = (224 1) 2. E(=" +x=2)""* (22 +1)

G. " H. ¥
= (2vaTFz-2)°
_ (2% + £ =2)"12 [4{_:2 +1=2) = (42 + 4z + l}]
- Hz2 4 =12
=9
=4{12+I—2}3f2{u .
so f1sCDon (=0, =2) and (1. o). No IP B .

Boy=flz) = .'v:l,n"q..-"zl:35 +1 A D=ER B y-intercept: f{0) = 0; z-intercepts: f(z) =0 = ==10
C. f(=x) = =f(z), so [ is odd; the graph is symmetric about the origin.

IfI _ :r:ln|r r 1 . 1 .
L VAT < Ve T A U v S AR e — VI

D. Iun flz) = |IIII

and
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188 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

lim fiz) = lim I";I = lim I‘:—I = lim ;
E P 1,."1-5 +1 P 'i"'Ii +1/x e m(_@) e ] 4 l_ll'rI‘!
1
=ﬁ=—l soy = =1 are HA. No VA
2
Vvt g l=x- ﬁ 241 9 1
E. = v+l T - - = 0 for all R.
fi(=) LR EFeI s = 0 for all x, so f is increasing on
F. Mo extreme values H. ¥
. y 5 -3 " .
ﬁ.f{z]:—%{zd‘kl] ﬁfz-iz:ﬁ,ﬂﬂf (x) = 0forz <0

and f"{z) < 0 for z > 0. Thus, f is CU on (=a=c,0) and CD on (0, o=).
1P at (0, 0)

Ny=fiz)=y1=x%r A D={z||z = Lx#0}=[=L0)u(0.1] B. r-intercepts +1, no y-intercept

31 =x2 1=
C. f{=x) = =f(z), so the curve is symmetric about (0,0). D. lim ——— = oo, lim Y - -,
=t I = X
—rfyT=xT) =/ T==F 1
sor=0isaVA E. (= =[ - = < 00, 50 [ is decreasi
(=) = mA ng
on (=1.0) and (0, 1). F No extreme values H. ¥

. e 2 = 3a® .
G. f'(z)= L0 & -l<z<—fFo0<zr< /s B

fisCUon (-1,-ﬁ) a.n.d(l]\/%) and CD on (-ﬁ__ﬂ) and (V@ 1).
IPaI(:I:\/%_.:I::'E)

N y=flr)=x=3:"* A D=R B. y-intercept: f(0) =0; r-intercepts; f(z) =0 = =z=32'" =

=27z = P =2Txz=0 = I{IZ—ET}:[I = I='I],:|:3v"'§ C. fl—=z) = =f(x). 50 f is odd;

] . 1 A |
the graph is symmetric about the origin. D. Noasymptote E. f(z)=1-2z~%*=1- [ T

F{x) > 0when |z] > Land f'{x) < Dwhen 0 < |x] < 1, s0 f is increasing on (=00, =1) and (1, oo}, and
decreasing on (=1,0) and (0, 1) [hence decreasing on (=1, 1) since [ is H. ¥
-1, 2

continuous on (=1, 1)].  F Local maximum value f{=1} = 2, local minimum (3/3.0)

value f(1) = =2 G. f"(z) = 3=~/ < Owhenz < Oand /"(z) > 0 o ur./ :
. iL=2

when = = 0, so f is CD on (—oc, 0) and CU on (0, so). 1P at (0.0)

NHy=f(z)= VeE-1 A.D=R B y-intercept: f(0) = —1; z-intercepts: f{x) =0 < 2=1=0 =
x==1 C. f{=z) = f(x), so the curve is symmetric about the y-axis. D. No asymplote

E. f{I}:%{IE_lj-zﬂfa{h]:‘!j{i‘;—I-U f'l::.]::]l}ﬂ' L=1 J:::n-l]and_f"l[r]-{l] — I{G,Sﬂ_rli

increasing on (0, o) and decreasing on (—=c.0). E Local minimum value f{0) = =1
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SECTION 4.5 SUMMARY OF CURVE SKETCHING O 183

2 (& =1)¥*1) —x- §(a* = 1)~ (20)

G. .f"{ } 3 [{f }.:ﬂ-‘:]z H. '
_2 @ -0TPRE - ) 2 4 3) \ /
9 (z* = 1)2/2 T 9z =1)% ot o e«
fz)>0 & =l<r<land " (z)<0 & z<=lorz>1 50 K-}Flfhj—l'

FisCUon{=11)and [ is CDon (—oo, =1) and (1, o). 1P at (£1,0)

B.y=flz)=sin"x A D=R B. z-intercepts: f(z) =0 < == nm,nan integer; y-intercept = f(0) =0
C. f(=x) = =f(z), so [ is odd and the curve is symmetric about the origin.  Also, f{x 4 2=x) = f(z), so f is periodic
with period 27, and we determine E-G for 0 < = < = Since f 15 odd, we can reflect the graph of f on [0, =] about the
origin to obtain the graph of f on [—=, 7], and then since [ has period 27, we can extend the graph of f for all real numbers.
D. No asympiote E. f'(r) =3sin"recosr >0 & cosr>Oandsinr#0 & 0<zr< Z.50 f is increasing on
(0, %) and f is decreasing on (§,=). F. Local maximum value f(Z) =1 [Imal minimum value f{—3) = -1]
G. [Miz)= 3sin®x (=sinz) 4 Jeosx (2sine cosx) = Ssina (2 cos® T — sin® x)

= 3sinx[2(1 - sin® )= sin® z] = Asinx(2 — Fsin® ) >0 =

sinx > 0 and sin” x < E’ = D<r<mand D < sinr « z = G{I{SJ.II-IVIT [l&tu_mn V/_] or

a#=—a<z<msofisCUon (0 a)and (7 — o, 7),and fisCD on (a, 7 — a). There are inflection points at = =0, 7, a,
and r =% — o

v

LG AN A
V

By=fz) =ztanz, -3 <z < F A D=(=-37,37) B Interceptsare0 C. f(—z) = f(z), so the curve is

H.

symmetnc about the y-axis. I limy rtanr = oo and lim rianr =oc, s0r = L and xr = —3F are VA
E e L w2yt

E. flir)=tanzr 4+ rsecs >0 o D{I{%,mj‘mcreaseson{lli} H.

and decreases on (—5,0). F. Absolute and local minimum value f(0) = 0.

b
= B

. y"=2ﬂ2.1+2.rt.m1:sﬂj.r}ﬂ'for—f <x<E sofls

CUon (=%, ). NolP

M y=flz) =sinz+Ieosr, —-2r <z <2r A D=[-2r.2x] B. y-intercept: f(0) = +/3; z-intercepts:

fl)=0 & sinzr=-—y3cszr < tanr=-y3 & r=—-E X Z o _.I"lspermdlcmmpermd

El

2x. D. Noasymptote E. f{z) =eosxr — 3sinz. [(z)=0 & ecoszr= Vvi3sinr < tanz=

—_ =
vﬁ
r=-5 _Z L owZ flz)<0 & - ora-Lof<sr<Zsofisdecreasingon (-4, -2F)
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190 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

41.

and (X, TF), and f is increasing on (=27, —31%), (=3 X} and (I%,27). F Local maximum value

=32 =f(3)=2+ ﬁ(%ﬁ} = 2, local minimum value f(=32) = f(5F) = --i-+1,.-"§[—

G. f'(z) = =sinr = 3cosz. () =0 & sinx==+3emsr & H.
t.anz:—% = I=—"?},—?’;,2T’,o.r=‘T’. Mz)=0 =

~Morc=Zordl j" <a< 2 osofisClUon (=45, =) a_n,.i{jr %) and

fsCDon (—2x, —3F), (-5, 3 ).and (2F, 2=). There are IPs at (—37.0),

£3) =
CERNIE

2.

=cscr —col x

(=%.0). (5,0),and (3F,0).
when
sif T conx 1 sina 1l —cosx ﬁinrf_l—cmz} l —cosa
Ly =flr) = —— = — — = —3 =—
14 cosx l4ecoszx 1 —cosx sin” x sl

A. The domain of f is the set of all real numbers except odd integer multiples of =; that is, all reals except (2n 4 1) =, where

n is an integer.  B. y-intercept: f(0) = 0, z-intercepts: = = 2nx, nan integer.

function; the graph is symmetric about the origin and has period 27,

lim f{x) = =oc, 80 £ = nris a VA for each odd integer n. No HA.
Fafmw)t
l +cosr)-coss =sina(=sinx l+4cose 1
E.fl::::l:{ ) __2{ :.: —_— =
(1< cosz) (1+cosz)®? 14cosx

m, 50 f is increasing on ((2k = 1)7, (2k 4 1)7) for each integer k. F. No extreme values

sin x

(8 _rr:{:c:]Zm}ﬂ = sinr>0 =

x € (2w, (2k + 1)=) and f"(x) < 0on ((2k = 1)=, 2kx) for each

integer k. [ is CUon (2kx, (2k + 1)x) and CD on ((2k — 1)x, 2k=)

for each integer k. [ has IPs at {2k, 0) for each integer k.

y = f(z) =arctan({e*) A D=R B. y-intercept = f{0) = arctan1 =

C. Nosymmetry D,

f(=2) =

D. When n 15 an odd integer,

—fiz), so f is an odd

lirm
ey I

flz) = oo and

S{x) > 0 for all £ except odd multiples of

- fx) > 0 s0 there are no x-intercepts.
lim arctan{e®) = 0and ||1|| a.rct.u.nl[e':l- = T,E‘.D y=0andy = — are HAs No VA

¥=ml

E. f(r)= n ;E':F %gl =3 _:;: = 0,50 f is increasing on (—oo, oc).  F No local extrema
. . _ {1 + Eizlel - E"{Zgjzl _ E:[{]. + Ei:} - 222:]
G. fMix)= TETEOE = T es) H.
e*(1 = ™)
= sy 70

1—-e®%0 & el & 2xr<0 & z <0sofisCUon

(=2c.0) and CD on (0, oc). 1P at (0, X)

B
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SECTION 4.5 SUMMARY OF CURVE SKETCHING O 191

$B.y=1/(1+e"*) A. D=R B. Noz-intercept; y-intercept = f(0) = 3. C. No symmetry

. —
D. lll.l'li__ lf{.'l-l-e :l-_ T+

=land lim 1/{14e7*)=0since lim ™% = oo, so [ has horizontal asymptotes
B I T
y=0andy =1 E ['[2)==(1+e"*)"%(=e~*) = e~*/{1 4 &~*)". This is positive for all =, so f is increasing on B.

F. Noextreme values G. f"(z) = (14 e =P (=e"") = e~ (2)(1 + e~ =) (="} _ e (e =1)

(14 e==)t (1+e==)?
The second factor in the numerator is negative for = > 0 and positive for x < (0, H. ¥ =1
and the other factors are always positive, so [ i1s CU on (—og, 0) and CD —7-
on (0, 0c). IPat (0, 3) i
1] I

1
45y = flz) = - +Inzx A, D =(0,cc) [same as Inx] B. No y-intercept; no z-intercept

1
[— and Inx are both positive on D C. No symmetry. D, I_1r|-|§||.+ flzr)=oc,s0x=0isa VA
L E

E. f'{z)= -_+1_I:1_ fi(x) > 0forz > 1, s0 f is increasing on H. v
3 I

(1, 22) and f is decreasing on (0, 1).

2 1 2=
F. Local minimum value f{1) =1 G f(z) = e e 1I. i

I‘! =

(2. L+mz

Fz) >0for0 < x <2 s0fisClUon(0,2), and fis CDon (2, oc). .0

IPat (2 % +1n2)

1
|::1_+_ -'_-],.!
C. Nosymmetry D lim fiz)=0and lim f{z)=1s0y=0andy=1are HA; no VA

B I

.y = flz) = (1 +e)~* A D=E B y-intercept: f(0) = ;. z-intercepts: none [since f(z) > 0]

E. f'(z) = =2(1 +e*)" " = % < 0,50 f is decreasingon B F. No local extrema
G. ["(x) = (14 €*)™%(=2¢%) 4 (=2e")(=3)(1 + &) ~*e* H. v

= —2e"(1 4 )41 + %) = 57 = 20 L= 2)

{1+E:}}4 : \
L4
Mz)>0 & 1=2%<0 & ¢ >5 < r>Inzand {Ju:?;:l

I~
f"(#) <0 & z<lInisofisCUon (Ink,oc)andCDon (=se,lnd). '
IPat (In 3, 5)

49, y = f(x) = In(sin )

A D={rinR|sinz >0} = (J (2nm,(2n+1)7) = U(—dn,=37) U (=27, —%) U (0, %) U (2, 3%) U ---

-

B. No y-intercept; z-intercepts: f(z) =0 <« In(sinz)=0 & sinz=e"=1 & zr=2nr+ £ for each

integer e, . f is periodic with peried 2. D, lim  f(x) = —oc and lirn fix) = =0, so the lines
= 2nw)+ = 2md 1] —
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192 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

L o

& = nw are VAs for all integersn. E. f'(z) = = cot x, 50 f'(z) > 0when 2nx < » < 2nx + ﬁibreafh

sifF

integer n, and f'(x) < 0 when 2nw + § < < (2Zn+ 1)7. Thus, f is increasing on (2nx., 2nx + §) and

decreasing on (2nx + 5. (2n + 1)x) for each integer n. H. ¥
F. Local maximum values f{zmr + %] =0, no local minimum.

. 3 ) —-l-‘:rd_—ﬁ'.r —]r__—;n' T Ird_.'!fr 4_:1"_
LR f{x]:—c&: x < 0,50 f15CD on (2nw, (2n 4 1)7) for ﬂ r"'ﬁ uﬁ ﬁ 1 X

each integer n. Mo [P

$.y=f(z) =xe~* A D=(=00,0)U(0,) B. Nointercept C. Nosymmetry

=1 = =1z 1422
D lim e B oy W) e —so,sox =0isa VA Also, lim ze='/* =0, so the graph
E—ali— ljllI =il -—:l.JI'IJ.'2 el — F——

e pelfT

al hes the origin as r — 0%, E. f'(z) = ze~'/* ! e WE(]) = == i+l =I+1 >0 <
pproac 2l
P

x < =lorz >0, s0 fisincreasing on [ —oo, —=1) and (0, oc), and [ is decreasing on (=1, 0).

F. Local maximum value f{—1) = —e, no local minimum value

. f{I]ZE-UJ(i‘{"l) = H. ¥
# =1z 1 ! =1j= 1 p
o= {-2)+ (1) (2) N

1 i 1 1 =L =

-t ()] e = e

x> 0,50 fis CUon (0, 00) and CD on (—oo, 0). No IP

5. y=flz) = """ * A, D=R B. y-intercept: f(0) = " = 1; no x-intercept since e**'** is positive for all .

C. Nosymmetry D. lim f(z) =e~™* [=021],s0y = e~ isaHA lim f(z) =™ [=48]].50y =" isa
g e

HA. E. f'(z) = *tn= (1 -:1:2)' F(x) = 0forall z, so f is increasing on . F. No local extrema
; . 1
{1 + :EI}E&J'LEH.I'II ( _ ) _— E.EHE“I{EI}
G. f"(z)= 1+ H. ) —
(1+22)*
_ Eﬁ.h:tﬂl'l.:{l —_ 2-1_}
ST sy

F(z)=0forz < 3,50 fisClUon (—oo, 1) and fisCDon (3, 50).

IP at (5 ghretan 1“) = (0.5, 1.59)

55.m = flv)= ﬁ The m-intercept is f({0) = mg. There are no v-intercepts. lim f{v) = co,sov =cisa VA
- B
N L T Sy e ity v _ gt _ g ou
Fv) = =3ma(l = v*/e?) i EIHE}_E‘Z{I—DZHEQ}K-‘Q_‘_-2.[:,_-2_;_.2}3-"'2 _{Ez_vz}a”::\-ﬂ,su_fjs
o4
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SECTION 4.5 SUMMARY OF CURVE SKETCHING O 193

m

increasing on (0, ¢). There are no local extreme values.

et — v ] “{mor:}—rn-ncv I:f_'2 —vi}'”{—zu}

o
fMv)= [{L_g_vz}:!,.u]z

(0. ) v=r

_ mge(c” = )2 = v?) + 3] _ mge(c® + 2u7)

{Ez _- vijx - {:r:d - l,z}:.fz >0,
1 '
so f is CU on (0, £). There are no inflection points.
ﬂ{a]p{t:l:l = 1=; < l+ae™=2 o at=1 o e'ktzl =3
’ 2 27 14 ae-kt =

1
lne~™ =lna~! & —kt=-=lna < .',=%,whjchlswhenhalfﬂmpopqﬂauonwlll}mw}wardﬂwrm.

ake—kt

(b) The rate of spread is given by p'(t) = T+ aet

To find the greatest rate of spread, we’ll apply the First Derivative

Testto p'(t) [not pit)].

_ I[l + a.e-hj]z{—ukze-m} — ake=kt . El[l + nﬂ-“]{—ake-m:}

[Pr{t]]' = F'”“] = [ +ﬂ£-kt}z]z

_ (14 ae™)(—ake"M)[k(1 + ae™) = 2ake=™] _ —ake M (k)(1 = ae™*) _ ak’e M (ae=* — 1)
{1+ﬂ£-kt}4 {1+M-k:}3 {1 +m-k!}:!

| 1
Pt)>0 o ee™>1 & —ki>ha™'! & t< %,Sﬂp’[!} is increasing for ¢ < %aﬂdp’l{t] is

. 1 . . 1
decreasing for ¢ > % Thus, p'(t), the rate of spread of the rumor, 15 greatest at the same time, % as when half the

population [by part ()] has heard it.

(¢) p(0) = yo— and lim p(t) = 1. The graph is shown ¥

witha =4 and k = %
1124

W WL WiL? W
59 4 = — 4 a_ r_ _ Mgt — 9L+ L2 ¥
v==01rr* Y 2Er* " uaEi” gl & =+ L%)

=1

— ——— ] —_ 2: 2 _ ' ] + * I
= g (x=L) =ex*(z=L) \f/f '
W

'l..\'lflens.w_-=—24EJr is a negative constant and 0 < = < L. We sketch

fir)=ex®(x = L) fore = =1 f(0) = f{L) = 0.
f(x) = ex®[2(x = L)] 4 (x = L)*(2ex) = Z2er(zr = L)z + (x = L)] = 2ex(x = L)(2x = L). Sofor0 < x < L,
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194 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

fMz)>0 & z{x—L)2x—L) <0 [sincec<0] & L/2<z<Landf(z)<0 & 0<x<L/2
Thus, f is increasing on (L2, L) and decreasing on (0, L/2), and there is a local and absolute

minimum at the point (L2, f{Lf2)) = (L/2.cL*f16). ['(z) = 2e[r(x = L)(2x = L)] =

F(x) = 2e[lz = L)(2x = L) + z(1)(2x = L) + =z = L)(2)] = 2e(6z” = 6Lz + L*) =0 &

6L+ /1217 .
r=——1 = %L + —"“EL, and these are the r-coordinates of the two inflection points.
241
6. y= T Long division gives us: x=1
I
z-l-—ll::2 +1
Ij-l'-I
—x+41
—x=1
2
2
 +1 2 2 *
Thus, ¥y = fz) = =x=14+——and f(z) =[x =1) = = [forz#£0] —0Dasz — oo
41 41 41 1+l
A
So the hine y = = = 1 is a slant asymptote (SA).
22% = 5a” + 3z
ﬁly:%_ Long division gives us: 2r=3
I ==
2 =z =2 22% = 52% 4 3z
2o — 22" — 4z
—327 4 Tx
-3z + 3z +6
dr =6
4 6
2o — 5r* 4 3x dr =6 ir —6 ]
Th = = — 0= e —anid -2z = 3) = —— = =L L
us, y = f(z) Tt =gx=12 * +:52—.r—2 [(z) = (2 =3) P —x-2 E
2
&£ Ea

[forz #0] — § =0asx — *oc. Sothe line y = 2z = 3 is a slant asymptote (SA).

2
.Il=l_+l+ 1

oL - H

6% vy = fz) = A D=(=oco,l)u(l,os) B. z-intercept: flz) =0 < =z=0;

y-intercept: f(0) =0 C. Nosymmetry Do lim f(z) = —oc and lim fir) = oc,s0x=1isa VA
F=—sl— =1+

1
|il:'i[:I [flz) = (x4 1)) = lm 1=U‘,Sﬂﬂl&]lmy=m+llsaﬁh.
=0 F4

x — o =

o1 fz=1)=1 £ =2r  x(xz-2) . .
= fi=)=1 G EoIF (aIp (a—1p 0 fer H. 9/
x <0 or x>2 sofisincreasing on (—oo,0) and (2, oc), and f is decreasing . e
on (0,1) and (1,2). FE Local maximum value f(0) = 0, local minimum value -
fi21=4 G f(z)= ﬁ >0 for x> 1,50 fisCUon (1, 0¢) and f

is CDon (=oa, 1). No IP
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SECTION 4.5 SUMMARY OF CURVE SKETCHING O 195

3
4 1
ﬁT.y:f{I]:r; =x+— A D=(-oc0,0)U(D ) B. z-intercept: f(z) =0 += z:—ﬂ;nny—lntﬂmept
T

: _ . - - - ; 4 = ;
C. Nosymmetry DL l]._l-réfl::.r}—-x,sn:s—ﬂjsa VA, l11-.|:||:'1m[j’ll,i:[:j]—:.l:] |1rn = =0,y =xisalSA

B @ =8
E. f{z}:l-;:—x}ﬂfarx <0 or x> 2 so [ isincreasing on H.

x

(=oc,0) and (2, 00), and f is decreasing on (0,2). F Local minimum value

f(2) = 3, no local maximum value G. f"(z) =§ =0forz#0,50 fisCU

of (=oc,0) and (0, oc). No IP

B.y=flz)=1+3r+¢ A D=RE B y-intercept = f(0) = 2, no r-intercept [see part F] C. No symmetry
- 1 — 1 — — 1 - — L1 _ .-
D. Mo VA or HA. .IE';; [f{z]— (1+ EI}] —-‘]il-'_[;ce *=0,s0y=14+zrisaSA. E fliz)j=7-"">0 =

3™ & —r<hhi & z>=In27' & r>In2 so fisincreasing on (In 2, oc) and decreasing

on (=o0,ln2).  E Local and absolute minimum value H. o
. ’ 3. i
fn2) =142+ =14 n2 4 (%) (2. 5+5m2)
=1+iln2+1=34+1m2~ 1385 A
] e
no local maximum value G f"(z) =™ > 0forall =, so [ is CU = N =
_..-'"" il ] Y
on (—oo, o). No IP
1 142" =1 x*
My= =z —tan™! ! =1- = =
y=flz)== = f'(z) 14 x2 1422 14227
i) = {l+.z£]{ﬂ.r:]-—z‘!{:2.z:l- I[l+.r2 —Iz:} _ 25
{1+ =) (L+=7Y (1422

JIEI;.: [f{r}—{r—{-]] =.IEI:¢ h’-—lan }—-} Z=0soy=x—FisaSA

Also, lim [f(z)=(z+3)] = lim _(-F —tan~'z) =-F-(-F) =0,

w0 4
soy =x+4 7 isalsoa3A. f'{xr) = 0forall =, withequality < =z =0,s0fis
increasing on B f"(x) has the same sign as =, so [ 15 CD on {—oc, 0) and CU on

(0,2a). fi=x) = =f(x), s0 [ is an odd function; its graph is symmetric about the

origin. f has no local extreme values. Its only [P is at (0, 0).

z 2
73— yM—.zl:-y—i-.a"' —aZ. Now
o
_ ] 1] b vl =g 4 x b —a
;15';.: [;\.-'Ii—ai—;x] _;-:IE-E; {4..-'_1:5—&5—:5] —.I”—u:2+:: _;':Iﬂl;lc —I e T =0,

b
which shows that y = —x is a slant asymptote, Similarly,
L

Fen Sl

lim ——4.,.-'.]:d =g = (——I)] =k lim — =, 50y = -EI 15 a slant asympiote.
a
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5.

O CHAPTER4 APPLICATIONS OF DIFFERENTIATION
lim [f V= i 242 _ i L= 0,50 the graph of f isasy to that of y = =*
im (z) = = lim ————= lim — = 0, so the graph of [ is asymptotic of y ==

1
A, D={x|z#0} B. Nointercept C. fissymmetric about the origin. D. Iiu:)-; (Ia + —) = —oo and
==l A

1
lim (:s:‘ + ;} = oo, 50 x = 0 is a vertical asymptote, and as shown above, the graph of f is asymptotic to that of y = =°.

=it

E fr)=3"-1/2">0 & 2'>1 & |r|}q;§,snf|51mreasmgnn (—m,—@%)mﬂ(ﬁ%,m)mﬂ

1 1
decreasing on | =——=,0 | and | 0, —= |. E Local maximum value H.

1 1
_,|"(— ) = —4.3~%1 local minimum value f( ) =4.3~%/1

G. f'(r)=6z+2/z*>0 & z>0,s0 fisCUon(0,0c)andCD

on (=oo,0). No 1P

46 Graphing with Calculus and Calculators

1.

flr)=a=52"=2*+28:" =22 = fz)=5c"=-20 =32 + 562 -2 = ["(z) = 20z® — 60z — 6z + 56.

flz)=0 & z=00rz==209007, () =0 < zx==1.50004 262284, [[)=0 & =z ==0.89,

1.15,2.74.
(1] |
i
f f
i
=0z ni
- 5
33
—| K} bl 2.} 13
L} 2
i p
—3 5
2 .'rl t \\H// + J 1
—in -1

From the graphs of ', we estimate that ' <2 0 and that f is decreasing on (—1.50,0.04) and (2.62, 2.84), and that ' > 0
and f is increasing on | —oo, —=1.50), (0.04, 2.62), and (2.84, o) with local minimum values f{0.04) == —0.04 and

f(2.84) == 56.73 and local maximum values f{—1.50) == 36.47 and [(2.62) = 56.83.
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SECTION4E GRAPHING WITH CALCULLS AND CALCULATORS O
150
From the graph of f°, we estimate that f* > 0 and that f is CU on (=0.89, 1.15) i
and (2.74, =), and that f” < 0and f is CD on (—oc, —0.89) and (1.15, 2.74).
There are inflection points at about | =0.89, 20.90), (1.15, 26.57), and (2.74, 56.78). - :
-0
3 f(z) =2® - 52° + 25¢® — 62° — 4B = L
f(x) = 6z® = 252 4 T5a? =122 — 48 = f
f7(x) =30z = 100" 4+ 1502 = 12, f(z) =0 < z=0 or x=~3.20 -2 ———1 4
fz)=0 & z=-131,—084 1.06, 250,275 f'(z)=0 < { \//
—an

x = —1.10,0.08, 1.72, 2.64.

From the graph of f', we estimate that [ is decreasing on [ =oo, =1.31), increasing 50

on (=131, =0.84), decreasing on (—=0.84, 1.06), increasing on { 1.06, 2.50),

decreasing on (2.50, 2.75), and increasing on (2.75, oc).  f has local minimum -2

values f(—1.31) = 20.72, f(1.06) = —33.12,and f(2.75) = —=11.33. f has

local maximum values f{—0.84) = 23.71 and f(2.50) = =11.02.

From the graph of ", we estimate that f is CU on (—sc, =1.10), CD on

(~1.10, 0.08), CU on (0.08, 1.72), CD on (1.72, 2.64), and CU on (2.64, =c). There

are inflection points at about (—1.10, 22.09), (0.08, —=3.88), (1.72, =22.53), and

(2.64, =11.18).
—=il
x 20 427 =1 » 25(3c + 3% + ' =62 = 3)
5, = e— = e — —
& =grmyy = 1@ E+Z+12 (=) @tz + 1
3 3 K

il U

=3

Einm|
i

From the graph of ', we estimate that f is increasing on

From the graph of [, we see that there i1sa VA at = = —1.47T.
(=og, =1.47), increasing on ( —1.47, 0.66), and decreasing on (0.66, o), with local maximum value [{0.66) = 0.38.
From the graph of f", we estimate that f is CU on (=o0c, =1.47), CD on (=1.47, =0.49), CU on {=0.49, 0}, CDon

(0, 1.10), and CU on (1.10, o¢). There is an inflection point at (0, 0) and at about (—0.49, =0.44) and (1.10,0.31).
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198 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

T. fiz) =6Gsinxr+eotx, — s Cxr<x = f{z]:ﬁuﬁ:-cﬂ:zr = f"{I]:—EﬁinI+2£ﬁE2IEUII

" ] Hb

= g &1
) Y TS

-8 —in —M

From the graph of f, we see that there are VAsat x = 0 and = = +=. [ is an odd function, so its graph is symmetric about
the origin. From the graph of [, we estimate that [ is decreasing on (—=, —1.40), increasing on (—1.40, —0.44), decreasing
on (—0.44, 0), decreasing on (0, 0.44), increasing on (0.44, 1.40), and decreasing on (1.40, =), with local minirmum values
f{=1.40) = —6.09and f{0.44) = 4.68, and local maximum values f({=0.44) = —4.68 and f{1.40) = 6.09.

From the graph of f", we estimate that [ is CU on (=, =0.77), CD on (=0.77.0), CU on (0,0.77), and CD on

(0.77, =). There are IPs at about {—0.77, =5.22) and (0.77, 5.22).

1 8 1 o116 3 1.,
B.II::I}=1+;+I—2+F = f{I}——F—F—F——F{I +16I+3:| =
2 48 12 2.,
fle)=Z+ 3+ =2 +2x+6)
1 15
¥
f

- 1
— ik -1 i )

033 =D

From the graphs, it appears that f increases on [ —15.8, —0.2) and decreases on {—oo, —=15.8), (=0.2,0), and (0, oc); that f
has a local minimum value of f{—15.8) = 0.97 and a local maximum value of f{—0.2) = T2; that { is CD on (—oo, —24)
and (—0.25,0) and is CU on (=24, —0.25) and (0, oc); and that f has IPs at (—24, 0.97) and (-0.25, 60).

=16 =+ /F56 = 12
2

To find the exact values, note that f* =0 = z= = =Rz /6l [==0.19and =15.81].

f" is positive (f is increasing) on (—8 — /61, =8 4 +/61 ) and f* is negative ( f is decreasing) on (—oo, =8 — /61,

=24+ /576 — 24
+ ==12% 138 [=—025and-23.75]. f"is

(-8 ++v61,0),and (0,2¢). =0 = z=
positive ( f is CU) on (=12 = /138, =12 4 /138 ) and (0, oc) and [ is negative (f is CD) on (=00, =12 = +/138)

and (—12 ++/138,0).
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SECTION 46 GRAPHING WITH CALCULUS AND CALCLLATORS O 199

M. (a) flz)= z* Inz. The domain of f is (0, =)

2
(b} lim z*lnz= lim |r.|.1l' 1 lirm —1& = lim (=2} =0
z—irt e—it Lfx? g =2 23 e

There is a hole at (0, 0). —0.25

(c) It appears that there is an IP at about (0.2, =0.06) and a local minimum at (0.6, —D_Eﬂli flry=2lnz =
fl(z) =2*(1/z) + (Inz)(2z) = z(2lnxz +1) >0 & hzr>-% & z>e” " 50 fisincreasing on
(lf\-“:_. m),drcreamng on (l], lfv':). By the FDT,f(l,ﬂ'x-':) = =1/(2¢) is a local minimum value. This point is
approximately (06065, —0.1839), which agrees with our estimate.
f'(z) ==(2/z)+ 2lnz+1) =2z +3>0 & hz>-3 & z>e ¥ s0fisCUon (e x)

and CD on (0. e=*?). 1P is (e=%?, =3/(2¢")) = (0.2231, —0.0747).

_ {z+4)(= - 3)*
iz =1)
I; JET— fix) = =oc and zli—-I;I+ fiz) = oo.

11 ¥ flx) has VA at r = D and at x = 1 since ]jEB'f{Ij:-x‘
ES

v ;|:+=i_|::.r—3:|-2

x) = I x2 dividmng numerator — '[1 .- -'lJI'II:]"I:]. - 3;.]::]'2 —
f(z) i-l[a:—l} and denominator by = z(z=1) 0
e

as x — oo, 30 f is asymptotic to the r-axis.
Since [ is undefined at = = 0, it has no y-intercept.  f(z) =0 = (r+4)z=3)"=0 = z=—4orz=3 50 f has
a-intercepts —4 and 3. Note, however, that the graph of f is only tangent to the z-axis and does not cross itat £ = 3, since [ 15

positive as x — 3~ and as = — 3%,

ﬂ.ﬁ—-—_ \ ] N r L ]3 IAiE]

25 B
=Lk — | &Hh i

From these graphs, it appears that [ has three maximum values and one minimum value. The maximurm values are
approximately f(—=5.6) = 0.0182, f(0.82) = =281.5 and f{5.2) = 0.0145 and we know (since the graph is tangent to the

x-axis at = = 3) that the minimum value is f(3) = 0.

(x4 1)*(z* + 1827 = 442 = 16)
[z =2)%x =4)3

(x4 1)°

IO = e

= fiz)==-=

[from CAS).

[continued)
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200 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION
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From the graphs of 7, it seems that the critical points which indicate extrema occur at x 7 =20, =0.3, and 2.5, as estimated

in Example 3. (There is another critical point at £ = =1, but the sign of f* does not change there.) We differentiate again,

obtaining f"{z) =

{e.0H00

\ZN
]

i AT

— ¥

2{; 4 1){x" + 362 4 Gx? = 6282” + 684x” + 6T2r + 64)
(x =2)(x-4)* '

ALK

—L{H]

SOHHD

] fi

From the graphs of f, it appears that f i1s CU on (=35.3, =5.0), (=1, =0.5), (=0.1, 2), (2, 4) and (4, oc) and CD

on (=oo, =35.3), (=5.0, =1) and (=0.5, =0.1). We check back on the graphs of f to find the y-coordinates of the

inflection points, and find that these points are approximately (=35.3, =0.015), {=5.0, =0.005), (=1, 0}, (=0.5,0.00001},

and (=0.1, 0.0000066).

' 4+ 5" 41
I = mrs ey

From a CAS, f'(z) =

=r({z® 4 10z 4 6z + 41" = Jx = 22
oz" 4 10" 4 4+ 4r = }and

(=* +r1—1'2+2}2

2(2” + 152 + 1827 + 212° — 0% — 1352* — 762" 4 212% + 6z + 22)

=)=

H

{z? +I;{—Iz+2]3

]

JII

=0l

The first graph of f shows that y = 0 isa HA. As x — oo, f(z) — 0 through positive values. As r — —oo, it is not clear if

f(z) — 0 through positive or negative values. The second graph of [ shows that f has an x-intercept near —5, and will have a

local minimum and inflection point to the left of —5.
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SECTION 46 GRAPHING WITH CALCULUS AND CALCULATORS O 204

From the two graphs of f', we see that ' has four zeros. We conclude that f is decreasing on (—oo, =9.41), increasing on
(=9.41, =1.29), decreasing on | —1.29, 0}, increasing on (0, 1.05), and decreasing on (1.05, o). We have local minimum

values f{—9.41) = —0.056 and f(0) = 0.5, and local maximum values f{—1.29) = T.49 and f{1.05) = 2.35.

20 0.0

N T L

et

|

—Hil =0

From the two graphs of ", we see that " has five zeros. We conclude that f is CD on (=oc, =13.81), CU on
(~13.81, —=1.55), CD on (—1.55, =1.03), CU on (—1.03, 0.60), CD on (0.60, 1.48), and CU on (1.48, oc). There are five

inflection points: (=13.81, =0.05), (=1.55, 5.64), (=1.03, 5.39), (0.60, 1.52), and (1.48, 1.93).

19 y = fiz) = vz 4 5Ssinzx, = £ 20

SoosT 4 1 " 10 cos = 4 25sin” = 4 10z sinT + 26
FromaCAS, ¢ = —————=and "' = = d
v 2+/x 4+ Hsinx Y 4z + 5sinz)*?

We’ll start with a graph of g(x) = = + 5sin . Note that f{z) = +/g(z) is only defined if g(z) 2 0. g(z) =0 & z=z=0
or & = —4.91, —4.10, 4.10, and 4.91. Thus, the domain of f is [—4.91, —4.10] U [0, 4.10] U [4.91, 20].

15 3 5

\v
i
flx)=x+ Fsinx I -5 1]
—h -\j’ n [\
{ J —5 M
) -

e U] 1 5

From the expression for ', we seethaty’ =0 & Seoszr4+1=0 = =z =eos™'(—3) = 1L77and

xz = 27 = x1 = —4.51 {not in the domain of ). The lefimost zero of ' is x1 = 27 = —4.51. Moving to the right, the
zeros of f' are x,, x; + 27, 3 + 27, £, + 47, and x5 4 47, Thus, [ is increasing on (—4.91, —4.51), decreasing on
(=4.51, =4.10), increasing on (0, 1.77), decreasing on {1.77, 4.10), increasing on (4.91, 8.06), decreasing on (8.06, 10.79),
increasing on (10.79, 14.34), decreasing on (14.34, 17.08), and increasing on (17.08, 20). The local maximum values are
S{=4.51) = 0.62, f{1.77) = 2.58, f(8.06) == 3.60, and f({14.34) = 4.39. The local minimum values are [{10.79) == 2.43

and f(17.08) == 3.49. g

A

fis CD on (—4.91, —4.10), (0, 4.10), (4.91, 9.60), CU on (9.60, 12.25), - JANBIVAN P
7
CD on (12.25, 15.81), CU on (15.81, 18.65), and CD on (18.65, 20). There are -
inflection points at (9,60, 2.05), (12.25, 3.27), (15.81, 3.91), and (18.65, 4.20).
1
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2020 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

iz zelfl

l—e A o —2e'/%(1 — !/ 4 20 4 22e’/*)
m.y:f{z:]:m. From a CAS, v ZW .

and v =
¥ T (14 e /=)

- -5

15 an odd function defined on (==, 0) U (0, o). [ts graph has no x- or y-intercepts, Since ].iI:II:I flz) = 0, the x-axis
E e aie

isaHA. ['(z) > 0 forx # 0, so [ is increasing on (—co, 0) and (0, oo). It has no local extreme values.
£"(x) = 0 for = = +0.417, so f is CU on (—o0, =0.417), CD on (=0.417,0), CU on (0, 0.417), and CD on (0.417, oc).
f has IPs at (—0.417,0.834) and (0.417, —0.834).

A f(z)= > 0. fisaneven function, so its graph is symmetric with respect to the y-axis. The first graph shows

1 = cos(z?)
3
that f levels offaty = 1 for |=| < 0.7. It also shows that f then drops to the x-axis. Your graphing utility may show some
severe oscillations near the origin, but there are none. See the discussion in Section 2.2 after Example 2, as well as “Lies My
Calculator and Computer Told Me™ on the website.
The second graph indicates that as |z increases, [ has progressively smaller humps.

0.4 oo

2. (a) f(z) = 2= .

(b) Recall that a* = &8 2 |im+ £V = ].irn+ eltf=im= aq s ¥, E — =oo, so ™ = VMR L This
z -} z =l A

indicates that there is a hole at (0, 0). As & — oo, we have the indeterminate form oc”. lim £%/* = lim {1/*}nz

ol =30

but lim BE 8, ME 0,50 lim z** = ¢ = 1. This indicates that y = 1 is a HA.

E=30 T el E =D

{c) Estimated maximum: (2.72, 1.45). No estimated minimum. We use logarithmic differentiation to find any critical

1 11 1=1
numbers, y = z* = lnhy=—Inx = ¥_--.2 I[lnI}(——) = y' =z (J =0 =
T ¥ T x x?
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SECTION 46 GRAPHING WITH CALCULUS AND CALCLLATORS O 203

Inr=1 = z=eForl<z<ey >0amdfors>ey <0,50 fle) = &*'* is a local maximum value. This

point is approximately (2.7183, 1.4447), which agrees with our estimate.

(d) " From the graph, we see that /"'(x) = 0 at = == 0.58 and = == 4.37. Since f"

! ] changes sign at these values, they are z-coordinates of inflection points.

=

1.2 4 15
[\ ]
f iy
“l \-117 i Ao L o
=1z —4 —15

From the graph of f{x) = sin(z 4+ sin3x) in the viewing rectangle [0, 7] by [—=1.2, 1.2], it looks like f has two maxima

and two minima. 1f we calculate and graph f'(x) = [cos(z + sin 32)] (1 + 3 cos 3) on [0, 27], we see that the graph of [

appears to be almost tangent to the z-axis at about = = 0.7. The graph of
" = =[sin{zx + sin 3z)] (1 4 3eos3z)” + cos(r + sin 3x) (=0 sin 3x)

is even more interesting near this c-value: it seems to just touch the r-axis.

If we zoom in on this place on the graph of ", we see that " actually does cross the axis twice near = = (.65,

indicating a change in concavity for a very short interval. 1f we look at the graph of f* on the same interval, we see that it
changes sign three times near = = .65, indicating that what we had thought was a broad extremum at about = = 0.7 actually
consists of three extrema {two maxima and a minimum). These maximum values are roughly f(0.50) = 1 and f{0.68) = 1,
and the minimum value is roughly f{0.64) = 0.99996. There are also a maximum value of about f{1.96) = 1 and minimum

values of about f{1.46) = 0.49 and f{2.73) = —0.51. The points of inflection on (0, ) are about (0.61, 0.99998),
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204 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

(0.66,0.99998), (1.17,0.72), (1.75,0.77), and (2.28,0.34). On (=, 2=), they are about (4.01, —0.34), (4.54, —0.77),
(5.11, =0.72), (5.62, —0.99998), and (5.67, —0.99998). There are also [P at (0, 0) and (=, 0). Note that the function is odd
and periodic with period 27, and it is also rotationally symmetric about all points of the form ((2n + 1)=,0), n an integer.

. flz)=z"+6z+cfz = [(z)=224+6-c/fr" = ['(z)=242/2"
¢ = 0: The graph is the parabola y = x” + 6z, which has z-intercepts —6 and 0, vertex (=3, —9), and opens upward.
¢ # 0 The parabola y = = + Gr is an asymptote that the graph of f approaches as © — oo, The y-axis is a vertical
asymptote.
© < 0: The z-intercepts are found by solving f(z) =0 & z* 4624 e=g(z) =0 Nowg'(z)=0 & z=-4
of 0, and g (net f) has a local maximum at = = =4,  g(—4) = 32 4+ ¢, o if ¢ < =32, the maximum is negative and there are

no negative c-intercepts; if ¢ = =32, the maximum is 0 and there is one negative c-intercept; if =32 < ¢ < 0, the maximum

is positive and there are two negative z-intercepts. Inall cases, there is one positive z-intercept.

As ¢ = 07, the local minimum point moves down and right, approaching (=3, =9). [Note that since

1

Flz) = %ﬁc Descartes’ Rule of Signs implies that f* has no positive roots and one negative root when ¢ < 0.
2(z* + ¢)

iz = —Q > 0 at that negative root, so that critical point yields a local minimum value. This tells us that there are no

local maximums whene < 0] f(z) = 0 for = = 0, so f is increasing on (0, 0o). From f"(z) =

Eli'r;—‘{hﬂ,mseet‘rmf

has an inflection point at ( /=<, 6 J/=c ). This inflection point moves down and left, approaching the originas ¢ — 0.
fisCUon(—=c,0),CDon (0, §—c), and CU on (§'—c, 2c).

& = 0: The inflection point [.f'.f'-_c ﬁfa"'—_c] is now in the third quadrant and moves up and right, approaching the origin as
c—0% fisCUon (—oc, =), CDon ({/=c.0),and CUon (0,2c). f hasa local minimum point in the first
quadrant. It moves down and left, approaching the originas ¢ — 0*.  f'(z) =0 = 27 4+ 62 — ¢ = h(x) = 0. Now
K{x)=0 = x==2 or 0,and h(mor f) hasalocal maximum at x = =2. h{=2) =8 = ¢, 50 c = 8 makes h{z) =0,
and hence, () = 0. When ¢ > &, f'(x) < 0 and f is decreasing on (—oo, 0). For 0 < ¢ < &, there is a local minimum that

moves toward (-3, —9) and a local maximum that moves toward the origin as e decreases.

e==1
o —iny,
¢=—32
¢ ==50

=1 =l
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SECTION 46 GRAPHING WITH CALCULUS AND CALCULATORS O 205
N flz)=e"4ce™ f=0 = ce™*=—e* = c=—e = 2r=In(—c) = z=1iln(—c).
flr)=¢"=ce™™ f'=0 = e =¢" = c=¢e* = 2r=lne = z= tlne
[M(z) =& +ee™ = f(z).
The only transitional value of ¢ is 0. As ¢ increases from —oc to 0, § In{—c) is both the the z-intercept and inflection point,
and this decreases from oo 1o =oc, Also f' > 0, so f is increasing, When e = 0, f(z) = f'(z) = f"(z) = ¢, [ is positive,
increasing, and concave upward. As e increases from 0 to oo, the absolute minimum occurs at = = 3 Ine, which increases

from —oo to oo, Also, f = " > 0, so f is positive and concave upward. The

value of the y-intercept is f{0) = 1 + ¢, and this increases as e increases from

=00 10 o0,

Note: The minimum point (% lne, 2 v“:) can be parameterized by = = 3 Ine,

=2 'u“z, and after eliminating the parameter c, we see that the minimum point

lies on the graph of y = 2e*.
33. Note that ¢ = 0 is a transitional value at which the graph consists of the z-axis. Also, we can see that if we substitute = for e,

the function f{x) = T o

% will be reflected in the r-axis, so we investigate only positive values of ¢ (except ¢ = —1,asa
Cor
demonstration of this reflective property). Also, f is an odd function, ].iuin f(x) = 0,50 y = 0 is a hornzontal asymptote

b e B =

(14 *2)e = ex(2c?s) _r:[r:tJ:j =1)

for all ¢. We calculate f'(z) = 1+ E2) T (14

filr)=0 & 22=1=0 =

x = #1/e. So there is an absolute maximum value of f({1/c) = 2 and an absolute minimum value of f{=1/¢) = =4,

These extrema have the same value regardless of «, but the maximum points move closer to the y-axisas ¢ increases.

— [—Ecﬁ.r:l-[l + 1:2.1:2:]2 - {—61.1:2 + c][ﬂ{l + r_"zz:z:l-[ﬂc‘z:}]

(x) (14 c2rT)t
_ (=2 2)(1 4 e*2?) 4 (a? = e)(4e’z)  2e'z(cx? = 3)
- (14 22%)? T (142

fM(z)=0 & x=0o0rxv3/e,sothere are inflection points at (0, 0) and

at {:I:x.-"ifc, :I:ﬁ,.-’d}_ Again, the y-coordimate of the inflection points does not depend on ¢, but as ¢ increases, both inflection
points approach the y-axis.
3. flr)=er4sinr = [fz)=cteosr = ["(z)=—=sinx
fi=x) = =f(z), 50 f is an odd function and its graph is symmetric with respect to the origin.
fix)=0 <& sinx = =cr, 500 is always an r-intercept.

fzx) =0 & cosx = =c sothere is no critical number when |c] > 1. If || < 1, then there are infinitely
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206 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

marny critical numbers. If z; is the unique solution of cos + = —e inthe interval [0, =], then the critical numbers are 2nx + 1,
where n ranges over the integers. (Special cases: Whenc = =1, x; =0, whenc =0,z = Z;andwhenc=1,x, =)
fix) =0 &= sinr >0,s0 fisCD on intervals of the form (2Znw, (2n 4+ 1)7). f is CU on intervals of the form
({2 = 1}w, 2nx). The inflection points of f are the points (nx, nae), where n is an integer,
If e = 1, then f'(x) = 0 for all =, 3o f is increasing and has no extremum. If ¢ < =1, then f*{x) < 0 for all x, s0 f is
decreasing and has no extremum, If |e| < 1, then f'(z) >0 < cosxr > =c < risinaninterval of the form
(2nm = 1, 2 4 11 ) for some integer n. These are the intervals on which [ is increasing. Similarly, we
find that [ is decreasing on the intervals of the form (2nw + 21, 2(n 4+ 1)7 — z1). Thus, [ has local maxima at the points
2nw 4+ o1, where f has the values c(2nx + 1) + sinz, = (207 + 1) 4+ /1 = &, and f has local minima at the points
nx = 1, where we have f{2nx = 1) = o 2nw =11} = sinxy = e(2nr = 1,) = 1 = 2.
The transitional values of ¢ are =1 and 1. The inflection points move vertically, but not horizontally, when ¢ changes.

When |¢| = 1, there is no extremum. For |¢] < 1, the maxima are spaced

27 apart horizontally, as are the minima. The horizontal spacing between
maxima and adjacent minima is regular (and equals =) when ¢ = 0, but

the horizontal space between a local maximurmn and the nearest local

minimum shrinks as || approaches 1.

I Ife<O,then lim flz)= lim z™ = lim L8 im L =0,and lim f{x) = ca.
3 =i S

I B = P PP

. - H 1
If £ = 0, then EEE'E f(z) = —oo, and zjﬂi flz) = IIE':& o

=0
If e =0, then fiz) = =, s0 li]'.:ll:l flx) = £oo, respectively.

S0 we see that ¢ = 0 1S a transitional value. We now exclude the case ¢ = (0, since we know how the function behaves
in that case. To find the maxima and minima of f, we differentiate; f(z) = ze™ =

flz) =z(=ce™F ) b e = (l=cz)e™ ThissOwhen l =ex =0 < x=17c Ife < 0then this
represents a minimum value of f(1/e) = 1/(ce), since f'(x) changes from negative to positive at x = 1/«

and if e == 0, it represents a maximum value. As |¢| increases, the maximum or b

minimum point gets closer to the origin. To find the inflection points, we
differentiate again: f'(x) ==l —cx) =
Iix) = e (=c) + (1 = ex)(=ce™*) = (cx = 2)ee™"*. This changes sign

whenecx =2=0 <& x=2/c. S0as|cincreases, the points of inflection get

closer to the origin.

3. (a) f(z) = ex® = 227 4 1. Fore =0, f(x) = =227 + 1, a parabola whose vertex, (0, 1), is the absolute maximum. For

e >0, f(z) = ex = 2+ + 1 opens upward with two minimum points, As ¢ — 0, the minimum points spread apart and
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SECTIONA.T OPTIMIZATION PROBLEMS O 207

move downward; they are below the x-axis for 0 < ¢ < 1 and above for ¢ > 1. For e < 0, the graph opens downward, and

has an absolute maximum at © = 0 and no local mimmum.

ib) f'{x) = 4ex® = dr = dex(r” = 1) [c# 0] If ¢ < 0,0 is the only critical number,

(0, £(0)) = (0, 1), which lies ony = 1 = ==, If ¢ > 0, the critical

]

F'{z) = 12ex” = 4, 50 f"(0) = —4 and there is a local maximum at /"'

‘ N

numbers are 0 and %1/+/c. As before, there is a local maximum at
(0, £(0)) = (0, 1), which lies ony = 1 = =~

i (ilf\-"?) =12 =4 = & = [, 5o there 15 a local minimum at

z=%1/yz Here f (£1/Ve ) = e(1/e) =2fe+ 1= =1/e+1.

But (i—l,fv’?, —1/c+ 1) liesony = 1 — =7 since 1 — (ilfw":)! =1-1/c

4.7 Optimization Problems

1. (a) We needn’t consider pairs where the first number is larger
First Number | Second Number | Product
than the second, since we can just interchange the numbers

1 22 22
2 21 49 in such cases. The answer appears to be 11 and 12, but we
3 20 &0 have considered only integers in the table.
4 19 T
5 18 a0
G 17 102
T 16 112
B 15 120
0 14 126

1y 13 130

11 12 132

(b) Call the two numbers = and . Then = 4 y = 23, so y = 23 — x. Call the product . Then
F =y = x(23 = r) = 23z = x*, s0 we wish to maximize the function F(x) = 23z = =°. Since F'(r) = 23 = 2z,
we see that () =0 & == £ = 115. Thus, the maximum value of P is P(11.5) = (11.5)" = 132.25 and it
oocurs when r = iy = 11.5.
r: Note that P"(z) = =2 < 0 for all =, so P is everywhere concave dowrnward and the local maximum at = = 11.5

mitst be an absolute masimim.

100 100 100 =100
3. The two numbers are x and ——, where x > 0. Minimize f(zr) =z 4 = f(z) =1 = === I_z The critical
I I I I

number is = = 10. Since [(z) < 0 for0 < = < 10and f"(z) = 0 for z > 10, there is an absolute minimum at = = 10.
The numbers are 10 and 10.
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200 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

5. Let the vertical distance be given by v(z) = (z +2) = 2%, =1 €z £ 2.
viz)=1-2r=0 & r=4 v(-1)=0,v(3)=3Fandv(2) =05

there 15 an absolute maximum at £ = s} The maximum distance is

viz)=z+2-3=1%
7. If the rectangle has dimensions = and y, then its perimeter is 2 4 2y = 100 m, so y = 50 — x. Thus, the area is

A = zy = (50 = ). We wish to maximize the function A{z) = (30 — z) = 50x — =, where 0 < x < 50, Since

A'(z) =50 = 2o = =2(z — 25), A'(x) > 0for 0 < = < 25 and A’(x) < 0 for 25 < = < 50. Thus, A has an absolute

maximum at r = 25, and A(25) = 25° = 625 m”. The dimensions of the rectangle that maximize its area are =+ = y = 25 m.

(The rectangle is a square. )

kN
9. We need to maximize Y for ¥ = 0. Y(N) = T+ 72
, (14+ N9k —kN(@N)  K1=N*) K14+ N)}1=N) _, ,
Y(N)= T = Y =~ OFN) Y'(N) > 0for0 < N < landY'(N) <0

for ¥ > 1. Thus, ¥ has an absolute maximum of Y'(1) = Jkat N = 1.

1. (a)

) Lon 120

250

15
! 75

The areas of the three figures are 12,500, 12,500, and 9000 fi*. There appears to be a maximum area of at least 12,500 fi”.
ib) Let x denote the length of each of two sides and three dividers.

Let y denote the length of the other two sides. v

{c) Area A = length x width=y - =

{d) Length of fencing = 750 = 5z 4 2y =750
(e)5z4+2y=T50 = y=3T5-2x = A(z)=(375-2z)zr =375z - 3"
if) zl'{::} =375 =5z=0 = z=75 Since A"(x) = =5 < 0 there & an absolute maximum when = = 75. Then

y= = 187.5. The largest area is T { ] = 14.062.5 ft*. These values of x and y are between the values in the first

and second figures in part (a). Our original estimate was low.

13. sy =15x10% soy =15 x lﬂﬁf:s. Minimize the amount of fencing, which s
3z + 2y = 3z + 2(1.5 x 10%2) = 3z + 3 x 10%z = F(x).
F'(z) =3 =3 x 10%z® =3(z* = 10%) /. The critical number is = = 10" and

¥ F'(z) < 0for0 < z < 10% and F'(x) > 0if £ > 10, 50 the absolute minimum

oceurs when r = 107 and y = 1.5 = 10°,

The field should be 1000 feet by 1500 feet with the middle fence parallel to the short side of the field.
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SECTIONA.T OPTIMIZATION PROBLEMS 0O 209

15. Let b be the length of the base of the box and h the height. The surface area is 1200 = b* + 4hb =  h = (1200 = b*)/(48).
The volume is V = b*h = (1200 — b*) /4b = 3006 — b4 = V'(b) =300 = 24*.
Vig)=0 = 300=3" = ' =400 = b=+/400=20.Since V'(b) >01for0 <b< 20and V'(b) < 0 for
b == 20, there is an absolute maximum when & = 20 by the First Derivative Test for Absolute Extreme Values (see page 328).
If b = 20, then h = (1200 — 20”) /(4 - 20) = 10, so the largest possible volume is 5°h = (20)%(10) = 4000 cm®.

17. V=lwh = 10=(2w)(w)h=2wh soh=>5u".

. The cost is 10(2w”) + 6[2(2wh) + 2(hw)] + 6(2w”) = 32w" + I6wh, so

W C(w) = 32u” 4 36w(5/w”) = 32 + 180w,

2w

C'(w) = 64w — 180/u” = (64w® — 180)/uw® = 4(160® — 45)/w® = w= /2 isthe critical number. There is an

absolute minimum for ¢ when w = §/ £ since '(w) < 0 for 0 < w < (/32 and ' (w) > 0 for w > $/ 5. The minimum

costis C( /42 ) =32( /% )2 519128,
Y/15/16

LI ! See the figure. The fencing cost $20 per linear foot to install and the cost of the
1 ¢ fencing on the west side will be split with the neighbor, so the farmer’s cost ¢ will
BARN ‘ be ' = $(20x) + 20y + 20x = 20y + 30x. The area A to be enclosed is
BOOD Y, s0 A = oy =8000 = y=
I
NW'[:ZEEy+3D$:2ﬂ(Bm})+3ﬂ lﬁﬂ’um+ﬂﬂr = = - lﬁﬂ'[ﬂﬂ+1ﬂ C'=0 &
I @
L0000 ; [ 16,000 10
0= - = zzzlﬁ‘mn = T = | m——=d —=EUEE_SIHEEC"—WM}ﬂ[in{z}ﬂ']
x? 3 ‘1|'|I 3 3 3 r#
we have a minimum for O when z = E\ISE ftandy = — = ——- 3 ¥R _ 204,30 ft. [The minimum cost s
3 z 40 30 30

20(20+/30) + 30 ($+/30) = 800+/30 = $4381.78

2. The distance o from the origin (0, 0) to a point (z, 2r 4 3) on the line is given by d = +/(z = 0)* + (2z 4 3 = 0)* and the
square of the distance is S = =2 + (22 +3)*. §' = 2r + 2(2: + 3)2 =10z + 12and §' =0 & z=-% Now
5" =10 > 0, so we know that 5 has a minimum at = = —£. Thus, the y-value is 2(—=2) + 3 = 2 and the point is (=%, 2).

From the figure, we see that there are two points that are farthest away from
A(1,0). The distance o from A to an arbitrary point Pz, y) on the ellipse is

d=/(x=1)* 4 (y = 0)° and the square of the distance is

S=d?=2'-224 14y =2 =224 14 (4 =-42") = =32" =22 4 5.

4 +yi=4 ,
v §'=—6r—2and§' =0 = z=—L NowS§" =—6 < 0,s0weknow

that S has a maximum at x = —3. Since —1 <z < 1, §(-1) =4,

Copyeight 3046 Conpoge Lemmiog. AB ights Reverves. Moy st b copind, scomm o dmphicate, o whole o . o b et ightn, s shind oty contnt sy b e s the ek e o mptts
Esbirrea rovars b decmacd that as wepy By affect the ovorall bermirg cupencece. Uagage Lcameng rescrves the nght 0 remens sckdtamal oot 2t 2z hine o vebusguent gt s icton regues i




210 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

S(—%) = 4. and S(1) = 0, we see that the maximurm distance is |/ 3. The comesponding y-values are

y=dy4=4(=3) =%/ & = +4 /T ~ +1.80. The points are (-1, 44 /7).
5. The area of the rectangle is (2c)(2y) = 4ry. Alsor® = = + 5" s0
T - y = +/12 = xF, so the area is A(r) = 4r v7 = Z. Now

T I'.! T!d _21_2
1(x) = 4| Ve = 5-—):4—.'mecnt|calnumbens
A=) ( Ve -2 Vit =22

&= ?lgr. Clearly this gives a maximum.

2
y=q/r? = (:ﬁ?r) =,/ §r* = =pr = x, which tells us that the rectangle is a square. The dimensions are 2z = VZr

a.rb|12y=v"'_r
. The height i of the equilateral triangle with sn:lesaflengﬂ:l.lsﬁzﬁf_.,
T since h* + (L2 =L = W =L"-i1"=31" =
3
n _‘L h= -"ﬁL Using similar triangles, ﬁi-y f—;—f =
y
- 7 : v‘ﬁ:r=%f..—y = y:‘fTﬁL-v'ﬁ.r =5 y:%{L-Zz].

The area of the inscribed rectangle is A(z) = (2r)y = v3x(L = 25) = 3Lz = 2/32%, where 0 < = < L/2. Now
0=A'(x)=+v3L-4v3z = z=+3LJ(4V3)=L/4. Since A(0) = A(L/2) =0, the maximum occurs when

s=Lfaandy =81 - Y31 = Y5 5o the dimensions are L/2 and Y21

29, "[ The area of the triangle is
Alx) = 2(2t)(r + ) = t{r 4+ x) = /1T =2%(r 4 z). Then
r+x

=2z =2
0=A ) =r— =+ V= —
‘ l (@) 2V =2 T -

' 4 rr
= —— ey = =

2 )
= ¥rE =vrF a1 = rrfirr=r‘=z" = =24 rr=r" =2z =r)(z4r)] =

4 =

z=irorr=—r.NowA(r)=0=A(=r) = the maximum occurs where z = Ir, so the nangle has
hE'Ightr+i:r:%randbaseﬁﬂfd—{%rzzzﬁ%r”:ﬁr.
. i The cylinder has volume V' = =xp”(2z). Alsox® 4+ p* =+ = ' =r'=2" =0

Viz) —i'l'{:r -z :Il[ﬂ.::l EE{rj.I—Ix}, where 0 < = < r.

Viz)=2n(r*=32) =0 = z=r//3 NowV(0)=V(r)=0,sothereisa

maximum when = = rA/Fand V (rA/B) = a(+* = r/3)(2r AT ) = 4xr?f (343).
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SECTION 47 OPTIMIZATION PROBLEMS O 214

The cylinder has surface area

2{area of the base) 4 (lateral surface area) = E#{rﬂdiuri:]-z + 2m(radius)(height)
=2ay" + 2my(2r)

Mowz +y° =¢ = gy =r'—2 = y=+rF =27 wthe surface area is

Q{I}—Eﬂ'{:r - ]+4ﬂzu 2, 0Lx<r
= 2ar® = 2mx” +4:|T{I1,.":I’2-—.1:2]

Thus, §'(x) :l]—4rr.z+4wr[ A = 2?1 (- z:]+(r2-£]'ﬂ.1]
= e AT S Lt 5
:4#[—I—m+vr —Ii] =45 o

S“r{z:] =0 = Im: 2yt (*) = {Iv"?i—_a:!}z :ll,:r2 —2:2]2 =

PP =)= =P bt = PP P et o St =5t i =

This is a quadratic equation in =*. By the quadratic formula, 2= i%rz, but we reject the root with the + sign since it
doesn’t satisfy (x). [The right side is negative and the left side is positive.] Sox =,/ "’—'mﬁﬁ r. Since S(0) = 5(r) =0, the
maximum surface area occurs at the critical number and % = 25382 = % = = LB, — B2

the surface area is

23(%)# + 4y %\fn—'ﬁﬁr"::ﬁj[ﬂ . l‘l‘d@ +4Mﬂ] =#r2[ﬁrf + z-‘:l@]

= [20542008] o2 [10348] = (14 V).

T ry =384 = y= 384 r. Total areais

fe— 1= —]

Alx) = (B4 2)(12 4 384 x) = 12(40 + = 4 256/x), s0

< ¥ y+12 A'(x) =12(1 =256/x”) =0 = & = 16. There is an absolute minimum

when x = 16 since A'(z) < 0for 0 < = < 16 and A'(z) = 0 for = > 16,

rt 8 4 When = = 16, y = 384/16 = 24, so the dimensions are 24 em and 36 em.
’ 10 . Let x be the length of the wire used for the square. The total area is
; X LT,
232 1f10=x\/3/10=x
[]: A= 1= (3) +3(=2) (=)
4
Los =Lt B (10-2)%, 02 <10

_ff{z]:%z—l—“fl[lﬂ—r:l:l] =3 %I+";f.r——ﬂ—ﬂ' = I—%

Now A(0) = (%) 100 = 4.81, A(10) = 22 — .25 and 1(ﬁ%) =~ 2.72, 50

{a) The maximum area occurs when x = 10 m, and all the wire is used for the square.

Ailye/3

Bad = 4.35 m.

{b) The minimum area occurs when - =
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212 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

3. —

\

32=-2
From the figure, the perimeter of the slice is 2r + v = 32, 50 8 = === Thearea
T

32-2 .
( r):r{lﬁ—r]:lﬁr—rjiﬂr
-

0<r<16 A(r)=16—-2rs0A =0whenr =8 Since A(0) =0, A(16) =0,

A of the slice is A = 3r8 =

u-|l-l

and A{B) = 64 in.%, the largest piece comes from a pizza with radius 8 in. and
diameter 16 in. Mote that # = 2 radians == 114.6°, which i1s about 329 of the whole

pizza,

4. ~ W 4rP=R = V= h= R =h)h=ERh=h".
V'(h) = §(R" = 3h") =0 when h = == . This gives an absolute maximum, since
[ I V'(h) > 0for0 < h < JgRand V'(h) < 0 for h > g K. The maximum volume is
o _ Lpd 1 opaY _ 3 _pa
V(Fh) = (58 - k) = spmr”
H _ H=h P_1_.32
43 By similar triangles, == (1). The volume of the inner cone is V' = Farh,
. H
so we'll solve (1) for A. Er —H=h =
Hvy _ HR=Hr H
h=H-=-—="_" =__(R-= .
5 T H{ r} (2)
g H H !
Thus, V(r) = Tr* - Z(R=1) = To(Re* = 7%) =
-t mi
Viir }_—{ZRT 1r~’j_—Rr{zﬂ—3r]_
Vir)=0 =0or2R=3 = 2 R and fi 2 F—HR iR -4 iR\ =1iH
(r)=0 = r=00r2R=3% = r=3} mm{},a_ﬁ[ -3 ]_E{i 1 =3H.

1/(r) changes from positive to negative at - = 3R, so the inner cone has a maximum volume of

V= garth = ir(3R)"(3H)

E'R

4. P{H]:m

P'(R)=

F(R)=0 = R=r

= & . #x*H, which is approximately 15% of the volume of the larger cone.

Y E'—E'R-2{R+7) _ (R +2Rr +¢*)E* = 2E*R* = 2E"Rr

(& + vy B (f+r)

E''—E'R' EYr'=R') Er+R)(r—R) _E%r—R)

= Plr)=

(R+r)*  — (R+r)* (R +7) T (R4

E*'r _ E'r E
(r+r)2 " 4r2 = dr’

The expression for P'( ) shows that P'(/) > 0 for B < rand P'(H) < 0 for B > r. Thus, the maximum value of the

power is £4 /{4r), and this occurs when R =r.

Copyeight 3046 Conpoge Lemmiog. AB ights Reverves. Moy st b copind, scomm o dmphicate, o whole o . o b et ightn, s shind oty contnt sy b e s the ek e o mptts
sckitzrml

Esbirrea rovars b decmacd that as wepy

By affect the ovorall berming cupencece. Uagage Lcameng resves the nght o remens cormtar at amy e of vebneguent rphis st regues d.




SECTIONA.T OPTIMIZATION PROBLEMS 0O M3

47. 5 = Gsh = %sEculﬂ‘+ 352"‘;—5(&(_'9
ds

fﬂ}E:% cse” f - ﬂfjitﬂﬂtulﬂﬂrzaztﬂ:ﬂ{*_htﬂ q"_:_ulﬁ‘}
s 1 oos i i

(b)) — = Dwhen escfl — vFeotd =0 = —— —/T—— =0 = ecosdl = 2. The First Derivative Test shows
dfl sin f sin B V3

that the minimum surface area occurs when @ = cos™! (?15) 7z 55°.

ic) Ifcmﬂ:;‘ﬁ,thencutﬂzi‘iamicxﬁz %,suthesmfaﬂeareals

— Rah o 32 L 23 V3 -3 JZ 9 F
5= fsh ’j*?ﬁ"':‘"‘ 2?5_654& Tt

al

= fGsh 4+ ﬁ?sj = ﬁ.ﬁ(h+ ﬁ.ﬁs)

72 4+25 He==x a8 1
= o = — = _ = = 2 5
49. Here T(x) g + 5 0<z<5 = T'(z) WA 0 & Br=6x"+25 &

16" = 9(z* +25) < z=1% But 1% > 5,50 T has no critical number. Since T'(0) = 1.46 and T(5) == 1.18, he

should row directly to 5.

51. There are (6 — ) km over land and +/=% + 4 km under the river. 'I“_:E"r’ . P
—.a L X
We need to minimize the cost ' (measured in $100,000) of the pipeline. T
Clz) = (6-=)(4) + (VE+1)(8) = v *x :
- —i Bx I é
[ I::I:]-: -4 48 %{I2 +4:] 1-“{2:5} = =4 4 _1,-'3__{..4 ’ ' Alorage Lanks
Br

C'(z)=0 = 4= = P id=2r = r44=47" = 4=3r = =41 =

v 44
xz=2/y3 [0 = z = 6). Compare the costs for = = 0, 2//3, and 6. C'(0) = 24 4 16 = 40,
C(2/v3) =24 - 8/+/3 4 32/+/3 = 24 + 24//3 = 37.9,and C(6) = 0 + 8 /20 = 50.6. So the minimum cost is about

$3.79 million when P is 6 — 2/+/3 = 4.85 km east of the refinery.

3k k
53. kK N The total illumination is I(x) = — + w—-o7 0 < x < 10. Then
X ==
bl i
Fa)==2k 2 _ _0 = 6k10-2)" =2k =
! 10 J 0 (10=z)?

W=z =2 = PBU0=x)=z = W HB={Bzr=2x = WP PB=zx+ {3z =

10 +/3

10%!5:{1-4—6-’5].: = = WI,_::En.@ifl;_'l'hlsglll.--_*szimlmrrnumsml:veI"{x“]:.:v-{llfﬂnr{l-:‘,.:-r:.'ll]
+
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244 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

55. o Every line segment in the first quadrant passing through (a, &) with endpoints on the -
A slope = m and y-axes satisfies an equation of the form y = b = miz = a), where m < 0. By setting
lar, B) x = 0 and then y = 0, we find its endpoints, A(0, b — am) and B(a — £,0). The

distance d from A to B is givenby d = \/[{u - L) —0]* +[0 = (b—am))?,
It follows that the square of the length of the line segment, as a function of m, is given by
2
S{m}:( —i) + (am = b)* —G—E‘f-i-l-ﬂm ? = 2abm + b*. Thus,
T

Zab  2H* 2
mE

§'(m) = ———+2um—2nb— (abm — b* + a*m* — abm®)

2 2
== [b{am = b) 4+ am®{am = b)] = E{am — b)(b 4+ am®)
' 2
Thus, 5'(m) =0 & m=bfaorm= —c./g_ Since bfa = Dand rm < 0, m I'I'Il.lslequal_ellg_ S.MEF < 0, we see

that 5'{m) < 0 for m < -{/Eam:l 5'm) = 0 for m > -{/‘E. Thus, 5 has its absolute minimum value when m = -{E.
That value is

g O a a
5(—:@): (u-l'-b'v’%) + (—u ‘:‘:/lg—b) = (u-{-— v’ju.bz) + (m-i'-b)
= a? 4 2R g QIR gAY L 9B L pE o g 3R L 3R 4 g
The last expression is of the form = + 32y + 3xp” +¢*  [=(z +9)*] withz = a®® and y = b*/,
so we can write it as (a”/® + b*/*)* and the shortest such line segment has length /5 = (a®/* 4 p*/*)¥/2,

v

Sl.y= = y=- 2 —- 50 an equation of the tangent line at the point (a, 2)is

Y-

Bl b

3 3 i
= -a_!{; —a),ory = —;.r-l-— = The y-intercept [z =10] i86/a. The

z-intercept [y = 0] is 2a. The distance d of the line segment that has endpoints at the

intercepts isd = /[2a — 0)2 + (0 — 6/a). Let S =d*,s0 5 = 4a” + 3—?
o

5":3&—?.5":& = %ZSG = a'l=0 = of=3 = a=\,r'§.
a a

216
5" —S+— > 0, so there is an absolute minimum ata = /3. Thus, § =4(3) + £ =124+ 12 =24 and

hence, d = /21 = 2 /8.

58. (a) If e(z) = . then, by the Quotient Rule, we have '(x) =

C(x) 2" () = C

- Clz) . Now ¢'[x) = 0 when

r:[:}

2" (z) = C(z) = 0 and this gives C'(z) = = ¢(x). Therefore, the marginal cost equals the average cost.

(b) (i) Cfz) = 16,000 + 200z + 42 C(1000) = 16,000 + 200,000 + 40,000 /10 =~ 216,000 + 126,491, so

16,000

C(1000) == $342.491. e{x) = C(z)/x = ——— 4+ 200 + 4=, £(1000) = $342 49 unit. C'(x) = 200 + 622,

C'(1000) = 200 + 60 /10 ~= $389.74/unit.
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SECTIONA.7 OPTIMIZATION PROBLEMS O 25

16,000

(i) We must have C'(x) = o(z) < 200467 = —— +2004+ 47 & 247 = 16000 &

x = (8,000)%* = 400 units. To check that this is a minimum, we calculate

= 16,000 2 2
)= —=—4+—= = (** — 8000). This is negative for = < (8000)*/* = 400, zero at = = 400,

v

and positive for = > 400, so ¢ is decreasing on (0, 400) and increasing on (400, oo ). Thus, ¢ has an absolute minimum

atx = 400. [Note: £"(x) is nor positive for all x > 0.

(iti) The minimum average cost is (400) = 40 4 200 + 80 = 5320/ unit.

61. (a) We are given that the demand function p is linear and p{27,000) = 10, p(33,000) = 8, so the slope 15

1l = 8

= — o and an equation of the line is y — 10 = (— g5 ) (2 — 27,000) =

y =plr) = —gpmz + 19 = 19 — (z/3000).

(b) The revenue is f(z) = xp(x) = 19z = (2*/3000) = R'(z) =19 = (z/1500) = 0 when = = 28,500. Since

R"(z) = =1/1500 < 0, the maximum revenue occurs when £ = 28,500 =  the price is p(28,500) = $9.50.

63 (a) As in Example 6, we see that the demand function p is linear. We are given that p(1200) = 350 and deduce that

340 = 350 1

p(1280) = 340, since a 310 reduction in price increases sales by 80 per week. The slope for p is 1280 — 1200 — — - ™

an equation is p — 350 = — 2 (x — 1200) or p(z) = —3x + 500, where = > 1200.

(b) Riz) =zplz) = —%:r.:2 4 500, H'z)= -—%I+ 500 = 0 when = = 4(500) = 2000. p{2000) = 250, so the price

should be set at 250 to maximize revenue.

(c) C{x) = 35,000 + 120 = Plz)=HR(z)-Cz)= —%f + 500z — 35,000 — 120z = —%zz + 380z — 35,000.
Plz)= —3x + 380 = 0 when = = 4(380) = 1520. p(1520) = 310, so the price should be set at $310 to maximize

profit.

B5. Here s* = h* + b%/4, 50 h* = s* = b*/4. The areais A = Lb,/sT = b°/4.
Let the perimeter be p.s02s + b=pors = (p—-4)/2 =
Afb) = Lb/(p = B)F4 = 554 = b+/p” — 2pbf4. Now

{ _ J Ap) = MEE=2b _ bpjt | =3pb p?
b 4 VPR =2pb  4\/p" —2pb

Therefore, A'(b) =0 = =3pb+p° =0 = b=p/3. Since A'(b) > 0forb < p/3and A'(b) < 0 for b > p/3, there

is an absolute maximum when & = p/3. Butthen2s + pf3 =p,s0s =pf3 = s=5& = the triangle is equilateral.
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296 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

z* y 2r  Iyy'

67. (a) Using implicit dlfferentman, 7 + = 1 = = + 2 =0 =
Dy’ 25 bx bzp
Y == ! =———  At(p.ql.y' = ——L, and wation of the
b a? = ¥ a’y (P ). v a‘y an equation o
bjp bﬂp bzpﬂ
tangent | —g==—Flr= ==— —=
gent line is y — g a‘*q{:z o= udqz+ﬂ£q+q =
b'.: bj v} 2
= —TPI+ L{“’ﬁ The last term is the y-intercept, but not the term we
a‘yg atqg
L = < "
want, namely 5° /. Since (p, g) is on the ellipse, we know :—2 + :—j = 1. To use that relationship we must divide b°p” in
. s bz ' 2 2 jbi 2 b.n! 1 b:.:
the y-intercept by a”b”, so divide all terms by a”b*. ( p{ﬂtqﬂ”i!{iﬂ =L /e ;f / =gE=7 . So the
bp B bp bj
tangent line has equation y = ——=x + —. Let y = 0 and solve for = to find that z-intercept: —a = — &
aq q asq q
_ ba’g _ i
qép  p-

{b) The portion of the tangent line cut off by the coordinate axes is the distance between the intercepts, (a”/p,0) and

[ F a2 2
(0, bil,-"q]: V(%) -I-( ) V -I- —- To eliminate p or g, we turn to the relationship P-J ?F =1 =

2 : 2 2 2
: ] : ) =
c,r_ 1-E = cf:bj- L, q|-‘_M le.substltmetorq and use the square 5 of the

i a? a? a®

. a’ b'a’ at Iyt
distance. 5@1=F+m=ﬁ+mfﬂr0{p{a. Note thatas p— 0 of p — a, S(p) — o=,

. 2 ¥ Fa'b* .
s0 the minimum value of 5 must occur at a critical number, Now 5'(p) = = = { - pf}j and S'(p) =0 =
Eﬂq h2b2 ) ) ) . . . 3
= =ﬁ & d'(a®=p" ) =tp' = ald®-p')=kp' & d=(asb)p® o p’ =:|_b-
Substitute for p* in S(p):
a’ + a’b? _a'la4b) a’bla+b)  ala4b) + a’b*(a + b)
A 5 at  at afa 4 b) =a® 1 al
a4 b ab
=ala + b) + bla + b) = (a+ b)(a + b) = (a + b)*
Taking the square root gives us the desired minimum length of a + b
1{a*y /b .
{c) The triangle formed by the tangent line and the coordinate axes has area A = s\ — |. Asn part (b), we’ll use the
AN
a’b? abia® a’b®

Minimizing 5 (and hence A)

E 2 — — —
square of the area and substitute for ¢°. S_:lp?qz =R E - @)

is equivalent to maximizing p*(a® — p”). Let f(p) = p*(a® = p®) = a®p* = p* for 0 < p < a. As in part (b), the

minimurm value of 5 must occur at a critical number. Now f'(p) = 2a’p = 4p® = 2p(a® = 2p%). f(p) =0 =
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SECTIONA.T OPTIMIZATION PROBLEMS 0O M7

uhbi uleJ

p2 = nlfﬂ = p =u].'rv"'§ [p =3 ﬂ]. Substitute for pl n .';{p:l-: - = =a'l = {ub}l. Taking

(3)(=-2) °

the square root gives us the desired minimum area of ab,

69. Note that |AD| = |AP|+ |PD| = 5S=az+4|PD| = |PD|=5-=x 1

Using the Pythagorean Theorem for APDE and APDC gives us

L(z) = |AP|+ |BP|+ |CP| =2+ B -2 + B+ /G2 + 2

=r4rl =10+ 2 =10c+34 = s

=25 =25
VEL = 10429 rf=10r+ 34

i
1
and L, it seems that the minimum value of L is about L(3.50) = 9.35m. ! /

=3

Lz)=1+ . From the graphs of L

M. 4 The total time is
f
al ! T'(x) = (ume from A to ') + (tume from o B)
O d—x -
T 7 I d = )%
X =v"'u +J:+\,."" +{ Ij,ﬂ-::.z{d
! vy hy
CA
. T'(z) F d=x sinfl, sinf,
B ] = - - = -_
} d | w va® 4zt vgv"rb“ + {d = z)? Ty Ty
The minmum occurs when T () = 0 sinfy = ﬂ
LA Tk

[Neote: T"(x) = 0]

73. ¥y =" 4 =, but triangles CDE and B A are similar, so
dfx—d zfa=x/ [4 Vvr=4) = z=2rfy/r=4 Thus we minimize
C f{I}:yE:I"!-i-:Isz{I—{I: 1;{1—4},4-::.1:‘_:3.
Fla) = (x = 4]{3121— z? _ = [3(x = 4]!— x _ 27 (x —Ei] —0
@=-1) @=1) =1
E whenz = 6. f'(z) < 0whenx < 6, f'(x) > 0 when x > 6, so the minimum
oceurs when = = 6 in.
o a4 t 3 1
Ta > H:{H-I-—:,-_:}—I_J:a.rcl,.u.nT—aIclanT = :m—n—!z.
W 3 1
=0 —_—— 343" =1+ 0 2 = 6t*
4 E"!=% = !':lj‘r\.-"i.ThIJS.,

It

H:arcta:ﬂfﬁ—urcl.mdfﬁ: I-F=%
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218 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

a 3 5 2 .
T From the figure, tan« = — and tan # = ——. Since
x ==z
i— 5 2
' u+.ﬂ'+ﬂ:18l]‘°:#,ﬂ:?r—t.au-1(—)—t.an-l( } =
T ==z
P ,_-,.ﬂ it

. E“ﬁ('%) - 1+(;%j [{3—2:}2]
2

A E =z 5 (3-x)* 2
“Z+% 2 (B3-2P+4 (B-20
df) 5 2 . .
Now — =0 = 2% 4 50 = 522 — 30x + 65
W = = E1% o Zobtzy13 -+ F =10 =

3 =30+ 15=0 = 2 =10x+5=0 = =x=>5=2+5 Werejectthe root with the + sign, since it is
larger than 3. dfl/dx > 0 for = < 5 = 2+/5 and df/dx < 0 for r > 5 = 2+/5, s0 @ is maximized when

|AP| =2 =5-25=053.

8. B ; In the small triangle with sides a and = and hypotenuse W, sind = % and
d
f T cmﬂ:%. In the triangle with sides band o and hypotenuse L, sin# = Iam:l
LY W b
comfl = I Thus, a = Wsinf, e = Weos#, d = Lsin®, and b = L cos 8, so the
d area of the circumscribed rectangle is

A =(a+b)c+d) = (Wsinb + Les @)W cosf 4 Lsind)
=W sinf cos@+ WLsin® @ + LW cos® # 4 L2 sinf cosé
= LWsin® 0 + LW eos® 8 4 (L* + W) sin 8 cos @
= LW (sin® § + cos” 0) + (L* 4+ W)+ 2. 25in0 cos@ = LW + 2(L* + W) sin20, 0 <6< X
This expression shows, without calculus, that the maximum value of A(#) occurs whensin20 =1 = 20=% =

= I Sothe maximum area is A(Z) = LW + L(L* + W*) = L(L* 4 2LW + W*) = L{L + W)~

81. (a) If k = energy/km over land, then energy fkm over water = 1.4k,
5 Wal+ 25 Sothe total energy 15 £ = L4k w25 4+ 22 + k(13 =), 0 <z < 13,
di 1 4kx
andso — = ———— —
B x C 5 2 dr T (54 22)

dE . :
Set —— =0: 14kz = k(25 +2°)"/* = 196" =2"+25 = 0962"=25 = z=_Fm =5l

Testing against the value of E at the endpoints: E{0) = 1.4k(5) + 13k = 20k, E(5.1) = 179k, E(13) = 19.5k.

Thus, to minimize energy, the bird should fly to a point about 5.1 km from B.
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SECTIOM 48 NEWTON'SMETHOD O M9

(b} If W/ L is large, the bird would fly to a point O that is closer to B than to I to minimize the energy used flying over water.
If WL is small, the bird would fly to a point ' that is closer to [ than to B to minimize the distance of the flight.

- = 7 dE Wz w V5§ 27
E:II-VZD+I'!+L{13—:E:] — E—m—L—G“&hT—T.B}ﬂEm%nﬂf

argument as in part {(a), this ratio will give the minimal expenditure of energy if the bird heads for the point = km from B.

(c) For flight direct to D, z = 13, so from part (b), W/L = X232 1 07 There is no value of W/L for which the bird
should fly directly to B. But note that lim (W/L) = og, so if the point at which E is a minimum is close to B, then
=it
W/L is large.

(d) Assuming that the birds instinctively choose the path that minimizes the energy expenditure, we can use the equation for
dE/dx =0 from part (a) with L4k = e,z =4, andk = 1: ¢(4) = 1- (254 4%)Y? = = ATf4=16.

48 Newton's Method

1qa)| The tangent line at x; = 6 intersects the r-axis at x == 7.3, so r2 = 7.3. The

tangent line at x = 7.3 intersects the x-axis at x == 6.8, 50 x3 ~= 6.8,

¥

[i] ”/- I
-

’_’_,.-"'

¥

(b) =1 = & would be a better first approximation because the tangent line at = = 8 intersects the x-axis closer to s than does

the first approximation =, = 6.

3. Since the tangent line y = 9 = 2 is tangent to the curve y = f(x) at the point (2, 5), we have =; = 2, f(x;) = 5, and

f(x1) = =2 [the slope of the tangent line]. Thus, by Equation 2,

[2=] Jt=]

Mote that geometrically % represents the c-intercept of the tangent line y = 9 = 2x.

4. The imtal approximations x,; = a, b, and ¢ will work, resulting in a second approximation closer to the ongin, and lead to the
root of the equation f{x) = 0, namely, £ = 0. The initial approximation z; = « will not work because it will result in

successive approximations farther and farther from the origin.

.I'.
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220 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

EIIH - Ii 41

2 . 2
T.I{I}:;—Id-l'-l =5 _fl{.r} ———EISBE.H.]__I“— Nowzy =2 =

=2fzri —2r,
=441 =2 14 14 2/(14/9) = (14/9)" + 1
I]_:.‘!:2.—_4-:2—_:— = Iy = == 'Iir{ 'Iilllz{ ;}+ =~ 1.5215.
-1/2-4 -9/2 9 9 —2(14/9)° - 2(14/9)
. Th 4z, + 3
B flzl=a"+z+3 = [(z)=3z"+ 1, 500041 = Tn = —m—m——. 7

dri +1 /.'

Nﬂ“«-z] ==1 = l-l.!ﬁ,% 'F
=1} -1 3 =1=143 1 -1,
B o) il o KL 3 _loiss V.l !

= TP+l T T3l T T 1 - /

Newton's method follows the tangent line at (=1, 1) down to its intersection with

=

e

-

the x-axis at (—1.25, 0), giving the second approximation xs = —1.25.

. lo approximate © = S0 X =i We Can ) =& = (o 0 r) =
1. To app 75 (so that =* = T5), take f(z) = 2 = 75. So f'(z) = 42®, and thus,

A
- 75
T4l = In = —I”;‘Ia . Since /81 = 3 and &1 is reasonably close to 75, we’ll use z1 = 3. We need o find approximations
T

until they agree to eight decimal places. =1 =3 = ro = 294, 7y = 204283228 ry == 204283096 = x5, So
+ 15 7= 204283096, to eight decimal places.
To use Newton's method on a caleulator, assign [ to Y, and [ to Y. Then store =, in X and enter X = Y, /Y, — X1to

get o and further approximations (repeatedly press ENTER).

13. (a) Let f(z) = 32 — 82® + 2. The polynomial f is continuous on [2, 3], f(2) = =14 < 0, and f(3) =29 > 0, so by the
Intermediate Value Theorem, there is a number ¢ in (2, 3) such that f(<) = 0. In other words, the equation

3z® = 82" 4+ 2 =0 hasaroot in [2.3].

3zt —Rel 42

— A 2 —
(b) fiz) =122" = 242" = ang1 = Tn — m

Taking x; = 2.5, we get x2 = 2.655, xa == 2630725,

ry 7= 2630021, xn = 2630020 = xzp. To six decimal places, the root 15 2.630020. MNote that taking x; = 215 not allowed

since f'(2) =0.

€ =4 1y
15 't ¥ L ﬂ’=4-I2,SDI{I}=EE—4+I2 = I.L+1=I“-ﬁ2:‘:ﬂ“.
From the figure, the negative root of e* = 4 — z” is near —2.

r ==2 = xpr=L09064981, xy = =1.064636 == x;. Sothe negative

root is = 1964636, to six decimal places.
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SECTIOM 48 NEWTON'SMETHOD O 21

7. From the graph, we see that there appear to be points of intersection near
F=deosx r==4,r==2and xr = 1. Solving Jeosx = x 4 1 is the same as solving
flz)=3emr=z=1=0 f'z)==3sinr=150
Fops = En = 31:03.17-“_ . 1_
=3sinr, =1
Ty = =4 r ==2 =1
Ty =2 =3.682281 T2 7= =1.B56218 xy =z 0892438
g 7= =3.635060 Iy == =1.862356 x4 == 0889473
£4 5= —3.637050 1y = —1.862365 = 1 xy == 0880470 = =,
on = =3.63T958 = rp
To six decimal places, the roots of the equation are —3.637958, —1.862365, and 0.839470.
19 From the figure, we see that the graphs intersect between =2 and =1 and
between 0 and 1. Solving 2° =2 — x7 is the same as solving
f#)=2" =242 =0. f'(z) =2 In2 4 22,50
x
fagr=nm Lo =24
2%n In 2 + 2z,
o, = =1 =1
Ty = —1.302402 x4 = 0.704692
1y rx =1 258636 4 7= 0654015
x4 fz =1. 257602 xq =z 0653484
s = =1.25769] == rg x5 == DLG534R3 == x¢
To six decimal places, the roots of the equation are —1.257691 and 0.653483.
. o=y From the figure, we see that the graphs intersect at 0 and at = = + a, where

a 7= 1. [Both functions are odd, so the roots are negatives of each other. |

Solving =% = tan™! r is the same as solving f(z) = #* = tan~ 'z = 0.

Iﬁ —tan=' =z,
1

3ol = ——

" 14t

f‘r{:s] =3z =

T 3 W Tngl = Tn =
T

14+

Nowaz; =1 = xp 7= 0.914159, &y 2= 0902251, x4 = 0.902026, x5 = 0.902025 == xs. To six decimal places, the

nonzero roots of the equation are +0.902025.
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222 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

n. i flz)==2:" =5+ 92 +5 = fe) = =142 =20 + 272 =

,/F'/\ : L =227 =528 £ 923 45

Trdl =0T 1428 — 2022 4 27T

From the graph of f, there appear to be roots near —1.7, =0.7, and 1.3.

r, ==LT r, ==0.7 2, =13

ry = =1.693255 Iy = =0.T74T56345 ry = 1L.2GBTTH

Ty 7= =L69312035 ry = =0.T4467752 xg == 1L2G5R03RT

4 fz = 1L6GIF12029 == x5 rq 7z =[.T4466668 = 5 rq 7z L2G58T094 = x5

To eight decimal places, the roots of the equation are —1.69312020, —0. 74466668, and 1. 26587004,

5. 2 Solving 2I = +/1 = x 15 the same as solving
41
(\ T ' 11—z 1
S —;  f@=mgyovisEst feEmEtaa s T
| :
= Tppy = Ly = l'r.f ;I‘:-jl : n
n

— . S—
(2 +1)°  2y/T-za

From the graph, we see that the curves intersect at about 0.8. = = 0.8 = =z = 0L.T675T58], za = 0.THGI2G10,

xa 7= 0.THHB25TY == xs. To eight decimal places, the root of the equation is 0. TGGR25T9.

3
2. : Solving 4™ sinx = —x+4 listhe same as solving

\ I{I:.:‘tE-lﬂHiJII—IH.}_I_l:D_

flz)= 4E'-12[E:.ki r=2xsinr)=2zr4+1 =

2 ;
. 2
4o~ n GiN Ty =T + Ta =1

Tu4l = En = ] - .
-2 4e=n (o8 T = 2z, SiNTn) =220 4 1

From the figure, we see that the graphs intersect at approximately £ = 0.2 and = = L.1.

xr, =02 =11
rs == 021883273 xs == 108432830
s == 021916357 xa =z LOB422462 = x4

T fz 021916368 == x5

To eight decimal places, the roots of the equation are 0.21916368 and 1.08422462,
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SECTIOM 48 NEWTON'S METHOD O 223

2. (a) f(z) =2 —a = f'(z) = 2x, s0 Newton’s method gives

foymp a1 a 1. a 1f _a
n4l = Tn 21_“ = n 2 i 21_“—2 " 3 “—2 T Zn .

{b) Using (a) with a = 1000 and x, = /300 = 30, we get x, = 31666667, ry ~ 31622807, and x, =~ 31622777 = =,

S0 4/ 1000 = 31.6227TT.

M flr)=2"=3x46 = ['(z)=32" =3 Ifz; = 1 then f(x:) = 0 and the tangent line used for approximating s is
horizontal. Attempting to find =2 results in trying to divide by zero.

3. For f(z) = 2/, f'(z) = == and 3

173
L) s~ P = = B0 = =20
E ]

3En -3 =]
Therefore, each successive approximation becomes twice as large as the .3

Tngl = Tn =

previous one in absolute value, so the sequence of approximations fails to

converge to the root, which is 0. In the figure, we have =, = 0.5,
o = =2(0.5) = =L and x5 = =2(-1) =2.

3B (@) flx)=a =243 =22 = flr)=6" =4 4+ 92" =2 = E
f'(z) =30 = 12+% + 18z, To find the critical numbers of f, we’ll find the f

zeros of [, From the graph of f, it appears there are zeros at approximately -2
r==13 =04 and 0.5 Trv &, = =13 =

J(x)
()

Nowtry z; = =04 = x,5 =0.443755 = 3= =0441735 = =z, = —0.441731 = z,. Finally iry

[+

Ia =TIy =

A2 =1.20334 = @a==1203227 = x4 -2

£, =05 = =1, =0507937 = =, =0507854 = r, Therefore, r = =1.203227, =0.441731, and 0.507854 are
all the critical numbers correct to six decimal places.

(b} There are two critical numbers where f* changes from negative to positive, so f changes from decreasing to increasing.

F(=1.293227) = =2.0212 and f{0.507854) == —0.6721, so —2.0212 is the absolute minimum value of [ comect to four

decimal places.

ar. 4 y=x"sinz = 1,|l"=z2

cosr 4+ (sinx)(2z) =
"= .rzl[—sin ) + (eosx)(2x) + (sinz)(2) 4+ 2reosx

= =1 sinz 4 droosr 4+ 2sinr =

"= —rf o+ (sin x){=2x) + dx{—sinz) + (cosz)(4) + 2eosx

= =1 cos r = GrsinT + G oos T,

From the graph of y = = sin , we see that x = 1.5 is a reasonable guess for the x-coordinate of the inflection point. Using
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224 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

Newton's method with g(z) = " and ¢'(z) = "', we get 1 = 1.5 = a3 == 1520092, z1 = 1519855 = =a.

The inflection point is about (1.519855, 2.306064).

39. We need to minimize the distance from (0, 0) to an arbitrary point (x, y) on the \
[

CLIn'Ey:{z—l]j. d= /rt4y* =

diz) = + [z = 1)7]° = /22 + (z — 1)°. When &' = 0, d will be

minimized and equivalently, s = d” will be minimized, so we will use Newton’s

method with f = &' and ' = s".
ry + A{zn = 1)°

fl::.l.':]' = T 4 4[1- - 1}3 =1 _f"{Il =24 12{::5 = 1:]'2, S0 Tpngl = Tn = _2 + IZ{IH - l:.:d

Ty =05 =

xa = 0.4, xa 7= 0410127, x4 == 0.410245 = x5, Now 4(0.410245) == 0.537841 is the minimum distance and the point on

the parabola is (0410245, 0.34T810), correct to six decimal places.

"
41. In this case, A = 18,000, & = 375, and = = 5(12) = 60. S0 the formula A = —[1 = (1 4 i}™"] becomes
1

13,-111:%[1-[1+;]““”] & 48r=1-=(142)"" [multiply eachterm by (14 )™ &

482(1 4 )™ = (1 4+ 2)™ + 1 = 0. Let the LHS be called f(x), so that
F(2) = 482(60)(1 4+ )™ + 48(1 + )™ = 60(1 + =)™
= 12(1 + )™ [42(60) + 4(1 + ) = 5] = 12(1 + =)™ (244x = 1)

48:&4{1 + In}m - {:1 - Il-l.:'m + 1
12(L + ) (244x, — 1)

. An interest rate of 1% per month seems like a reasonable estimate for

Tyl = Tp =

x=1. Solet xy = 1% = 0.01, and we get x» r= 0.0082202, x5 = 0.00TER02, xs = 0.00TE29L, x5 = 0.00TG286 == 4.

Thus, the dealer is charging a monthly interest rate of 0.TG286% (or 9.55% per year, compounded monthly).

49 Antiderivatives

141

1 fle) =4+ T=42'+7 = Fla)=d—+ Tz +C=2" 4Tz +C

141
Check: F'(z) = 2(2z) + T+ 0 =4z 4 T = f(z)

piHl 2 7+ '+ 1.4 2.3, 5
-= 5 = -2 P
T+1 3241 Tl If TEE hIT 4

3 _f[r}:ia:a—ézj-i-&r = F[I}:E

Check: F'(x) = $(42*) = 3(327) 4+ $(22) + 0= 22" — 32" + 5 = f(x)
a b
5 f(z)==(12z+8) =12 + 8z = F{I}=12%+B% +C =42 +42* + C

1. flz) =722 + 824 = F(z) = ?(%:”“) +8(52%) 4+ € =527 + 4020 4+ ©
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SECTION49 ANTIDERMATIVES O 225
9. fix) = +/2 is a constant function, so Fz) = v2z + .
0 f(2) =3VF-29F =32 =22 = F(2) =3(3) —2(%*) + =24 - % 1O

1 .r—ﬂ].n|z|+f.u if <0

1
2 H
—_———= =2 has domain {=oc, 0) U (D, so Flx) =
=2-2(3) (=2¢.0) U (0, ¢), 50 F(x) = {%I_j]_..|z|+(_,2 if 2 >0

See Example 1(b) for a similar problem.
2
15 g(t) = % ==V L 4 0 o Gty =2 4 2 0 0

17, h(#) =2sind —see® @ = H(#) = —2cosf — tand + C, on the interval (nr — I, 07 + 3.

19. f(z) =2° + 4sinhx = F(z)= i-{-—dcmh:-{uf‘

In2
2a’ 4 42 =
21, f{r}:Lm,I}ﬂ;f{m]zz.r-lhd—.r-ﬂ =
L
= =t 2 1
Flz)=2 =44z = ——4 = dr4 =4 0
() e v Azt =+ x>
4 L3 = =" 5 1 6 75
A flr) =52 =22 = F[I}:E'?—E'F‘{‘-E:I—EI + =
F)=4 = 0°=3.0°+C=4 = C=4s0F(z)=2"—3s"+4 ! Jﬁ\
The graph confirms our answer since [} = 0 when F has a local maximum, f is - 4
F
positive when F is increasing, and [ is negative when F is decreasing.

25 f"(z) = 202 = 122° 4+ 6z = j'{;}:m(%)-12(%)+E(Z—2)+U=5::"-4z;‘+312+(3 =
I{I}:-ﬁ(%)—4(%)+3(§)+{:I+D:I5—I‘+Ia+|':-'.1-'+D
N f(x) =243 = _f'{::l-:.rz+-3e‘=+f.'-' = fl::.r:]-:%.ra+3e=+f-'.r+ﬂ

2. ft)=124sint = f)=12—cost+C1 = f()=6—sint+C1t+D =

f(t) =26 + cost + O + Dt + E, where C = 1C.
N ffxg) =143, = f[:}::+3(§_r“f2)+¢-:I+2;xﬂ+{:_ fl4)=4+2(8)4+Cand f(4) =25 =
W+ O =25 = ﬂ:imfl[.r}:.r-l-—ﬂ.r”z-{-ﬁ.

33 f'() = = f{t) =4darctant + C. 1{11:4(;)“:311.11’[1}::1 = 74+C=0 = (=-

4
1412

s0 f(t) = 4arctant = 7.
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226 0O CHAPTER4 APPLICATIONS OF DIFFERENTIATION
35 f'(z) = 5z4% = f{r}:ﬁ(%xi‘m) + 0 =3 4 .

f(8)=3-324Cand f(8) =21 = 9%+C=21 = C=-=T75s0f(z) =375

3. f'(f) =sect(sect + tant) = sec’ t + sect tant, =3 <t <X = f(t) =tant+sect+C. _."[;]:1+¢§+{‘?-‘
and f(3)==1 = 14+V24C==1 = C=-2-v2s0 f(t)=tant +sect =242

Note: The fact that f is defined and continuous on (—Z, 3 ) means that we have only one constant of integration.

N ) ==-24122=-122" = fz)==2e+62" =42+ C. f0)=Cand f(0) =12 = C=12,50
Flz) = =22 + 627 — 42® 4+ 12 and hence, f(z) = =2" + 22* — 2 4 122 4 D. f(0) = Dand f(0) =4 = D=4,

Sﬂ_ﬂ:z} = =z +2:’1—.1."'+ 12x 4 4.

. 8 =sinf fcosfl = (@) = =cosf $sind + C. f{0)==14Cand f(0)=4 = C=5130
f[ﬂ]=—cuziﬂ+5inﬁ+5m‘bdhem,f{ﬂ‘}=—.ﬁinﬁ—cmﬂ-i-ﬁﬂ-l-ﬂ. f{ﬂ]:-l-l-ﬂa.nd_,"{l}}:E = D=4,

Sﬂ_ﬂ:ﬂ] = =sind = cosfl 4 58 4 4.

4, fe)=4+6x4+2r" = fz)=dr+32" 485+ C = fla)=22" 422+ 2' 4 Ce4+ D f(0) = Dand
fl0)=3 = D=3 soflr)=2"4+2*+2:"4+Cx+3. f{l)=8+Candf(1)=10 = C=2,

soflz) =222+ + 208 + 20 4+ 3.

ﬁf‘"[:}:e*—ﬂsih: = f'{.r]-:e’+2u|ﬁr+f-' = f(z) =¢* + 2sine 4 Oz 4+ D.
flO)=140+Dand f(0)=3 = D=250f(z) =e" +2sinz+Cr+2 f(Z) =" +24 ZC+2 and
fIE)=0 = e 44420=0 = I0==e""cy = C==3(44),5

flz) =e" 4+ 2sinz 4 —%[E"'w +d)r 42

471. ﬂ[:}:z'g,z}ﬂ = fllz)==1fz+C = flzl==-|z|+Cr+D=—=nc+ Cx+ D [since z >0).
fl1)=0 = C+D=0and f(2)=0 = -n24+204+D0=0 = —-24+20-C=0 [since D= =] =

—n24C=0 = C=hZadD==In2 5 f(r)]==hz+(In2)r=In2

49. “The slope of its tangent line at (z, f(z)) is 3 — 4™ means that f'(z) =3 — 4,50 f(z) =3z =2 4 C.
“The graph of f passes through the point (2, 5)” means that f(2) =5, but f(2) = 3(2) =2(2)* + C,s05=6=8 4 =
C=7Ths, f(zx) =3z =2" 47 and f(1)=3=24T=8.

51, b is the antiderivative of f. For small =, f is negative, so the graph of its antiderivative must be decreasing. But both o and ¢

are increasing for small , so only b can be s antiderivative. Also, f is positive where b 1s increasing, which supports our

conclusion.
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SECTION 4.9 ANTIDERNATIVES 0O 297

5. M The graph of F" must start at (0, 1). Where the given graph, y = f(x), hasa
. . local minimum or maximum, the graph of F will have an inflection point.

0 [ — Where [ is negative (positive), F is decreasing (increasing).
Where f changes from negative to positive, F will have a mininum.

¥ Where f changes from positive to negative, F will have a maximurm.

Im\ Where [ is decreasing (increasing), F is concave downward (upward).

M.
0 IP\ ";-,-....:..___ X
¥ Fix) j Ip

55, 3
2 fo<z<l 2r+C ifD<z<l
fx)=+1 iflexs<?2 = flrj=<{z+D ifl o2
-1 f2<x<3 -4+ E f2<x<3

fio)==1 = 2(0)4C==1 =  ==1 Starting at the point

(0, =1} and moving to the right on a line with slope 2 gets us to the point (1, 1).

The slope for 1 < = < 2 s 1, so0 we get to the point (2, 2). Here we have used the fact that [ is continuous. We can include the
point = = 1 on either the first or the second part of f. The line connecting (1, 1) to (2,2) isy = x, s0 D = 0. The slope for
2o zr<3is=Lsowepgetto(3.1). f(2)=2 = =24E=2 = E =4 Thus,

2r—=1 if0<z<l

flz)=4= iflesr<2
—-r4d f2<r<3

Note that f'(z) does notexistat x = 1,2, or 3.

_ sinx 0.5
57. flx) = T3 == =2 < &< 2T
!
Mote that the graph of [ is one of an odd function, so the graph of F* will . iy
- e =
be one of an even function. l \/ I
=5
’_/—\ /—L
—.’i.‘*- o 3:'-T r

ﬂv{t]:s'{t]:&hll—cml = s(t)=—cost—sint+C. (0)==14+Cands(0)=0 = C=1,%0

s{!:l- = —cosl —sint 4 1.
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226 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

Blalt)=v'(t)=2t+1 = v(t)=C+t+C. v(0)=Cande(0)==2 = C=-=2sou(t)=t"+t—2and

s(t)=3* 4+ 5" =24+ D s(0)=Dands(0)=3 = D=3 sos(t)=3+ " =243

63. a(t) = o'(t) = 10sint +3cost =  v(t) = =10cost + Isint +C =  s(t) = =10sint = 3Jcost + Ot + D
5(0)==3+D=0ands(2x) = =34 2xC 4+ D=12 = D=3andC = £ Thus,
s(t) = =10sint —3cost + St + 3.
65. (a) We first observe that since the stone is dropped 450 m above the ground, »{0) = 0 and s(0) = 450.
V(t)=alt) = =08 = u(t)=-08+C Nowo(0)=0 = C=0souv(t)=-08 =
s(t) = =49t + D Last, 5(0) =450 = D =450 = s(t) = 450 — 4.9¢°.
(b) The stone reaches the ground when s(t) = 0. 450 —4.9¢° =0 = ¢ =450/49 = t, =/450/40 = 0585
{c) The velocity with which the stone strikes the ground is v{t;) = —=9.8, /450/4.9 = —03.9m/s.
(d) This is just reworking parts (a) and (b) with v(0) = =5. Using v(t) = =98t + O, w0} = =5 = 04+C=-=-5 =
v(t) = —0.8t — 5. Sos(t) = —4.9¢° — 5t + Dand s(0) =450 = D =450 = s(t) = —4.9t* — 5t + 450,

Solving s(t) = 0 by using the quadratic formula givesus t = (5+ BB45)/(-9.8) = t =9.09s

67. By Exercise 66 with a = =98, s(t) = =4.9¢* + wyt 4 55 and v(t) = 5’ (t) = =9.8¢ + vy So
2 _ T _ 2 43 3 _ 2 2 — 2 2
[w(t)]* = (=98t + vp)* = (9.8)* % = 1060t + v§ = v + 96.04¢% — 19.6vyt = v — 19.6(—4.9¢° + vyt).
But —4.9t% 4 vyt is just s(t) without the sq term; that is, s(t) — sy. Thus, [¢o{t)]® = vf = 19.6 [s(t) — sq].
69. Using Exercise 66 with a = =32, vy, = 0, and sy = h (the height of the cliff ), we know that the height at time { is
s(t) = =16t + h. v(t) = '(t) = =32tand v(t) = =120 = =32=-=120 = t=3.75 50

0=s(3.75) = =16(3.75)* + h = h=16(3.75)° =225 ft.

71. Marginal cost = 1.92 — 0.002z = ("(z) = C(z) = 1.92x —0.001<* + K. But C(1) = 1.92 — 0.001 4+ K =562 =
K = 560.081. Therefore, C'(x) = 1.92x — 0.001z” 4 560,081 = ('(100) = T42.081, so the cost of producing
100 items is $742.08.
73. Taking the upward direction to be positive we have that for 0 < ¢ < 10 (using the subseript 1 to refer to 0 < ¢ < 10),
ai(t) = = (9=08t) = vi(t) = wvi(t) = =9t + 0.45t7 + vo, but v1(0) =y = =10 =
vy(t) = =9t + 0.45¢" = 10 = s4(t) = s;(t) = =3t" + 0.156* = 10t + 5. Bui 5,(0) =500 = 5 =
si(t) = =24* 4 0.156% — 10t 4 500. 51 (10) = —450 + 150 — 100 + 500 = 100, so it takes
more than 10 seconds for the raindrop to fall. Mow for t > 10, a(t) = 0=1v'(t) =
v(t) = constant = v1(10) = =9(10) 4+ 0.45(10)° = 10 = =55 = wv(f) = =55.

At 55 m/fs, it will take 100/55 = 1.8 s to fall the last 100 m. Hence, the total time is 104+ 32 = 230 ~ 1] 85
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CHAPTER4 REVIEW 0O 229

75. aft) = k. the initial velocity is 30 mi/h = 30 - 3250 — 44 fifs_ and the final velocity (after 5 seconds) is
S0mifh=50-3320 = 20 fi/s Sou(t) =kt + Candv(D) =44 = C =4 Thus,v(t) =kt+44 =

v(5) =5k + 44 But v(5) = 220 soSk 4+ 4 =220 = 5k=3% = k=5 =587fs"

77. Let the acceleration be a(t) = k km/h*. We have v{0) = 100 km/h and we can take the initial position s(0) to be 0.
We want the time ¢ for which v(t) = 0 to satisfy s(t) < 0.08 km. In general, o' (t) = a(t) = k, so v(t) = kt + C,
where ' = »{0) = 100. Now s'(t) = v{t) = kt 4 100, so s(1) = %ki‘,} 4 100¢ 4 [, where I = s(0) = 0.

Thus, s(t) = £kt* 4 100¢. Since v(t;) = 0, we have kty + 100 = Dor t; = —=100/k, so

]
1 100 100 1 1 5,000
s(ty) = Ek (_T) + 100 (-T) = 10,000 (ﬁ - E) = -T The condition s(t ;) must satisfy is
- 2000 < 0.08 = %DS >k [kisnegative] = k < —62,500 km/h”, or equivalently,

k< =32 = 482 m/s".

79. (a) First note that 90 mi/h = 90 x 2230 fifs — 132 fifs Thena(t) =4ft/s’ = ov(t) =4+ C,butv(0)=0 =

C = 0. Now 4t = 132 when t = 132 = 33 g, so it takes 33 s to reach 132 fi/s. Therefore, taking s(0) = 0, we have
s(t) =2t%,0 < t < 33. S0 5(33) = 2178 fi. 15 minutes = 15(60) = 900 s, so for 33 < ¢ < 933 we have
o(t) =132 fifs = s(933) = 132(900) + 2178 = 120,978 ft = 22.9125 mi.

(b) As in part (a), the train accelerates for 33 s and travels 2178 fi while doing so. Similarly, it decelerates for 33 s and travels
2178 fi at the end of its trip. During the remaining 900 — 66 = 834 s it travels at 132 fis, so the distance traveled is
132 . 834 = 110,088 fi. Thus, the total distance is 2178 4+ 110,088 4 2178 = 114 444 fi = 21.675 mi.

(c) 45 mi = 45(5280) = 237,600 fi. Subtract 2{2178) to take care of the speeding up and slowing down, and we have
233,244 ft at 132 fifs for a trip of 233,244/132 = 1767 s at 90 mi/h. The total time is
1767 4 2(33) = 1833 s = 30 min 33 s = 30.55 min.

(d) 37.5(60) = 2250 5. 2250 — 2(33) = 2184 5 at maximum speed. 2184{132) 4 2{2178) = 292 644 total feet or
292 644/5280 = 55.425 mi.

4 Review
TRUE-FALSE QUIZ

1. False.  For example, take f{z) = z®, then f'{x) = 3= and f*(0) = 0, but f{0) = 0 is not a maximum or minimur,
(0,0} 15 an inflection point

3. False.  Forexample, f(x) = = is continuous on (0, 1) but attains neither a maximum nor a minimum value on (0, 1).

Don't confuse this with f being continuows on the closed interval [a, b, which would make the statement true.

5 True.  This is an example of part (b) of the /D Test.
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230 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

T. False. fMz)=4¢'(z) = [fiz)=g(z)+C. Forexample,if f(z) =z 4+ 2and g(z) =z + 1, then [(z) =g¢'(z) = 1,
but f(x) # g(x).

9. True. The graph of one such function is sketched. ¥

|'|| X
11. True. Let oy < o2 where 1,20 € I. Then f{x1) < f{x2) and g(z1) < gx2) [since f and g are increasing on I,
50 (f + g)(z2) = flz1) + glx1) < flzz) + glx2) = (f + g)(z2).
13. False.  Take f(x) = x and g{x) = = — 1. Then both f and g are increasing on (0, 1). But f(x) g(z) = =z = 1) is not

increasing on (0, 1).

15, True. Let oy, o2 € 1 and @y < xa. Then f{x1) < Flxz) [f is increasing] = HIT] = ﬁ [f is positive] =

g(x1) > g(zx) = glz) =1/f(x) is decreasing on I.

17. True.  If f is periodic, then there is a number p such that f(z + p) = f(p) for all x. Differentiating gives
Slx)=Flz+p)-(z+p) = (z+p)-1=f(z+p)so [ isperiodic.

19. True. By the Mean Value Theorem, there exists a number ¢ in (0, 1) such that f(1) = f(0) = f'(c)(1 = 0) = f'(c).
Since ['(c) is nonzero, f(1) — f(0) #0,s0 f(1) # f(0).

lim x

. False,. lim = =220 =% _ g not1.
=il g lim e= 1
=il

EXERCISES

L fle)=a® =92+ 242 -2,[0,5] fe)=3c"-1Bs 4+ U4 =3(="-6:+8) =3z =2)(z—-4). fr)=0 &
r=2orx=4. f'l[z]-:b-ﬂ'ibrﬂ{rﬁ Z,f'I[I:I{DfDIE{E-C:4,albdf{z:|}ﬂfﬂr4 {I{E,SDII[E}:IEISHIDCEI
maximum value and f{4) = 14 is a local minimum value. Checking the endpoints, we find f{0) = =2 and f{5) = 18. Thus,

f(0) = =2 is the absolute minmum value and f(2) = f(5) = 18 is the absolute maximum value.

(=" + 1)(3) = (3= —4]{2:} =3z =8xr=3) —=(3x4+1)(x- 3]_

s 1) =1 @+ 1 E+17 - @+

1 22 f@=

f{z)=0 = z=—orz=23 but3isnotintheinterval. f'(z) > 0for —% < x < 2and f'(x) < O for

-2<z<—4,50f(-3)= l;;u = —1 is a local minimum value. Checking the endpoints, we find f(—2) = —2and

f(2) = £. Thus, f(—%) = —7 is the absolute minimum value and f(2) = £ is the absolute maximum value.
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CHAPTER4 REVIEW 0O 231

5 fiz)=x+42cosz, [-x. 7] fiz)=1-2sinz. fz)=0 = sinz=3 = =52 f(z)>0for
(=7, Z) and (2=, 7), and f'(z) < Ofor (Z,25),50 f(Z) = £ + +/3 = 2.26 is a local maximum value and
F(E=) = 2= = /3 = 0.89 is a local minimum value. Checking the endpoints, we find f(=7) = = = 2 = =5.14 and
f(m) =7 =2 = 114 Thus, f(==) = —m — 2 is the absolute minimum value and () = £ + '3 is the absolute

maximum value.

o
7. This limit has the form 8. lim &~ 8y € _ =1
=0 lanz

E?.‘E _E—Zl H . 2221+?_£-21 _2+2 _

9. This limit has the form 2. & H = =4
0 2o Iz + 1) =0 IJ(z+1) 1
11. This limit has the form oo« 0.
2 3 2
. 3 9y e e T =a H 2 = 3z .
ll!-Ln-xl::I —IF]EI—:l]-_IPx E-EJ [i ﬁlrm] —:l]-.l-l'.l:x —ZE'-jJ [i Im]
B ofim 220 = form] £ o =0 _ =0

z—r=oc dg P —

13. This limit has the form oo = oo,

I * 1Yy " xlor=x4+1% g . - (ljr) 4+ lnr=1 I Inz
et \z=1 Inz) s+ (z=1)lnx e (x=1)-{1/z) +Inx " l=1/x+Inx
1z 11

li F— = —
st U2+ 1z 141 2

15 f(0) =0, f'(=2) = (1) = £(9) =0, lim f(z) =0, lim f(z) = -,
F'(x) < Don (=oc, =2), (1, 6), and (9, oc), f'(x) > 0on (=2, 1) and (6, 9),

f"(x) > 0on (=c0,0) and (12, ), f*(x) < 0on (0, 6) and (6, 12)

17. fisodd, fllz) < 0for 0 <z <2, fiz)=0forz =2,

) =0forD <z <3, )< 0forz =3 lim,_,.. flz)==2

W y=flz)=2=2r=2" A. D=R B. y-intercept: f{0) =2 H. ¥
The z-intercept (approximately 0.770917) can be found using Newton’s
Method. . Nosvmmetry [ Noasymptote

E f'(z) ==2=32" = =(32? +2) < 0, 50 [ is decreasing on B

F. Moextreme value G. f"(z) = =6z < Don (0, o) and f7{z) > 0on

(=oc.0), 50 [ is CDon (0, oc) and CU on (—oo, 0). There is an IP at (0, 2).
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232 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

Hy=flr)=3:s"-4"+2 A D=R B y-intercept: f(0) = 2; no z-intercept C.
E. f(z)=12¢" =122 = 12:%(x = 1). f'(z) > 0forz > 1,50 [ is H.
increasing on (1, o) and decreasing on (—=c.1). E f'(z) does not change
sign at = = 10, so there is no local extremum there. f{1) = 1 is a local minimum
value, G. ["(z) = 362" = 24z = 122(3z = 2). ["(z) <0for0 <z < 3,
so fisCDon (0. %) and f is CU on (=oc,0) and (£, oo). There are inflection
points at (0,2) and (2, £).

1

By=I0)= 55

1 1 1
D I ———=0soy=01saHA lim ——= =0, lim ——=
2=too oz =3)* 0.s0y e z(r =3)* 7 - r{x = 3)*

(z=3)*+22(x=3) _ 3(1-x)

sor=0andz=23are VA. E. f'(z)=

2z -3 T rixr =3
so [ 1s increasing on (1, 3) and decreasing on (—oo, 0], (0, 1), and (3, sa). H.
622" = 4z + 3)

F. Local minimum value f(1) = 3 G. f"(z) =

iz — 3
Mote that 2z = 4z + 3 > 0 for all = since it has negative discriminant.
Sof"(z) =0 & x>0 = [isCUon(0D,3)and (3, o) and

CD on (—oa,0). No IP

a 2
x = 3x +3I—1=I_3+3I—1

x? x?

3
2y = flx) = EZ1 =

B. y-intercept: none, x-intercept: f(z) =0 < x=1 C. Nosymmemry D.
E—ill—

IiI"]'+ flz)==—c0,s0x=01aVA flz)=({x-13)= 3";: 1

E. flz)=

Mo symmetry D, No asymptote

¥

lim ﬂ:

a2

' 3x = 1) = [z = 1)*(22) _ a(z = 1) [3z = 2(z = 1)] _ =1z +2)

=g, lim

|:Ii ].2 P Pl

so [ is increasing on | —oo, =2), decreasing on (=2, 0), and increasing on (0, o). H.

F. Local maximum value f(=2) = =3I G. f(r) =z =3+ 3. iﬂ
I I

.3 2 vy B B Br=6 _ 6z=1)
fE=l-3+5 = MEO=g-a=—F="F7—

Fz) = 0forz > 1,50 fis CDon {—oc,0) and (0, 1), and f is CU on (1, sa).

There is an inflection point at (1,0).

A D={z|z#0,3} = (=0, 0)U(0,3)U (3, 0x) B. Nointercepts, €. No symmetry,

= o0,

=3 xxr = 3)?

= flz)>0 & l<z<i

A D={z|z#£0} = (=cc.0)u (0, )

—oo and

—Dasr — Foo, 50y =xr=315a85A

fz) <0for =2 <x <0,

B
1
[ e

"
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CHAPTER4 REVIEW 0O 233

Ny=flz)=xzv24+x A D=[=2,2x) B. y-intercept: f{0) =0; z-intercepts: =2and 0 C. No symmetry

dr+4

1

D. Noasymptote E. f'{z) = =0whenz=—43,s0 fis

Ev,fi
decreasing on (—2, —1) and increasing on (—3,5¢). E Local minimum value f(—3) = -2 v@: —"—Z*'J’—E == =1.09,

no local maximum H. ¥

1

Em-ﬂ—{h+4}ﬁ (24 1) = (324 4)
402 + x) T 4(24 2R

3r+ 8 p

2+ 2 4 &

G. f"(z) =

(=) = 0forz > =2, 50 fisCU on (=2, oc). No IP

My=fiz)=¢"sineg, —a<c<r A D=|-x =] B y-inercept f(0) =0, f{z)=0 <& sinz=0 =
x==m0,7 C Nosymmetry D. Noasymptote E. ['(z) =e"cosz+sinz-e” =e"(cosx 4 sinx).
fliz)=0 & =cosr=sinz ¢ =l=tanr = r==3.2 f((zg)>0for=5<z<2Tandf(z)<0

for =7 < x < =Zand 3F < & < 7, s0 f is increasing on {_§__ :!r] and f is decreasing on (—ﬂ,—%}ﬂnd {:{T:__ﬂ.]_

a

F. Local minimum value f(=2) = (=v/2/2)e~™* = —0.32and H.
. -
local maximum value f{ﬂT‘}: {ﬁfﬂ} AT = T AR 8 {’T“.—‘-:ir‘*‘}

(8 f”{z] = EI{—}iill.I + u.n.-i:.r:l + {L‘m-i.z + Hi.II.I:I'EI = s_'!l:ﬂu.m.z} =0 =
—f<r<fand f(x) <0 = —mw<zr<—JTadi<r<msofis 4

Lllun{—fl ]a.ruijls(_[}on{-# —-i-]a.ru:l{ rr].ﬂberearemﬂﬁ:tmn

pﬂjnﬁm(—%1_g"ﬂu) E_I‘Hi(%1g-’f2)_ - 0 P

. y:fl::.r:] =ﬁin-l{].‘|".r:]- A D= {.I | =1 < ].Jl‘rIE l]- ={:—:3|D,—l||_|[1._ DD:]. B. Mo intercept

C. f(=z) = =f(x), symmetric about the origin D, lim sin='{1/z) =sin~' (0) = 0,50y = 0isa HA.

1 1 =1
E. = m— | —— | = — (), 50 15 decreasing on (—oo, =1) and (1, .
1@ = (-3 = o= <O g on (~o0, ~1) and (1. )
F. No local extreme value, but f{1) = § is the absolute maximum value H. !

and f{=1) = =7 is the absolute minimum value. : '\.._,______

r =1 0 1 K
45 — 2z I{Z-IJ - 1] —_h_h\ |>

1

G f(z) = 2t — ;52}”2 = = _12}3‘,2 >0forz > land () <0

for z < =150 fisCUon (1, 2c) and CD on (—2c, =1). No IP
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23 0O CHAPTER4 APPLICATIONS OF DIFFERENTIATION
By=Fflz)=(z-20™" A D=ER B g-intercept: f{0) = =2; c-intercept: f{z) =0 < =z=2

-2 1
C. Nosymmetry D, lim —— = lim — =0,50y =0isaHA. NoVA

e o

E. fllz)=(z=2)=e"")+e™ (1) =™ [=(z=2) + 1] = (3 = z)e™". H. ¥

3.

f'{x) > 0 for = < 3, 50 f is increasing on (—oe, 3) and decreasing on (3, oc).

F. Local maximum value f(3) = ™", no local minimum value

G ()= (3 =z)(=e~") 4+ ™5 (=1) = e~ [=(3 = x) 4+ (=1]]
=(z=4)e"" =0

for x = 4,50 fisCU on (4, o) and CD on (=00, 4). IP at (4, 2e=)

2 ] - 2 _ 2
3. f(x) = I;l = f(2)= =*(2x) E;—' 1]3: _ 3 I:: - r )
a'(=2z) = (3 =2")4x®  2.? _12 :
(@) = — == s
Estimates: From the graphs of /' and [, it appears that f is increasing on
et "
(—1.73,0) and (0, 1.73) and decreasing on (—oc, —1.73) and (1.73, 0c); . -
f has a local maximum of about f(1.73) = 0.38 and a local minimum of about 0.2
F(=1.7) = =0.38; f is CU on (=2.45,0) and (2.45, o), and CD on
£
(=m0, =2.45) and (0, 2.45); and f has inflection points at about —F ety T
(=2.45, =0.34) and (2.45, 0.34). {
2 - J
Exacr: Now ['(z) = 3 I: is positive for 0 < =* < 3, that is, f is increasing e
1.5
on [-uﬁ__ﬂ] and {l]xﬁ] and f'(x] is negative (and so f is decreasing) on [ ] |
i
—oc, =3 ) and u‘ﬁ,m.f{z]:ﬂwﬂ‘wnz:iv"ﬁ. —5 b= + r‘:-""":’
(~2%.=V3) and (V3. 0) —
I poes from positive to negative at x = +/3, so f has a local maximum of |
. \
f[v"i:l:%;:E},E;andﬂm:ejlsndx:l,weknml.'t‘rmmammamﬂw -l
: —0.2%

interval (0, o= correspond to minima on (—oc, 0), so f has a local minimum of

j[—ﬁ] = —i_lﬁ Also, f"(z) = 2'I;—:l2 is positive (so f is CU)on
(—+/6.0) and (+/6, =), and negative (so f is CD) on (—sc, —/6 ) and

(0,6 ). There are IP at (v”E "1;—'_‘) and (-v’ﬁ, —%‘f?:]

W flr) =3a" =52"+ 2" =5 =227 +2 = flzr)=18c" =250 + 42" = 152 =4 =

() = 90z* = 1002 + 122" = 30z — 4
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CHAPTER4 REVIEW 0O 235

75 | 15

—L5 05

=1 2 T =LA 1.5

-5 - -5
From the graphs of f* and f, it appears that [ is increasing on (—0.23, 0) and {1.62, 0o} and decreasing on {—oo, —0.23)
and (0, 1.62); f has a local maximum of f{0) = 2 and local minima of about f{—-0.23) = 1.96 and f(1.62) = —19.2;

FisCU on {=oc, =0.12) and (1.24, o¢) and CD on (=0.12, 1.24); and f has inflection points at about (=0.12, 1.98) and

(124, -12.1).
101 15
j’ r
—15 4 25
l -‘."" j =5 e

-2 0.8 )

39 ! From the graph, we estimate the points of inflection to be about (£0.82,0.22),
flx) = eV o Flz)= 2r=2e=1= o
_f"{I] = 2-[1_-::{21_-::}&,-1;:2 + E-l‘r!ﬂ{—ﬂr-":l] = Dg=fp= 1= {2 - 31’2}.

—s 5 ThisisOwhen2 =32 =0 & z==% snmemﬂecuonpmnu

- :
are :l:"/";._e'“f‘ .

cos” T cosx[(2r 4+ 1)eoss + 4(z” + x + 1) sinz]

. flr) = —— = Cx T ! =
f@)= oy~ S2s7 2 [ 2z + z + 17
(=) (B 4 162" 4 162° + Br + D ecos’ £ = B(z® + 24 1)(22 + 1) sinx cosz = Bz + 2 4+ 1)%sin? =
r)=-—

4(z? 4 x 4 1)5/2

) = L— . r)= = IR =i, =100, =018, Loi, 3.U1;
I 0 i-} I 0 2.96, =1.57, =0.158, 1.57, 3.01
fMz)=0 & x==216,-0.75 046 and 2.21.

1.5 1.5 2%

\JJ _L/\H\/ II [/\/ﬂjk

=5 =13 ot

The z-coordinates of the maximum points are the values at which ' changes from positive to negative, that is, —2.96,
=0.18, and 3.01. The z-coordinates of the minimum points are the values at which ' changes from negative to positive, that

is, =1.57 and 1.57. The z-coordinates of the inflection points are the values at which [ changes sign, that is, =2.16, =0.75,
0.46, and 2.21.
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23 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

43. The family of functions f{z) = In(sin = + ') all have the same period and all ) =3 ,C=1

have maximum values at = = F + 2mn. Since the domain of In is (0, oc), f has -
a graph only if sin = 4 ' > 0 somewhere. Since —1 < sinx < 1, this happens
if ' = =1, that is, [ has no graph if © < =1 Similarly, if " > 1, then

sinz 4 C > 0and f is continuous on (—oo, oo). As C increases, the graph of =

[ 1s shifted vertically upward and flattens out. If =1 < < 1, [ is defined wheresinz 4+ C >0 &
sing > = & sin~Y=C) <z <7 =sin"'(=C). Since the period is 2, the domain of f is

(Znx +sin~'(—=C). (2n + 1)x —sin™" (=), n an integer.

45 Let flz) =3x 4+ 2cosx+ 5 Then fl0) =T >0and f{—7)= =37 =24 5==3743==3(r=1) <0, and since [ is
continuous on B (hence on [=m, 0]), the Intermediate Value Theorem assures us that there is at least one zero of f in [=,0].

Now f'{z) = 3 = 2sin > 0 implies that f is increasing on R, so there is exactly one zero of f, and hence, exactly one real

root of the equation 3z 4+ 2eosx 4 5=10.

47. Since [ is continuous on [32, 33] and differentiable on (32, 33), then by the Mean Value Theorem there exists a number ¢ in

Y3 Y3 _ yem

32, 33) such that f'(c) = de~4/" =
(32,33) such that f(c) = 3¢ T

2but 2= >0 = §B-2>0 = §F>2 Also

f' is decreasing, so that f'(e) < f'(32) = £(32)"%* =0.0125 = 0.0125> f'(c) = V33 -2 = /33 < 20125

Therefore, 2 < &33 < 2.0125.

4. (a) g(z) = f() = g'(z) = 2=f"(=?) by the Chain Rule. Since f'(z) > 0 for all x # 0, we must have (%) > 0 for
r#0,50¢'(x) =0 <+ =z =0. Now g'(z) changes sign (from negative to positive) at = = 0, since one of its factors,
I'(=?), is positive for all =, and its other factor, 2, changes from negative to positive at this point, so by the First

Derivative Test, § has a local and absolute minimum at x = 0.

(b g'(x) =22f'(x?) = g"(z) = 2ef"(=")(22) + F'(?)] = 42" (x*) + 2f'(2*) by the Product Rule and the Chain
Rule. But 2% > Oforall = # 0, f"(z%) > 0 [since f is CU for £ > 0], and f'(z*) > 0 for all = # 0, so since all of its
factors are positive, g"'(x) > O for = £ 0. Whether g"'(0) is positive or 0 doesn’t matter [since the sign of g" does not
change there], g i1s concave upward on B,

i

. [ C Ar, + B Y
§1. If B = 0, the line is vertical and the distance from = = ——_,ltDI:.n,m] 15 |I1 + —1‘ = 1Az + By + C|
s ¥

Wy exry -] . 50 ASEUME
B # 0. The square of the distance from (z,, ¥, ) to the line is f(x) = (z = z,)" + (y = 11 )" where Ar + By + € =0,s0

. 1 O : A © A

we minimize f(z) = (z — z.)" + (-%I' B '”‘) = [flz) =2{I-IIHE(_EI‘ B _yl)(_ﬁ)'

B'ry = ABy, = AC
.'1.2-+-32

flz)=0 = ==

.JIE
and this gives a minimum since () = 2(1 + JB_J = 0. Substituting
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CHAPTER4 REVIEW 0O 7

(Az: + By + I[:":I2

this value of = into () and simplifying gives f({z) = , 50 the minimum distance is

A2 4 B2
(=) = |Az: + Bys + €
vAT+ BT
e e ¥ T .
33 i By similar triangles, = = ——————_sp the area of the triangle 15
i £ /r =Tz
L re”
,. A i dabv
=1
/ r A(z) = Zrr 2% = 2rr = rr’(z = r) [/ = 2rz _ rz” (x = 3r) —0
4 x? = 2rr [z = 2:—:}”2

when £ = 3¢,

2
A'(z) < Owhen 2r < = < 3r, A'(z) > 0when x > 3r. S0 £ = 3r gives a minimum and A(3r) = o) _ 337,

Vir
55, o We minimize L(z) = |PA| + |PB|+ |PC| =222 + 16+ (5 —z),
‘( 0<2<5 L2)=2e/V2T 416 =1=0 & 2r=y2T4+16 &
5
) J w'=2 416 & = L(0)=13 L(%) =119, L(5) = 128, sothe
A B .
4 o 4 minimum occurs when = = —m & 2.3.
L o d iy 1 o 1 [ ; :
S.v=K,/=4+— = = (T-T)=u & S == = =" & L=0C.
C L dL 2 ALjCY+(C/L)\C L O L

This gives the minimum velocity since v’ < 0for0 < L < Cand v > 0for L > O,

59. Let = denote the number of 81 decreases in ticket price. Then the ticket price is §12 = 51(x), and the average attendance is
11,000 4+ 1000{x). Now the revenue per game is
F(x) = (price per person) x (number of people per game)
= (12 — (11,000 4 1000x) = =1000<" + 1000z 4 132,000
for 0 < = < 4 [since the seating capacity is 15000] = R'(z)=-2000: 4 1000 =0 < =z =05 Thsisa
maximum since " (x) = —2000 < 0 for all =. Now we must check the value of B{zx) = (12 — £)(11,000 + 1000z) at
x = 0.5 and at the endpoints of the doemain to see which value of = gives the maximum value of R
R(0) = (12)(11,000) = 132,000, R(D.5) = (11.5)(11,500) = 132,250, and F(4) = (8)(15,000) = 120,000. Thus, the
meaximum revenue of $132,250 per game occurs when the average attendance is 11,500 and the ticket price is $11.50.

=g 4 3r) =3x, =2
Srd — 42} + Gzn — 3

Bl f(z) =2 = ' 430" =32 =2 = [(z)=52" =42’ + 62 =3,50 Tog1 =T =

Nowzxi =1 = =10 = =x3==1343860 = =x4~=1300320 = ;= 129736 =
ay 7= L.29T383 /= x4, so the root in [1, 2] is 1.297383, to six decimal places.
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238 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

ﬂf{l]:cml-{-—t—!z = [(t)=—sint+1 =28 f'(t) exists for all 3

t. 5o to find the maximum of [, we can examine the zeros of f*. J"\
From the graph of f', we see that a good choice for &, is £, =0.3. -3 3

Use g(t) = —sint 4+ 1 — 2t and g'(t) = — cost — 2 to obtain

ty == 0.33535203, 5 == 0.33541803 = £, Since ['(t) = —ecost =2 <0 —3

for all ¢, f{0.33541803) == 1.16T18557 is the absolute maxirmurm.
B f(z) =4VZ -6 +3=42"" 62" +3 = F(x)=14(3) =6(32") +32+C =5 -2 + 30+ C

B7. f(t) =2sint = 3e* = F(t)= =Zcost = 3" +

B9. f'(t) =3t =3sint = [f(t) = + Jeost 4.

flO)=34+Cand fi0)=5 = C=250 f{i)=t"+3cost+2

M fe)=1=6x+48r" = f(z)=z=3+16c"+C. f(0)=Cand f(0)=2 = =220

f(x) =z = 32" + 162® + 2 and hence, f(z) = 3z = z* + 42" + 22 4 D.

flo)=Dand f(0) =1 = D=1lsof(zr)=ir -+ 4 + 2241

1 ;

TLo(t)=s"(t) =2t = 1+ E = s(t)=t"=tan~ 't 4+ C.

s0)=0=04+C=Cands(0)=1 = C=1lsos(t)="—=tan™'t+ 1
75, (a) Since f is O just to the left of the y-axis, we must have a minimum of F at the same place since we are increasing through

(0,0) on F. There must be a local maximum to the left of £ = =3, since f changes from positive to negative there.

5 y

i(b) fz) =0.1e" 4 sinr = (c) 5

.F'I[.I:I-:U'.le:—cw.r+f:'. F[ﬂ}:ﬂ == r

01=14+C=0 = C=09s0

.F'I[.I:I-:U'.lez—cw.r+ﬂ.ﬂ. _4'4. J_"
|

7. Choosing the positive direction to be upward, we have a(t) = =98 = o) ==98t+w bt (0 =0=mw =
v(t)= =08t =4'(t) = s(t) = —4.9t" + so, but 5(0) = 50 =500 = s(t) = —4.9¢" 4 500. When s =0,
—49° +500=0 = t1=4/2 =101 = vt:)=-98/2 =~ —098.995 m/s. Since the canister has been

designed to withstand an impact velocity of 100 m/s, the canister will nor bursr.
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CHAPTER4 REVIEW 0O 39

79, (a) ¥ The cross-sectional area of the rectangular beam is
v 100
A=2r .2y = 4oy = 4x+/100 = 22,0 =< = < 10, s0
b
dA
— = 42(%)(100 — %)~ */*(=2z) + (100 — =*)"/* . 4
0 e, P dr

4[—z* + (100 — z*)]
(100 = z2)172

-t
= 0 -=2)72

+4(100 = £2)/? =

dA

o — =Owhen—z’ + (100 -2%) =0 = 2'=50 = z=VE0=T707 = y=,/100-(v50)" =50
L

Since A(0) = A(10) = 0, the rectangle of maximum area is a square.

() ¥ The cross-sectional area of each rectangular plank (shaded in the figure) is
v A =2x(y=50) =22[/100 = 2% = V50|, D < x < +/50, 50
V50 dA _
I:'n..-' -:”-F}+2;{1]{1m-; '1“{ =2z)

i x X d:s

Dg?
=100 - 222 2 B - — =
( =) (100 = 214

dA sag . .
Set—— =0: (100 = %) = B0 (100 = =) =2 =0 = 100 = 2#% = /50 (100 = %) =

10,000 = 400x* 4 4x* = 50(100 = z°) = 42 =3500" 45000 =0 = 22 =175 + 2500 =0 =

= % V10625  60.520r17.08 = r=8.340r424 Buis.34> VD, 80, = 424 =

g =430 = +/100 = x] = /50 = 1.99. Each plank should have dimensions about 8% inches by 2 inches.

ic) From the figure in part (a), the width is 2x and the depth is 2y, so the strength is

5= k(22)(2y)* = Bkry® = 8k (100 = =*) = B00kz — Bkr® 0 <z <10, dSfde = 800k = 24kz”* = 0 when
24kz” =800k = 2"=40 = r=1% = y=,/20 =208 /F Since S(0) = S(10) =0, the

maximum strength occurs when x = :'%. The dimensions should be % == 11.55 inches by %’@ 7= 16.33 inches.

e’ peF 1
a1, |1rn P(E)= Iun (m— E)

E{L'E-i-E'-E] - I{EE —E'-E] B Eef 4 Fe=F — pF 4 p=F . a
= lim E E = lim E E [mnn 8 E]
E—ot (e* =e=F)E E—irt EeF — Ee~
H . Ee® + ef .1 + E{—E'-Ej + e=E. 1 —pF + (—E-E}
= lim
E—it EeE 4 ¢E. ] — [E{—e=E) 4 e=E.1]
Ee® = Ee=F . gf == F
= lim = 1 divide by E’
E—-D+ EeE 4 ¢E 4 Fp=E — g=E Efcr+ e e e g—F [ by E]
CrEreTTTF
E =K B =E
:L, where L= lim = —°% [form is §] 1 ||m e dem _ 141,
24 L E—0+ E =it 1 1
Th lim P{E ¢
s Elnl+ (E) 242
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240 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

83. Weﬁrsts}wwmatl+ 5 < tan™'xforz > 0. Let f(x) = tan™" x —

+

2 T I!.! - _Ii '
_ 1 -|E1:r+}12]2{2 ) _ 0+ {1::_ .1.—{!1}1 ) _ a -?—Ix”lj > 0 for = > 0. So f(x) is increasing

f{IIZI:Ig

on(0,00). Hence, 0 < x = 0= f(0) < fiz) =tan~ 'z = =z 2{[&|"IfMD{I.W&DﬁHSIﬂW

=
14227 14z

'.!
that tan = r < rforz > 0. Let h{x) = r = tan™" = Then h'(z) = 1 = H;? =13 0. Hence, h(x) is increasing
Fa

on (0, 2c). So for 0 < =, 0 = A{D) < h{x) = x — tan™" z. Hence, tan™' = < x for = > 0, and we conclude that

a -
1322 <tan™'z < xfore > 0.
keos@  k(h/fd l; h L
85. (a) | = —— = (hfd) _ KB _ — =k ! :
o? €2 o (VIR FRT) (1600 + h2)/2
dr _, (1600 + R — h3(1600 + K*)Y* -2k k(1600 4 h*)Y2(1600 4 h* = 3h%)
dh — [(1600 4 h2)2/2)2 - (1600 4 h2)?
_ k(1600 — 20%)

= {1600 + T2)°72 [ is the constant of proportionality |

Setdlfdh =0: 1600 =2h" =0 = W' =800 = h=+/800=202 By the First Derivative Test, I has a local
maximum at i = 20 /2 = 28 fi.
keost  k[[h=4)/d]  k(h=4)
dd d? T dd
dr

4ﬁ.l'r5 =_k{.uL= - L — 42 2 =32
“ e = k- [0 4]

(b) I=

di _ dl dr _

T =T TR -y

Iz]-yu A= =12xk(h = 4)

= kih = 4){=3x) [{h =4)" + = m

dI 3 480k(h — 4)
dt |, a0 [(h—4)* + 1600]™"
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[1 PROBLEMS PLUS

1. Lety = f(z) = e=*" The area of the rectangle under the curve from =z to x is A(z) = 2re==" where & = 0. We maximize
Az} A'{z) = 2e™" — g2%e™" = Ee"ﬂ{l —-2z") =0 = = Js This gives a maximum since A'(x) >0
for 0 < x < — and A'(x) < 0for z > = We next determine the points of inflection of f{x). Notice that
Fiz)= Dre=* = =A(z). S0 f"(x) = =A'(x) and hence, ["(x]) < [I'Ibl’—?lg < re ?13 and f"'(x) > 0forx < —ﬁ
and x > :,15 So f(x) changes concavity at = = i?‘E, and the two vertices of the rectangle of largest area are at the inflection

points.,

3. f(x) has the form e91%) 50 it will have an absolute maximum {minimum ) where g has an absolute maximum {minimum ).

=

) Wz=2)=z" ifz=2>0 —r® +10c =20 if x> 2
glx) = 10|z = 2| =z = =

0[—(z=2)] =z ifz=2<0 | =2 =10x+20 ifz<?2

| =2r 410 ifxr > 2
g(xr)=
=2r =10 fx <2
g(z) =0ifx = =5or x = 5, and g'(2) does not exist, so the critical numbers of g are =5, 2, and 5. Since g"'(x) = =2 for
all = # 2, g is concave downward on (=oc, 2) and (2, oc), and g will attain its absolute maximum at one of the critical
numbers. Since g(—5) = 45, g{2) = —4, and g{5) = 5, we see that f{=5) = &% is the absolute maximum value of f. Also,

lim g(x) = —oo,so lim f(z) = lim e**) = 0. But f(z) > 0 for all z, so there is no absolute minimum value of f.
F ] T oo
sinx ,  TOOST =—sina o —r’sinr = 2reosx 4+ Psinx

- = Y=——0g = ¥= = . If (x, ) 15 an inflection point,

oy

theny”" =0 = I[E—Iz:l-ﬁin.rzzrcuaz = {E—Izljsin"!;r:ti:szcuﬁz

x =
{Z—Izjjh‘inzI:hz{l—Hilluml = (4=4x" +1r')sin" r=4s" =4z sin" 2 =

sin r

sin? =
(4+cY)sin’r =42 = (2 +4]- T4 = vz 4+ 4) = 4sincey =

@ . . -
7. Let L = lim = L :';':’_T_ L‘:‘l‘;; SIndT Now L has the indeterminate form of type 2, so we can apply I"Hospital’s

Zax + beos b ; d cos dax
R““'szi'}: =+ EE;L:-}-;::TEI-: == . The denominator approaches 0 as = — 0, so the numerator must also

approach 0 (because the limit exists). But the numerator approaches 04+ b+ c 4+ d, s0 b 4+ ¢ + d = 0. Apply 'Hospital’s Rule

i L= Eﬂ.—bzﬁhlbI—EzﬁhIEI—djﬁhldI_Zﬂ—u_iﬂ which must equal &
again. L= Qi B + 602 + 2102% ~6+0 6° equat S

2
T“:a = a=24 Ths,a+b+ctd=a+(b+c+d)=2440=24

FLd|
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242 O CHAPTER4 PROBLEMSPLUS

o
9. Differentiating 2 + xy + y* = 12 implicitly with respect to x gives 2z +y + = — + 2y — = 0, 50 —

1.

diy dy x4y

dr dr dr ~  x+32y
d
At a highest or lowest point, Ey =0 < y=—2r Substituting —2x for y in the original equation gives

= + x(=2x) 4+ {—Ez:lj =12, 503" = 12and £ = £2 If £ = 2, theny = =2¢ = =4, and if r = =2 then y = 4. Thus,

the highest and lowest points are (=2, 4) and (2, —4).

]

. 1 .
(a)y =z = g’ = 2z, so the slope of the tangent line at P({a, a”) is 2a and the slope of the normal line is -2—1::.{
(e ]

a # 0. An equation of the normal line is y — a” = —Z—L{x — a). Substitute =* for y to find the r-coordinates of the two
points of intersection of the parabola and the normal line. =* —a® = -% +% & 4 (%)r— % —a? =0. We
know that a is a root of this quadratic equation, so £ — a is a factor, and we have {a:—a}(a:+ i +—a) =10, and hence,
= =i - % is the x-coordinate of the point (. We want to minimize the y-coordinate of (2, which is

2 4 2 2
(—u—ﬁ) :ﬂ.j+1+L:y[u].le-'y'|[ﬂ]:Eu.—L:4'1 1:{2& +1)(2a” —1) =0 =

4a? 2a* 2 2

1 3 1
0 = = fora > 0. Since y"(a) = 2 4 =—— 0, we see that o0 = ves s the minimum value of the
72 (2) Zad 2

y-coordinate of ).

z
{b) The square S of the distance from P{a,a”) to Q (-n - Ei (—u - gi) ) is given by
il Lr ]

e N e e N ]

z
1 1 2 1
da? 42 4 — 14 — 40 4+ 24 — 14 — 4 ——
( T + +( +4ﬂ-j) ( T +4u2 T+ +alm3+lﬁn.‘
o 3 1
=da" 434 0 e
§ fi 4 3 1 32" =6a’ =1 (2a® =1)(4a” + 1)*
b':&-m-ﬁzﬁa-ﬁ—gz o = o . The only real positive zero of
| I 0 5 1
uanan.‘i":l]ns;::ﬁ_&mceb :FH'E«: 1= ::-l.'lu—?cmespﬂndstﬂmeshoneslpmblelengﬂmf

the line segment ().
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13.

CHAPTER4 PROBLEMSPLUS O 243

AC is tangent to the unit circle at D. To find the slope of AC at D, use implicit

A, a)
H differentiation. z° +y* =1 = 2zr4 2y’ =0 = yy'=-z = y' ===
u
IR, b
Thus, the tangent line at D{b, e}hasequatlnny_--:s+u AtD z=bandy=c,
/& .,_/\ b [N 1
=_—{.b:|+u = a=c4 —= ¥ = —, amd hence c = =
i, =1} e I i [ a
T r
. -1 T—1
Slnceb‘-l-cz:l,-b:\,f"l—c?=\,.=’1-lfa2:\/ﬂ . _ Va . and now we have
e L
hoﬂ'iba.ndcmtermsafa.mﬂ',yz—l._su—lz—é:s+u. = E.I=n|:l+1 =
o c
r=S(at+1)= —L% (a+1)= e 1 = '“+landr,}mmdmam( et __-1) Let & be
b va® =1/a H,.-"'l:u+1:|-l:a—l:|- "y'lﬂ-l a =
. . fa+1y s a4l
the square of the distance from A to C. Then S{a) = D-"-"I 1 + (a+1)" = =
i = L =
= 1)(1) = {a + 1)(1) =2+ 2a+1){a=1)
5’ (@ 2a+1)= .
(@)= (@a=1)? +2a+1) (a=1)
—24+2a’—a"—a+1) 2a*—2" -2 Za(a’—a-=1)
B (a=1) - (a=1P2 T (a-1)?
Using the quadratic formula, we find that the solutions of a®* —a — 1 = Darea = ! izvg, SO0y = ! +2"E (the “golden
mean”) since a 3> 0. For 1 < a < a;, 8(a) < 0, and for a = a,, 5'(a) > 0, 50 a; minimizes 5.
_—
) M1+5,5 .
Note: The minimum length of the equal sides is S{m}z---:u'T::E.ﬂSand the corresponding length of the
fan +1
third side is 2y /= m +1 = 2+/2 4 /5 = 4.12, 50 the triangle is not equilateral.
g =

Another method: In AABC, cos ! =

a4l a4l B 1
E,mﬁf: — In.ﬁ.-’lDﬂ,:imﬂ:E,SD

cosfl = \fl—ﬁinjﬂ‘:fl—lfuz:ifaE—l. Thus AC =

minimum of f.

18 A= {11,.:%] and B =

a4l _afa+1)

m = \ﬁ =_,|"|::u::| Mow find the

(2. 3), where z1 and z2 are the solutions of the quadratic equation =* = maz + b. Let P = (z, =%)

and set Ay = (x1,0), By = (z2,0), and Py, = (x, 0). Let f{z) denote the area of triangle PAB. Then f(z) can be expressed

in terms of the areas of three trapezoids as fiollows:

fi=)

= @rea {_-'11_-'1331:] = Area I::_-'J.’|1.-'1Pﬁ:| = drea I::BLBFPﬂ

= %{If + I%}{Ii =11} = %{IE 4 )z =11) = a}{rj 4 23 ) (22 = x)

[continued)
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244 O CHAPTER4 PROBLEMSPLUS

17.

18.

After expanding and canceling terms, we get
f(z) = }(zoa] — 23 — 22 + 212" — mp2” + 22d) = 4[] — 2) + Tz = 71) + 2z, — 22)]
f'(@) = 1[=23 + 23 + 22(z1 = 22)].  ["(z) = }2(z1 = 22)] = 21 = 72 < Osince z2 > 71
fl@)=0 = 2e(m —m)=zi-2f = zp=j(x:+x2).

flzp) = 1} [Ha2 = 21)] + 23[Rz = 21)] + Lz + 22)° (21 = 22))

% T —I1] =t + :52} [Iﬂ — 1 )(z1 + x2) 2] = % Ta —1:1:]-[2{2:3 -+ z%] - {:E + 2oyxs 4+ z%}]

(& [

= a2 = m1)(af = 2mazs 4+ 23) = {(mz — o) (2 — 22)” = Lo — w2 — 1) = H = m)°
To put this in terms of m and b, we solve the system y = :f and y = mury 4 b, giving us :sf —mry —b=0 =
#1 = & (m = /mT+ 18 ). Similarly, z2 = £(m + +/m7 + 45 ). The area is then L(z2 = 1)* = i{m;ﬁ
and 15 attained at the point F{IP, .r%:r} = P(-&m, %mE].
Neve: Another way to get an expression for f{x) is to use the formula for an area of a triangle in terms of the coordinates of

the vertices: _f{z] = %[{Ing —I]_I%} + {I]_Iz - .r.rﬂ - {:r:a:g - .1:21:2]].

Suppose that the curve y = a* intersects the line y = x. Then a™ = x for some zo > 0, and hence & = =/ ™. We find the
maximum value of g{z) = %z = 0, because if a is larger than the maximum value of this function, then the curve y = a™

1 1 1 1
does not intersect the line y = =, ¢'(z) = e{”"]”“’(-—ﬂ Inz+ =- —) = .::1"’(—2)[1 = In ). This is 0 only where
Fa L& I I

x=e,and for0 < x < e, f'(x) > 0, while for = > e, f'(x) < 0, so g has an absolute maximum of g(e) = ¢'/*. So if
y = a® intersects y = x, we must have 0 < a < e'/*. Conversely, suppose that 0 < a < e'/*. Then a® < e, so0 the graph of
y =a” lies below or touches the graph of =zair=e Alsoa® =1 = 0, so the graph of y = o™ lies above that of y = =

at x = (. Therefore, by the Intermediate Value Theorem, the graphs of y = o™ and y = r must intersect somewhere between
s=0and r = e.

Note that f(0) = 0, so for x #£0, HEI} ::]I"l[l]:l - f'F:] Ui'[;i” < |=-'i|5:;II| _ zi'uIlI
Theretore, | /*(0)] = HI} Hﬂ}l m ‘HI:I mE <l Ei:;x =1

But f(x) =aysinzr +azsin2r + oo fa, sinner = f(z) =a, cosx 4 2a, co8 21 4+« 4 g, cOSTE, SO
[F(0)] = |as 4 2a2 4 -+ 4 na.] < 1.

Another solution: We are given that |37 _ | ax sin kx| < |sin x|. So for x close to 0, and = # 0, we have

El H i 2 .
POTTE= [P R Eu,,’“_'”"'lgl = |5 a lim S2EE) < 1 But by I"Hospital's Rule,
b= DT ) P 1 F hmy E—O SIDT
. . " n
fim SBEL _ gy ROSET o kel < 1
=0 s1n I ) OOE T Lo 1
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CHAPTER4 PROBLEMSPLUS O 245

21. (a) Distance = rate ¥ time, so time = distance/rate. T) = E, Ta = 2|PR| + | 25] = 2h sec + D —3htant

(5] 1 L] ] L]

]

2h2 4+ D4 JahT ¢ D7

Iy =
€1 €1
ol 2h 2h 1
(b) —= = —. secl tanf — — sec?f = l]“henﬂhﬁetﬂ(—tulﬂ——hetﬁ)zﬂ =
i o1 2 £1 £
1 sind 1 1 inf 1 :
_ =0 — = —— = sinf= =L The First Derivative Test shows that this gives
C1 Ciks 9 L] E{Ihﬂ iy E{IH'E L] L'UH-E L]
a Minimum.
I VART ¥ D2
{c) Using part (a) with 2 = land Ty = 0.26, wehave Ty = — = o =55 =385km/s Ta = y= 4+
€1 . 1

24+ P =Tl = h= 24/ T3ef = D% = 2,/(0.34)2(1/0.26)% = 12 =2 0.42 km. To find ca, we use sin = =

c2
from part (b) and T: = thﬁ' D= 2ht'ﬂ“-“ﬁltru::m part {a). From the figure,
i | C2
sinfl= =+ = secﬂ:F—EMdMnﬂz L =, S0
2 -0 7 — 0

T 2hes Dy E'g — e = 2hey
Y =

b= + . Using the values for T: [given as 0.32],
aVZ-a' ava-g e

T T
L el 4}

2hey + Doy =] = 2hey
e1y/e3 — e/ —
Doing s0 gives us ¢z == 4.10 and 7.66, but if e; = 4.10, then € = arcsin(c, feq) = 69.6°, which implies that point 5 is to

h, c1, and I3, we can graph Y, =Tz and Y2 = and find their intersection points.

the left of point £ in the diagram. So c; = 7.66 km/fs.

23 i Leta = |EF| and b = |BF| as shown in the figure.
£ 4 ‘: L Since £ = |BF| + |FD|,|FD| = £ — b. Now
"'5:;.___ H o
R L |ED| = |EF| +|FD|=a+£=b
.y

F Vi = 4 b= f(d=z)] +a*
—VE—F b=\ Jd-2)+ (VF=F)"
=V 4= VE —2dr+ 2+ i =22

Let f(x) = VI — 2t = AT — 2

. 3y =12 12 — o
fz) = L(r* = W3 0.y o d? 4t — 2y = . ———
()= 3( '} ( ) i{ } (=2d) = VI —2f AT+ rE = 2dr
: T d x* d”
=0 — —3
e T V-2 Jlir-2z | r-@ &4ri-dr

d?r? +roe" = T =d'r =¥ = 0= 2de® = 2 = -I--q:!'jr2 =
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24 0O CHAPTER4 PROBLEMSPLUS
ﬂ:m;z{z—d]—rz[zz—dzj = ﬂ:Ed.IH{I—d]—THI:I-i-d]{I—d} = 0= {I—d}[ '’ —rﬂ{r-{-—d}]

Butd =r >z, 50 ;\E-c!'_Thl.l_'f.,Tu'A-E"E..(:rl'-'li.'ﬂq:.!:lzz—:rHJ:—':.!r2 = 0 for x;

—(=r*) £ /(=) —4(2)(—dr?) 24 ETEET

= 2] = <7 . Because +/v% + Bd?r? > r2, the “negative™ can be
djsca:d-ed.]'hus,.zzrg-’_ﬁmru-"_ﬁd =r2+:r4;2+3-t12 [r=0] = [r+v’T] The maximum
value of | £D| occurs at this value of .

. dV , dr dV dv

BV =3xr = — = dar

x = o But i proportional to the surface area, so - = =k - dxr” for some constant k.

d . o
Therefore, 4 Er =k.drr" & d_: = k = constant. An antiderivative of k with respect to t i1s &2, sor = kt 4 .

When t = 0, the radius r must equal the original radius rg, 50 C = g, and r = &kt 4 ry. To find & we use the fact that

whent =3, r=3k+rand V=114 = 2x@Bk+r)’=1.4md = (@Bk+n)=1ir =

Sk4ro="Ltry = k:%rﬂ(L—l).Smc‘erzk!+m,r= %m(L - 1)!+n:|. When the snowhall

¥z ¥z ¥z
Lo 32
has melted completely we have r =0 = 3w i 1 |t 4+ ro = 0 which gives t = o1 Hence, it takes
A —

Ve _.__3
Vz-1 ¥Z=1

== 11 h 33 min longer.
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5 [0 INTEGRALS

5.1 Areas and Distances

1. (a) Since [ is decreasing, we can obtain a Jower estimate by using right endpoints. We are instructed to use five rectangles,

son =
Rs =Y f(z)Az [a;:":%‘“;“:z] "
(] 4 \ v _|‘{1.|
=f{z1) - 24 f{za) - 24 fza) - 24 flza) -2 4 flzs) -2 <
2 [,
= 2[f(2) + f(4) + f(6) + f(8) + f(10)] SN
~2(32+ 1.8+ 0.8+0.2 +0) 0 1 § 3
=2(6) =12
Since [ is decreasing, we can obtain an upper estimate by using leff endpoints.
Lr,, = Eﬁ: _f[:n._j}.n':'lI 1 ! !
d=l 4 v= flx}
= flzo) -2+ [(z1) - 24 fz2) - 24 flxa) - 24 flz4) - 2 <
= 20/(0) + S(2) + F(4)+ (6) + S(8)] 1
22(54+32+18+08+02) 0 4 8 i
=12(11) = 22
0 By =3 f(z)Az  [Ar=2=0 1] T
=t 4 = fix|
= 1[f(a2) + flx2) + -+ [(z0)] <t
= f(1) + £(2) +---+ f(10) ’ TPl
~4432425418413408405402401+0 0 1 ] x
=144
10 :
L= :E j[Ii-l:]'-l'le ! ! !
- 4 ¥=rx
= f(0) + (1) +--- + f(9) <
2 "{-__
= Ruw +1-f(0) = 1- J(10) [;’i: T‘“"’gmm““?ilfiih] =
0 4 & x
=144+4+5=0
=194

247
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248 O CHAPTERS INTEGRALS

L@R=E s [ae=230 =1 =[S s ae

-] 4 B 4 -]

= [f{z1) + flze) + flza) 4+ flza)] Ax

1 1 1 111 4, 2 , 4, 1]1
=|l—4+-——+—+——|-=[24+2+24+1]L=06345
[5f4+ﬁ,ﬂ'4+'ff4+3,ﬁ'4]4 [B+5+3+3]3

Since [ is decreasing on [1, 2], an underestimate is obtained by using the

right endpoint approximation, fi,.

(b) Ly = qu flzim) Az = [i f{z.-l}] Ar

= [f(xa) + flz1) + flxz2) + f(x3)] Az
1 1 1 1 1 4 , 2, 4]1 -
= [T+m+w—4+m]E=[1+E+I+?]E=’u'rﬂ95

L, is an overestimate. Alternatively, we could just add the area of the

leftmost upper rectangle and subtract the area of the rightmost lower

rectangle; that is, Ly = R4 + f(1) - &_ f(2y- %_

5. @) f()=1+2amdar=2"0 oy o

Ry=1-f(0)+1-f(1)4+1-f(2)=1-14+1-241-5=8

2-(=1)

Axr = =05 =

He = 0.5[f(—0.5) + f(0) + f(0.5) + f(1) + f{L5) + F(2)]
=05(125+ 1+ 125+ 2+ 3.2545)
=0.5(13.75) = 6.875

(b) La=1-f(-1)4+1-f0)+1-f(1)=1-241-14+1-2=5

Le = 0.5[f(=1) + f(=0.5) + f(0) + f(0.5) + f(1) + f(1.5)]
=05(2 4 125 41 4+ 1.25 +2 4 3.25)

=0.5(10.75) = 5.375

(c) Ma =1 f(=0.5) +1- f(0.5) + 1. f(1.5)

=1-1L2541-1254+1-3.25=5.T5

Mg = 0.5[f(=0.75) + f(=0.25) 4 f(0.25)
+ f(0.75) + f(1.25) + f(1.75]]
= 0.5(1.5625 + 1.0625 + 1.0625 + 1.5625 + 2 5625 + 4.0625)

= 0.5(11.875) = 5.9375

(d) My appears to be the best estimate.
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SECTION 51 AREASANDDISTANCES O M9

Lflr)=24sinz 0=z <x Ar=x5/n

n =2 The maximum values of { on both subintervals occur at x = £, s0 ;
wpersum=1(%) - §+7(5)-§=3-5+3-5 _
=3 = 0422 :
The minimum values of f on the subintervals occur at = = 0 and 14
r=Tm,30
lowersum= f(0)- £ + f(7)- 3 =2-24+2-F =27 =628 [ z 7o
n=1 uppersim=[(5)+(3)+1(3)+ F(N()
=[{2+5v’_]+{2+1}+{2+1j (2+2vD)](5) B
= (10+vZ) () ~8.96 ’
lower sum = [£(0) +  (£) + £ (3) + /()] (5)
=[2+0)+(2+3v2) + 2+ 3v2)+ 2+0](F) - N S
= (84 v2)(2) =730 oo T
n=8 uppersum=[f(2)+f(F)+(3F)+[(F)+1(5) ;
+ f(8) +F(3F) + 1 (F)](F)
= 8.65 :
Jau-ers:m:[}‘{E}}+f{§]+j‘|{:]+j|:“}+j{7' 14
+ 1) +1(3) + 1N (F) : I
2= 7.86 : ER e

9. Here is one possible algorithm (ordered sequence of operations) for calculating the sums:
| Let SUM =0, X_MIN =0, X_MAX = 1, N = 10 (depending on which sum we are calculating),
DELTA_X = (X_MAX - X_MINWN, and RIGHT_ENDPOINT = X_MIN + DELTA_X.
2 Repeat steps 2a, 2b in sequence until RIGHT_ENDPOINT > X_MAX.
2a Add (RIGHT_ENDPOINT)*4 1o SUM.

Add DELTA_X to RIGHT_ENDPOINT.
At the end of this procedure, (DELTA_X)-{SUM) is equal to the answer we are looking for. We find that

12y 1 3 g 13 N
g = =— —_— | == 0.2533, Hyy = =— —_— 02170, Ry = =— — 0.2101, and
o mE(m) T a0 (au} =R e an..l(au) =

1 100 i 3 i

Raoo = 100 3 (ﬁ) ~=z 0.2050. It appears that the exact area 15 0.2. The following display shows the program
-

SUMRIGHT and its output from a TI-83/4 Plus caleulator. To generalize the program, we have input (rather than

assign) values for Xmin, Xmax, and N. Also, the function, s assigned to Yy, enabling us to evaluate any right sum

merely by changing Y, and running the program.

|continued)
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250 O CHAPTERS INTEGRALS

PROGRAM: SUMRIGHT
1845

tPromet. Zmin
=EPDMPE ﬁmax
: Prome

P Cxmax=xmini/N+D ﬁﬂ%f@
tamin+0>R " 253 33
tForcIs,1.H2 "“Done
=5+V1{R}+5

tR+D+F
tEn
t0
:0

o
S 7
isp 2

11. In Maple, we have to perform a number of steps before getting a numerical answer, After loading the student package
[command: with (student) ;] we use the command
left sum:=leftsum(l/(x"2+1),=x=0..1,10 [or 30, or 50]) ; which gives us the expression in summation
notation. To get a numerical approximation to the sum, we use evalf (left_sum) ;. Mathematica does not have a special
command for these sums, so we must type them in manually. For example, the first left sum is given by
(1/10) *Bum [1/( ((1-1) F10) "2+1)],§{1,1,10}], and we use the H command on the resulting output to get a
numerical approximation.

In Derive, we use the LEFT_RIEMANN command to get the left sums, but must define the right sums ourselves.

(We can define a new function using LEFT RIEMANN with k ranging from 1 to n instead of from 0 to n — 1.)

1 . | . 1

(a) With f(z) = = .0 = x < 1, the lefi sums are of the form L, = = 3" = Specifically, L,y = 0.8100,
s -+ 1 LLETS ] {?] 1
1.=n 1
Lan == 0.7937, and Lsg 7= 0.7904. The right sums are of the form H, = — % ——7—_ Specifically, 0 = 0.7600,

mim () 1
Hap 2= 07770, and A == 0.7804.

(b) In Maple, we use the 1eftbox (with the same arguments as left sum) and rightbox commands to generate the
graphs.

0 [ |0 HH” |

left endpoints, n = 10 left endpoints, n = 30 left endpoints, n = 50

11 1.1 1.1

0 1 [ | 0 “H“ HH” {

right endpoints, i = 10 nght endpoints, n = 30 right endpoints, n =
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SECTION 5.1 AREASANDDISTAMCES OO 254

{c) We know that since y = 1/(x* + 1) is a decreasing function on (0, 1), all of the left sums are larger than the actual area,
and all of the right sums are smaller than the actual area. Since the left sum with n = 50 is about 0.79%04 < 0.791 and the
right sum with r= = 50 is about 0.T804 > 0.780, we conclude that 0.T80 < Hgy < exact area < Lay < 0.791, so the
exact area is between 0.T80 and 0.791.

13. Since v is an increasing function, Ls will give us a lower estimate and Ry will give us an upper estimate.
Lo = (0 fi/s){0.5 5) + (6.2)(0.5) + (10.8)(0.5) 4 (14.9)(0.5) + (18.1)(0.5) + (19.4)(0.5) = 0.5(69.4) = 34.7 ft
e =0.5(6.2 4+ 10.8 4+ 14.9 4 18.1 + 19.4 4 20.2) = 0.5(89.6) = 44.8 fi
15. Lower estimate for oil leakage: Fs = (7.6 + 6.8 + 6.2 4+ 5.7+ 5.3)(2) = (31.6)(2) = 63.2 L.
Upper estimate for oil leakage: Ls = (8.7 + 7.6 + 6.8 + 6.2 + 5.7)(2) = (35)(2) =
17. For a decreasing function, using left endpoints gives us an overestimate and using right endpoints results in an underestimate.
We will use M to get an estimate. Al =1, 50
Mg = 1[v(0.5) + v(1.5) + v(2.5) + ©(3.5) + v(4.5) + v(5.5)] =55+ 40+ 28 + 18+ 10+ 4 =155
For a very rough check on the above calculation, we can draw a line from (0, T0) to (6, 0) and calculate the area of the

triangle: £(70)(6) = 210. This is clearly an overestimate, so our midpoint estimate of 155 is reasonable.

19. f(t) ==t(t=21)(t + 1) and At = &=L =2

Mg=2-f(1)+2- f(3)+2- f(5)+2- F(T)+2- f(9)+2- f(11)
=2.-4042-2164+2-480 4+ 2- T84 + 2 - 1080 4 2 - 1320
= TR0 (infected cells/mL) - days

Thus, the total amount of infection needed to develop symptoms of measles is about 7840 infected cells per mL of blood

plasma.
2. fi ]-_ 1 l=xx3 Ar=(3=1)n=2fnandx; = 1 4+ irx =1 4 2ifn.
— I n 14+2ifn) 2
:4_nll.:5.,'c'ﬁ'" EI{II}QI— l:ul:l. Em;

A flr)=+vsinz0<z<w Ar=(r—-0)/n=x/nand z; = 04+ i Axr = 7i/n.

A= lim Ro= lim 3 f(z)Az= lim 3~ \/sn(zi/n) =

25 lim i —Lauu—ca.nbem’lfrpmted as the area of the region lying under the graph of y = tan r on the interval [0, ],

n—oc (2 dn dn

#‘“ —0_x .r,_-ﬂ-l-:ﬂ..r_— and =] = x;, the expression for the area is

since for y = tanx on [0, §] with Az = - e
TE

A= lim ¥ flz)Az= lim ¥ la.n(ﬂ) T Note that this answer is not unique, since the expression for the area is

n—oh iy fi—me (29 in J 4dn

the same for the function y = tan(x — k=) on the interval [k, kx4 ], where k is any integer.
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252 O CHAPTERS INTEGRALS

27. (a) Since f is an increasing function, Ly is an underestimate of A [lower sum) and K., is an overestimate of A [upper sum].

Thus, A, L, and R, are related by the inequality L, < A < H,,.

(b) R, = f{z,)Az + f(za) Ax 4 - + f(z,)Az T
Ln =f{£ﬂ}m+ I{Il}aﬁﬂ:"i" e +_f{:5n_1:|..'i:5 Fib— flah
- i
Ry = Ly :f{:xulaﬁl— -I{Iﬂ]ﬁI . B ‘
= Az[f(zn) = f(xo)] fin
=222156) - f(a)] LT
Ay

In the diagram, fiy — Ly is the sum of the areas of the shaded rectangles. By sliding the shaded rectangles to the left so

that they stack on top of the leftmost shaded rectangle, we form a rectangle of height f(b) — f{a) and width E.
Tk

{'I::l _"?l ::" Lu.,mﬂh - _"?l { Hu - Lu_,th.at Ii, Hu - .'i. {bl— f{ﬂ}]
29. {a]y-f{r}—.r jz—ﬂzgaﬂiz. =D+iéI:E.
mn TE mn

o i . i
zl:nli_.l-l;lcR“ = |ur1 Ef{zt].ﬁm_ II]’.II E(n) -%: lirn &-%:ﬁli_r:l;c :—:Eir’.

I.l t.l

uz{n.-i- l:l2 {Enz + Py - 1]

"~ 5 CAS
ib) it =
.,.,'E] 12
(© lim E-nz{n-i- 1}‘!{2uz+ﬂn—l] E {:n: +2n+1}{2u +2n—1:|
Ao 1B 12 12 i n - m?
_ 16 2 1 2 1Y g _m
3 rL]-I—L—I':I.c(l+ n+ u"!)(2+ T -nz) =%-1-2=3
MNoy=flz) =cosx. a::ﬁzkaﬂdz.zﬂ-iuiﬁzzﬁ.
n n n

A= Jim Ra= lim 3 f(z) Az = lim Em(f).i

t=l L T | L
. 1
bein| b — <+ 1
CAS . 2n b | cas .
= lim - —| = sink
Frpm—— : ( b ) 1
Znsin| —
n

Ifb= % then 4 =sin £ = 1.
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SECTION 52 THEDEFINITEINTEGRAL 0O 253

5.2 The Definite Integral

1.f{I}=I—l,—EEI£4.M:b-ﬂ:#:l " of=a—
mn

Since we are using right endpoints, =} = xq.

H"'ZE f{I']"ﬂ‘I’ 0 2 4 X

= (Az)[f(z1) + flza) + f(za) + f(za) + flzs) + f(zs)]
=2[f(=4) + f(=2) + f(0) + F(2) + f(4)]

= 2[5+ (=3) + (=1) + 1 + 3]

=2(-5)=-

The Riemann sum represents the sum of the areas of the two rectangles above the x-axis minus the sum of the areas of the
three rectangles below the x-axis; that is, the nef area of the rectangles with respect to the x-axis.

b=a 3=0 1

3._{{:}:12—4,0‘_:.:53.&:: =T:§.
n 4
Since we are using deII}JﬂT_i,I:ZTEZ%'{IE_|+I,_}. it
Me= EE: Sz Ax _l--
= (Az)[f(Z1) + [(Z2) + [(F) + [(Za) + f(Z:) + f(Ze)] -1} !
= 3[f(3) + F(3) + S(3) + F(2) +F(3) + 7(3)] j“
=i-m-R-B-R+u+N)=1-%=-% ~

The Riemann sum represents the sum of the areas of the two rectangles above the x-axis minus the sum of the areas of the four
rectangles below the r-axis; that is, the ner area of the rectangles with respect to the z-axis.

1k
5. (@) f f(a)dz = Rs = [f(2) + [(4) + J(6) + f(8) + (10)] Az

=[-1404({-2)+24+4](2) =3(2)=

i11]
®) J{ fla)dz = Ly = [f(0) + f(2) + f(4) + F(6) + f(8)] Az

=[B+(=1)+0+(=2)+2](2) =2(2) =4

111
(© jg fla)de = Ms = [f(1) + £(3) + f(5) + F(T) + f(9)] Ax

= [0+ (=1)+(=1) +0+3(2) = 1(2) = 2
7. Since f is increasing, Ls < [ f(x) dx < Rs.
Lower estimate = Ly = % J(zica)Az = 4[f(10) + f(14) + f{18) + £(22) + f(26]]
=4[=12 4 (=6) + (=2) + 1 + 3] = 4(-16) = =
Upper estimate = fis = 3~ f()AAz = 4[f(14) + F(18) + £(22) + F(26) + f(30)]

=46+ (=2)+1+3+8]=4(4)=16

rwmlucmwh_q..uwuwm-gu—q-d.—_&._wn-uum,-tn.um.#—H,-qwqh-n._ﬁ_ha.*nu.mp
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254 O CHAPTERS INTEGRALS
9. Axr = (8 =0)/4 =2, o the endpoints are 0, 2, 4, 6, and 8, and the midpoints are 1, 3, 5, and 7. The Midpoint Rule gives

Jy sin /T dx = i f(2) Az = 2(sin /T + sin /3 4 sin /5 + sin /T ) = 2(3.0010) = 6.1820.

1. Az = (2=0)/5 = 2, so the endpoints are 0 and 2, and the midpoints are £, 2, 2 I and 2. The Midpoint Rule

5 ’5’5-’5’5’ 5’5’5-’5
gives
2 1 4 ] T H
I z i A i 2127y _ 127
" = = " i )=2( =) =—=0.907L
uI+1 im1 (§+1+§+1+§+1+§+1+§+1) 5(5&) 140 ’

13. In Maple 14, use the commands with{Student [Calculusl])and
BeimannSum{x/ (x+1),0..2,partition=5,method=midpoint, output=plot). In some older versions of
Maple, use with (student) to load the sum and box commands, then m: =middlesum (x/{x+1) ,2=0. .2}, which
gives us the sum in summation notation, then M: =eval £ (m) to get the numerical approximation, and firally
middlebax (x/f(x+1) ,2=0. .2} togenerate the graph. The values obtained for n = 5, 10, and 20 are 0.9071, 0.9029, and
0.9015, respectively.

| 1 |

——
.r"r.'._
=]
=
1 ¥
L] -

15. We’ll create the table of values to approximate [ sin z dx by using the

0

n Ry,
program in the solution to Exercise 5. 1.9 with Y, = sinx, Xmin = 0,
! 5 | 1.033766
Xmax =, and n = 5, 10, 50, and 100. 10 | 1983524
50 ) 1.909342
The values of R, appear to be approaching 2.
100 | 1999836

f - 1 *
17. On [0,1], lim ) 11; az:fn 11;:::
i

]
19. On [2,7], lim ¥ [5(z})* = 45]] Az = [} (52 = 4x)dx.
R T3 |

5=2 3 Ji
21. Note that Ax = — =—am:|m._2+:.iz_2+—=.
n

[(4-2@&: lim 3" f(a) Az = lim Ef(z+ )%z i EEH:[ s 2+=,=)]

e =T | ol A= T el

i, 25 (2] = i 2(-) £ i (~22) [222)

UEEE | N Tt f=s 2 T =30

S (‘%)(n: 1) = =9 lim (1 + %) =-0(1)=—
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nﬂmtm.ﬁx—ﬂ Eand.:,:-2+iﬂu: -2+E

T TR n

f{r +z)de= lim Ej{:s.]iz_ lim :Elf(-u 2:) %z i 2 5

S 1 Aol T el

& 2 9 n f4i i
lim —E:[4——E+L—2-+—:I = lim _E(L-—:-I'-Z)

n—oo 71 jo n—eo 71 oy | nE n

=t H|e gt -2 S = m [i”{”“]f“” et s 2 )

= lim |= = =6 x = lim |= =6|1l4+=]+4
“I_.x[:{n+l];[2n+l:l nnl ] hx[: : +1 ( ,11) ]

= Jim [%(l+%)(2+ %) -s(1+ %) +4] = %{11{2}-511) ra=2

H.Nﬂtﬂtfﬂtﬁ::ﬂ:iandm.:ﬂ+iﬂ.z:i
n n n

H—'Sﬂi-l i = S0 i1 i ==l faml

E(; —32%)dr= lim 3 f(z)Az = lim }:f( )a;: lim 3° [( :

=0 T ) | TE T L p=l n” i1

= lim ii[%-ﬁ]_ lim —[ 13 it = —i:‘”]

=

G 4 n T 2 n n
Tim E (1 + %) (1 + %) - %(1 + %) (2 + %)] =low-itoe=-3

ﬂ.ﬁbrd;=lin.b_“i[u+b ]—Im[{b }E G- ﬂlifﬁ

=D

) 1 [n(n+1) * 3 (n 4+ 1)(2n 4 1) ) ln+lndl 1n+4+lZn4l
=lim § w|———| =5 —————— = lim |- -
n

N L T | e mn =5 il
2 2
= lim [ﬂ{b-ﬂ}u+{b-f] _nl{n-}-l]] =a(b=a)<4+ lim EEI'-_HL(1+1)
I mn n 2 = 2 n

=a{b—ﬂ.} + %l::b—ﬂ:]z = I[b—ﬂ.:l[ﬂ.-{- %b— %a_} ={b—n}%{b+u] = %{bz—ﬂj}

i-1 _E Using Theorem 4, we get = _:._1+aﬁz—l+& 50

N flzr)=v32+ 25 a=15b=3 and Azxr=
n
. n 234"
f V44 xztde= lim Ay = lim ¥ .'-'l+(l+—)
1 D ”_"-"‘:1.11' T

2
-

N Azr=(x=0)/n=afnand 2] = x; = wifn.

LS f 2
sinfrdr = lim % {HiIi-aI,_}(E) = lim E sin G\ ¥ oA 7 lim lcut. ') cus 7 — | = 3
o R n 5

f-l L =T ] L n A==h T
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255 O CHAPTERS INTEGRALS
33. (a) Think m:nl*fﬂ2 J(x) dx as the area of a trapezoid with bases 1 and 3 and height 2. The area of a trapezoid is A = (b + B)h,
so [ flz)de = (1 +3)2=4

(b) [ fla)de = [ f(z)dx + [ f(z)dz + [] f(z)dz
trapezoid rectangle triangle
=1i1+43)24+ 3-1 4 1-2.3 =44343=10

(c) [ f{x) dx is the negative of the area of the triangle with base 2 and height 3. [ f(z)de = -3 .2.3=-3.
{d) [7 f{x) dx is the negative of the area of a trapezoid with bases 3 and 2 and height 2, so it equals

—3(B + b)h = —3(3 + 2)2 = —5. Thus,

Jo f(2)dz = [§ (=) dz + [] f(a) de + [7 f(z) de = 10+ (=3) + (=5) =2,

35 ffl{l = r)dx can be interpreted as the difference of the areas of the two i=1. 21

shaded triangles; that is, 2(2)(2) — £(1)(1) =2 -1 =3,

AN

=1 o 1

12.—1

. f_n_ﬁ{l + /0 = 27 ) dx can be interpreted as the area under the graph of ¥

f(z) =14 /0= 7 between £ = =3 and = = 0. This is equal to one-quarter
the area of the circle with radius 3, plus the area of the rectangle, so 12

. =3 1}
S (140 )dr=2%.3"41.3=34 2x ‘

3. J':_!d | 32| dix can be interpreted as the sum of the areas of the two shaded

triangles; that is, 1(4)(2) + 1(3)(2) =4+ 3 =22 Nﬂ

4. Ll +'1 4 x* dx = 0 since the limits of integration are equal.

8. [[(5—62")dr = [ 5dr—6 [j r*dr =5(1-0)-6(}) =5-2=3
45 L:!E""'Ed:szflaez -ezd.:::eﬂflaezd.rzeu{ez —e) =& = ¢*

4. 2, fz)de + [} flz)de = [~} f(zx)dx = [°, f(z)dz+ [~ f(z)dz  [by Property 5 and reversing limits]

=7, f(z)dz [Property 5]

49. ['[2f(z) + 3g(x)]dz = 2 [ f(z)dx + 3 [’ g(x) dx = 2(37) + 3(16) = 122
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SECTION 52 THEDEFINITEINTEGRAL 0O 257

51. J'; f(z) dx is clearly less than —1 and has the smallest value. The slope of the tangent line of f at = = 1, f'(1), has a value
between =1 and 0, so it has the next smallest value, The largest value is _f.f' f(z) dz, followed by [ f(z)dxr, which has a
value about 1 unit less than [} f(z) dz. Still positive, but with a smaller value than [] f(x)dx, is [ f(z) dz. Ordering these
quantities from smallest to largest gives us

Ji flz)dz < /(1) < [ f(z)dz < [} f(z)dz < [} f(z)dz or BEE<A<D<C

53. 1= [*[f(z)+ 2 +5de=[° f(z)de+ 2" zdr+ [* Sdr=L + 2L+ I

Ii= =3 [area below z-axis] 4+3=3==3

—3(4)(4) [area of riangle, see figure] + 1(2)(2)
= =842 ==h

Iz =52 = (—4)] =5(6) =

Thus, f = =3 4 2(=6) 4 30 = 15.
85 ' —4r+4=(x—2* >200n[0.4],50 [ (" — 4z + 4)dr > 0 [Property 6).

SLIf—1<zr<Lthen0<z'<landl <14z <250l <+T+22<+2and

1l =(=1)] < JI, vTF#2%dr < Z[1 = (=1)] [Propeny 8); thatis, 2 < [ T+ 7dr <22
50. f0<x<1,then0<s*<1,500(1-0)< [jz*dr <1{1 —0) [Property 8];thatis, 0 < [ =* dr <1

flL.Iff<z<Zthenl<tanzr<,3s0l(Z-%)< f'”lu.rd‘.zﬁﬁ{i— )or &< f'“m.zd; < =3

63. The only critical number of f(z) = xe™* on [0,2] 15z = 1. Since f{0) =0, f(1) = =" = 0.368, and
£(2) = 2e~* = 0.271, we know that the absolute minimum value of f on [0, 2] is 0, and the absolute maximum is e~ By

Property 8,0 Sze™* e for0 <2 <2 = 0(2-0) < [y ze™ dr <e™'(2-0) = 0< [ ze™*dr <2fe.
8. VI F LIz v =o' 50 [PVE F lde = [(efde = 1(3* - 1%) = £

BT. sinrx < T < xforl < x < 2 and arctan is an increasing function, so arctan(sin r) < arctan /T < arctan r, and hence,

J.f arctan(sin x) dr < LE arctan /T dr < _rf arctan x dr. Thus, Lﬂ aretan r dr has the largest value.

69, Using right endpoints as in the proof of Property 2, we calculate

J': ef(z)dr = “lir'.ll. E ef(z)) Az = llr.u e E Hz)Azr=¢ “E_.I-lic }E'_j fz) Az = cj': flz) dz.
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258 O CHAPTERS INTEGRALS

T1. Suppose that [ is integrable on [0, 1] . that is, lim i F2l) Acr exists for any choice of £ in [zi-1, 2] Let w denote a
A= -

1 1 2
positive integer and divide the interval [0, 1] into # equal subintervals [l], —] \ [—._ —|.
Tt mn mn

[n- 1,1].Ifwechmr521: o b
mn

L] 1
a rational number in the ith subinterval, then we obtain the Riemann sum 3 f(z]) - — =10, s0
mn

=1

lim _,r I‘I — = lim 0 = 0. Now SUppOose we choose =7 to be an irational number. Then we 2et
i
A=

T ]

Ef{zrl-;t=ill--=n

;‘II-—-

= 1 for each n, so lu.n Ej‘[:‘} = lim 1= 1. Since the value of
i = 5D

I-].

Jim E f{xf) Az depends on the choice of the sample points ]| the limit does not exist, and [ is not integrable on [0, 1].

d.

n A |
73 lim Z—— lim E— — = lim E(i) —. At this point, we need to recognize the limit as being of the form
T

R T | n® Eaiel T 1 e =T

lim E Sflxy) Ax, where Axr = (1 =0)/n =1/n, x; =0+ i Axr = ifn,and f(z) = £°. Thus, the definite integral

TR ]

is J'Dl ride

p 1 ;
TS.L'hmsL‘x.=1+land.z:': .f.;_i_l;plz\/(l_qh:_)(l_i_i).mn
n n n

2 a3 12 1 o = 1
LI dr= lim E _IunnE

e G T ) (1+2) no= it i- Dt

1 | L |
:”'IE'E‘HE(HT n+:') [ he i =nﬁ—'l-l;lcn(:‘,’:‘—.¢n+i-,§1n+i)
Ii.mn([l+ - +---+ . ] [ + - +;+i:|)
T —— n n+4l n—-1 n+4l In=1 " 2n

o 1 1y 1y 1
_nlﬂin(;_i)_ lim {I_T}_’I

== sl

5.3 The Fundamental Theorem of Calculus

1. One process undoes what the other one does. The precise version of this statement is given by the Fundamental Theorem of
Calculus. See the statement of this theorem and the paragraph that follows it on page 398,

3 (@) g(z) =y f()dt.

g(0) = _ﬁ: fityde=0

g(l) = _f‘: flt)dt=1.-2=2  [rectangle],

a(2) = [2f(t)de = [ f(t)de+ [2 f(t)dt = g(1) + [2 f(2)dt
=2+41-243-1-2= [rectangle plus triangle],

a(3) = [3 f(t)dt =y{2]+J.'ff{.-,}d¢ =5+4-1-4=T,

g(6) = g(3) + J?f{t}dt [the integral is negative since [ lies under the f-axis)
:7-}-[—{‘%-2-2-}-1-2]] =T=4=3
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SECTION 53 THE FUNDAMENTAL THEOREM OF CALCULUS O 2459

(b} g is increasing on (0, 3) because as r increases from O to 3, we keep (d) ¥
adding more area. o

(c) g has a maximum value when we start subtracting area; that 1s,

atx=23.
1

I X

(a) By FTC1 with f{t) =t* anda = 1, g(z) = [ t*dt =
g'(x) = flz) =22

(b) Using FTC2, g(z) = [[ t*dt = [#°]] =32 - 3 = g'(z)=2"

0 I x !
T f(t) =T+ and g(z) = [ VI+ P dt,s0 by FIC1, ¢'(z) = f(z) = VT + 2.

9. fit) = (t =t*)" and g(s) = [(t = t*)" dt, s0 by FTC1, ¢'(s) = f(s) = (s = s*)".

1. F[I}:fﬂtfl+ﬁetf-d-t:—£lul+ﬁetf-ﬂ = F{I]:—££IUI+H£d£:—Vl+HECI

_ .z du _ o dh _ dhdu
13 Letu=-e¢ .ThendI_a 'Alm‘dz—d‘udz’m
d < e
J:'{z]:;/; In!d.t_—f Iné df - Inua_{lne )re* =mze”.
_ du dy  dydu
15 Letuw =3z 4 2. mndz_ﬂ' Also, dz_dud.r'm
. o Az ] di = o R i d'u_ u du_ Jr4+2 _ 3{3.I+2}
Y oI L4+ duf, 148 dr l4atdes 14+(32+2) 14 (3z+2)p
du 1 dy  dydu
17, Letu = Then — = ——=. Alsp, — = ——
w=VE Then o = 5oz Abso, o = e
d [T d [V d
y':—f Ei"t.anﬂdﬂ:——f ﬂla.nﬂdﬂ-—uz—ulmu———v"_tan\f_ —:——t.an\-'"_
dr | 7 du dr 2./x

19 [N +2c—A)de= [ 42" —42] = (94 9-12) = (1 +1-4) =6+ 8 =2

)
N fIEC -3 M)dt= [ =P+ ] = (E -2+ %) -0=2
& 4 100 b 0 )
zs.f ﬁd::f 2 dr = [_] =[] =30 -r =3eT-1 =%
1 1 1 ; 1 ;

3/2

25, L:ﬁsinﬂdﬂ = [—cmﬂ]:!ﬁ =—cosw— (—eos X)) =—(=1) = (—ﬁfﬂ) =1+ ﬁfﬂ

7. [t = 9du= [ (@ - um6)du = [fu* - fu? - 6u]y = (- 3 -6) 0= -F
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260 O CHAPTERS INTEGRALS

w [ Braes [+ dp)ae= [ e

:[h1;’2+2 -u] =[42)+ 3(32)] = (44 3) =84+ 2 -4=-2=Z2

w2
. cscf cottdl = [—ce.-r_u‘l] === (=mci)==1=(=2)=1
[ J = (o) = (meeg) = =1- (=2

33.fﬂ1{l+r}adr:fnll:l+3r+3r2+ra}dr=[r+ gt -I--1 4] —{l-l- +1+1]—G_T:'

g & 2 ,
3-5,[ ﬁ:f (l+3u2) du:[lnlvl-{-vﬂ]f:{lnz-l-ﬁj—{lnl-}-l]:lni-{-'ﬁ'
1 u 1 LH

! 2=+ ' 1 1
3. f e dr = Tl = ] =01 = — =1
.[:.{E + ") dr [e‘+1+£]u (E+1+f_) (041} e+l+e

vioog v 1
S o S S VERE O

i (orge [Loe] 226 1 _ 15
" In2

) sinx If0<z<af2
4. If fix) = then

cosr faf2<a<n

fnr_rl[.z}d.r = f;"u.-iinzd.r +f:l|,2cmizd.r = [—r;t.lo.-u:]::"r2 + [ﬁi.ll I]:fﬂ = = cos 5 4 cosl 4 sin g = sin
==04+14+0=1=0

Note that f is integrable by Theorem 3 in Section 5.2

4q 4
ﬁArea:L ﬁd::£ I””d;:[é *ﬂ] =3(8)=-0=%

4. Area:j:n[él—xz}d::: [1r=12*],=(8=2)=(=8+5) =2
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SECTION 53 THE FUNDAMENTAL THEOREM OF CALCULUS O 281

49. From the graph, it appears that the area is about 60. The actual area is 4

T
I [%:"f:“]ﬂ =2.81—0= 22 = §0.75. Thisis 2 of the

area of the viewing rectangle.

1. It appears that the area under the graph 1s about % of the area of the viewing
rectangle, or about %# 7z 2.1. The actual area is
J.nrHiIIIdI =[—eosz]] = (—eosw) — (—es0) = —(=1)+ 1=2.

53 [F dtde= [ =4-1i=L =375

=1

55. fiz) = ™% is not continuous on the interval [=2, 1], so FTC2 cannot be applied. In fact, f has an infinite discontinuity at

x =0,s0 J'_lj £~ dr does not exist.

57. f(#) = secd tan# is not continuwous on the interval [7/3, 7], so FTC2 cannot be applied. In fact, f has an infinite

discontimuty at x = /2, s0 j:,a secd tan # 40 does not exist

:!lu2_l ﬂu'.!_l Kzuﬂ_l izuz_l :!zuz_l
5. = - du = - il —du= = - d - d
g{.r:]- £1 u? 1 u j;lu-!+1 u+j; uj-}.]_ " jl‘.'l. u? 41 U+fﬂ ut 41 v
b 2 ¥ b
Je) = 2= d (32)*=1 d, ., . 4z2-1 9x? — 1

P o Sl e N . T R 3.
(2z)2 +1 ' z]+{3z]3+1 ) 127 4 1 0x? + 1

= 2 2 = 2 * 2 =* 2
61. F(x) :f et dt :fﬁet d£+f et di = —f ' d1+f el dl =
= = [i] {i] [i]

F'(z) = - + A= ﬁ{rjj = e + 2z

inx 0 sk 2
63. y:f lnl:l+2u:]-d'v:f |n{1+2v]du+[ In(1 4 2v)dv
L]

[ g COosF

CO8 X S
= - /‘ In{l + ZU:Idu -I-f In{l + 21:} dv =
0 1]

d d
y' =—].||I[l+2t:uﬁz] ! Ecu&i.r-{- ].II'I:]. +2;ii||.r}-Eﬁill.r:hinIln[l +2cm.r}+cm¢.r ].Ill::l+ﬂrii.llI}
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262 O CHAPTERS INTEGRALS

S a?
BS. y= | ———dt =
o fﬂ:9+:+2 = Va2
y,,_{z”+x+z}{2z]-z'~‘{2;+1]_zx*+zx*+4;,-zrf‘-xﬂ_ P 44r z(z+4)
- (22 4z +2)* - (x2 4+ = +2)* T (2 4z+2P (2442

The curve y is concave downward when y" < 0; that is, on the interval (—4.0).

61. Fiz)= [ e ot = F"{x]=e'2,sumeslnpeat:s=2|5e22=e-‘.ﬂwy-mﬂrdumrnfﬂwpmmon Fatz=2is

F(2)=[, e +* dt = 0 since the limits are equal. An equation of the tangent line isy — 0 = ez — 2), or y = ez — 2e%.
8. By FTC2, [ f'(z)de = f(4) = f(1).50 1T = f{4) =12 = f(4)=1T+12=29.

71. (a) The Fresnel function S(x) = [ sin(%t") dt has local maximum values where 0 = 5'(x) = sin(%t”) and
5’ changes from positive to negative. For = > 0, this happens when z° = (2n — 1)z [odd multiples of x] <
" =2(2n=1) & z=+In=_2 nany positive integer. For = < 0, §’ changes from positive to negative where

Z:* =2nr [evenmultiplesofx] & =z =4n & x=-=2v/n. §' doesnotchangesignatz =0.

{b) 5 is concave upward on those intervals where 8" (x) > 0. Differentiating our expression for 5'(x), we get
z) = ELH{%IZ} {2% ] = 1r.1.-m.-.[ F ] For = = 0, §"(x) > 0 where u.mf_ Iz:] >0 &= 0 Ef < For
(2n=31)7 <z’ < (2n+L)m nanyinteger & 0<z<loryin=1 <z <vIn+ 1, nany positive integer.

Forz < 0, 5"(z) > 0 where cos($2") <0 = (2n—2)x < £z < (2Zn— £)m, nany integer &

dn=3<cr cdn=1 & JyiIn=3<|z|<yin=1 = JIn=-F<=rg/yIn=1 =
—vIn =3 > = > —/In — 1, so the intervals of upward concavity for = < Oare (—vIn =1, —v/In =3 ), nany
positive integer. To summarize: § is concave upward on the intervals (0, 1), (=/3, =1), (v3.v/5), (=T, =v/5),
(vVT.3)....

(c) In Maple, we use plot {({int (sin(Pi*t"2/2) ,t=0..x),0.2},x=0..2) ;. Note that
Maple recognizes the Fresnel function, calling it Fresnels (x) . In Mathematica, we use
Flot[|Integrate[Sin[Pi*t~2/2],1t,0,x}],0.2},{x,0,2}]. In Derive, we load the utility file
FRESNEL and plot FRESNEL_STH (x) . From the graphs, we see that [© ain{%!*] di =02atr = 0.74.

.75 n 3"
N y=02
yo= (L2
| wa—] Q | I
{l 1
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SECTION 53 THE FUNDAMENTAL THEOREM OF CALCULUS O 263

T3 (a) By FTICL, g'(x) = fz). Sog'(z) = f(z) =0atx =1,3,5.7, and 9. g has local maxima at = = 1 and 5 (since [ = 4’
changes from positive to negative there) and local minima at = = 3 and 7. There is no local maximum or minimum at

=19 since [ isnot defined for = > 9.

(b) We can see from the graph that |_|:_.|1 _fd!| <

INEIE

<|f7 rat] <

J":ff”|= and g(9) = [, fdt = g(5) -

[; 1dt]- S09(1) =

9(5) = [y fdt =g(1) =

S | +

g1} < g(5) < g(9), and so the absolute maximum of g{x) occurs at = = 9.

j':_rdz| + ij'f'_."dz|. Thus,

{c) g is concave downward on those intervals where g" < 0. But g'(z) = f(x), {d)
g""(z) = f'(x), which is negative on (approximately) (3. 2), (4. 6) and

(8, 9). S0 g is concave downward on these intervals.

it 1 1—0 = |/iy' i
75 lim % (— A —) = lim % (I— + ) — = lim 3 (l) + X
L =5 | A= -l T m A= i el L mn

=+ i) = (B4 0=

T7. Suppose h < 0. Since f is continuous on [z + k, =], the Extreme Value Theorem says that there are numbers u and v in

[z + k., x] such that f{u) = rmand [{v) = M, where rm and M are the absolute minimum and maximum values of [ on

[z + h, x]. By Property 8 of integrals, m(—h) < [, f(t)dt < M(=h); thatis, f(u)(=h) < = X" f() dt < f(v)(=h).
Since —f = 0, we can divide this inequality by —h: fu) < %f=+h F{t)dt < j(v). By Equation 2,

deth)zald) L [° " £(8)dt for b £ 0,and hence fu) < SEXM =9 < g4 which is Equation 3inthe

case where i < (L
T (a) Let flz) =T = fz)=1/(2,/T) >0forxr >0 = [isincreasing on (0, oc). If £ > 0, then £* > 0, so
1+ 2" > 1 and since f is increasing, this means that (1 + %) > f(1) = T+ > 1forz > 0. Next let
glt)j =" =t = g{t)=2t=1 = g'(t) >0whent > 1. Thus, g is increasing on (1, oc). And since g{1) =0,
g(t) > 0whent > L Nowlett = I+ 2%, where £ > 0. 1+ = > 1(fromabove) = t>1 = g{t)=0 =

{1+:sz}-x-f1+.r"2{!fm:52!}.Tltrefore,l5u’l+.r"51+.r’ﬁ:ur::2l].
{b) From part (a) and Property 7. [ ldz < [j vI+zde < [[(1+2")dz +
[£], < [ VIF Rde <[z +32%], & 1< [/ VIFtde<1+}%=125.

= x? 1

.0 ———— < — = — on [5, 10], so
ol N | x4 < [ ]

10 22 L | 17 1 1 1
0< S — —dr=|=-=| =——=(=2]=—= =01
—fs 2 422 4 1 ‘:/; 2 [ I] 10 ( 5) 10

5
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1
2vx

4
t
Tuﬁnda,msuhiﬂute;:amthennymleqmtmnmnhmmﬁ+f %d},:ﬂu’g = G+0=2+va =
@

83. Using FTCI, we djﬁ‘erentlatebmhsmsafﬁ+f %d! =2v";m-get% = = fiz)=

i=va = a=0
85. (a) Let F(t) —fo =) ds. Then, by FTC1, F'(t) = f(t) = rate of depreciation, so F(t) represents the loss in value over the
interval [0, £].

{4+ F(t
LL{I’. represents the average expenditure per unit of ¢ during the interval [0, t],

1 ]

b C() = 7 [A + f (=) .::5] =
[

assuming that there has been only one overhaul during that time period. The company wants to minimize average

expenditure.
© C(t) = -[J1+f it a-:l-da-] Using FTC1, we have €*(f) = -tiz[Juf f{s}ds] +1500).
(1]

C')=0 = t_f{:}:ﬁ+£f|[s]ds = f{!}:%[_«i+£tf{s}ds]:C{t].

54 Indefinite Integrals and the Net Change Theorem

d T+ == 1 d {1+I2}112 g z-%l[l-i-—f:]-l"uliﬂx:l—{l+;‘!}1"u 1
N <=~ 90% [P AYTPE Ve B oo o
_ 1+ Iz:]—lf:.! [;l:2 -1+ zz:]-] _ -1 _ 1
=- p T o) T 2Tt

d ; g
i E{laﬂz—z-}-ﬂ']:ﬁa‘fz—l-}-ﬂ:tﬂnz:
%z“ +2:% L O

L (5+3c"+ 32" dr=5c4+ 3 -3+ 3 ' + O=5z4 32 + o' 4 O

3 2
2., 0
9. fl[u-{-d}{ﬂu-l-—ljduzfi:Euj+Q'u+4}du=2uT+ﬂu?+4u+f-'=§ux+5u2+4u+l’:’

1 1 1 -
11'fﬁdr=f(-+ﬁ+f){h=f(_+ 1-"‘+_1).;1;
I E xIr I xIr

=h|z|4+ 2" 424 C=In|z]|+ 2z 4+ 2+ C
13. [(sinz 4 sinhz)dr = —ecosz 4 coshz 4+ O

15. [(2 4 tan®0)df = [[2+ (sec* 8 = 1)]dff = [(1+ sec® 6) df = 0 4 tanb + C

£ et _ £ e at 10"
1T.f2{1+a}c£t_fl[ﬂ+2 5% dt = f{2+mu¢ St
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SECTION 54 INDEFINITE INTEGRALS AMD THE NET CHANGE THEOREM 0O 285

19. j [u.mr + %I] dr = sinx + %Iz 4+ (. The members of the faﬂ‘l]l}' w0 ."Ill}jf”_ﬁ

in the figure correspond to ' = =5, 0, 5, and 10. \‘// 3

N [ - 3)dr =3 - 32]L, = (0-9) = (-3 +6) =} - F =-%
33.ffztéid+%!a—!}d£:[%E:'+T‘gt"'—%t2]tz:{]—[1—16{—32]+ﬁ[15]— M) ==(=-%+1=-2)=%2
25 [;(2z —3)(42® + 1) de = [;(8c® = 122" 4+ 22 = 3)dr = [22* = 42® + 2% —3a] = (323244 —-6) -0 = =2

1. [;(5e% + 3sinz)dr = [5e* — Jeosz]] = [5e7 — 3(=1)] = [5(1) — 3(1)] =5 + 1

mf (%);m:f(j_ 1.#,_)‘:r-h._‘/.ﬁ =24 bu ""’}du—[a u'? 4 du “‘”] =(16+32) = (8+4) =36

1
31.J.n1.r(e-"i1-:+':-'";}dI:J-‘;{I‘Ia-{'-I:"M]d:E:[%zrﬂt-i-%.ruf‘]a:{%-}-ﬁl—ﬂ:%
1 3
ﬂf (———)dr [-—I —Ell||z|] l—ﬂhlﬂl—(z—Elnl)zq—Elnﬂ
s [ 0= [0 100 o (L4 0 (04 1) = Lo 0
11 lnlﬂﬂ_ 11 Inl0 Inld/ 11 " InlD

=] b eos® cos” =4 3
“‘L Testo = f (cu.ajﬁ" wﬁﬂa)‘m—ﬁ (sec™0+ 1) df

= [tanf +0]7" = (tan £+ £) = (0+0) =1+ %

2+: "2 t —2ja | 1fa 173 443 ay _ 69
R R (R R S
WA d Vagz
41. _ [an.'ﬁin r] = u.rcmn(\r"'-]m) =arcsinll = I 0= z
il LTy 1l =r= o 3 3

'J’ﬁ: -1 uvE WE 175
43 jr £ mdl=£ md!Z[aﬂ:Tﬂn!]n =arctan(l,fv"§)—il.rcla.nl]

= =

EE
=4

8. [2 (z=2|e])de = [°, [z = 2(=2)]dz + [[[x = 2(z)] dx = [°, 3zds + [ (-z)dz = 3[%;2]‘:1 - [227]]

=3(0-14)-(2-0)=-3 =35
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47. The graph shows that y = 1 = 2z — 527 has z-intercepts at :
x = a sz =0.86and at x = b == 0.42. So the area of the region that lies /_\
under the curve and above the r-axis is —2 \ :

[(1=22=52Yde =[x =2 =2°]"

==t =b")=(a—a’=a®) = 1.36

0 A= [C(y-y)dy =" - W*];=(4-2)-0=4

51. If w'(t) is the rate of change of weight in pounds per year, then w(t) represents the weight in pounds of the child at age . We
know from the Net Change Theorem that j;” w'(t) dt = w(10) = w(5), so the integral represents the increase in the child’s
weight (in pounds) between the ages of 5 and 10.

53. Since r(t) is the rate at which oil leaks, we can write r(t) = =V"'(t), where V' (t) is the volume of oil at time ¢. [Note that the
minus sign is needed because ' is decreasing, so V' (t) is negative, but r{t) is positive.] Thus, by the Net Change Theorem,
jﬁlm rt)dt = = Em V() dt = = [V{120) = V(0)] = V(0) = V(120), which is the number of gallons of oil that leaked

from the tank in the first two hours {120 minutes).

55. By the Net Change Theorem, j'l R'(x)dx = R(5000) = R{1000), so it represents the increase in revenue when

production is increased from 1000 units to 5000 wmits.

57. In general, the unit of measurement for j': F{z)dx is the product of the unit for f{z) and the unit for z. Since f(x) is
measured in newtons and x 1s measured in meters, the units for _[nlm J{z) dx are newton-meters {or joules). (A newton-meter
is abbreviated N-m.)

59. (a) Displacement = [[}(3t =5)dt = [3* =5t} = £ =15 == m

(b) Distance traveled = [\ |3t — 5|dt = [/*

3 . | ! "
=[st— 3] 4 (20 —5t]),, =% -3 B4 T -5 (32 -2)=Lm

(5 —3t)dt + fm{at — 5)dt

6. (@) v'(t) =a(t) =t+4 = o) =2"+44+C = v0)=C=5 = v(t)=3"+4+5m/s
(b) Distance traveled = [['° [o(t)]dt = [/ | 3% + 4t + 5| de = [}°(4t* + 4t + 5) dt = [$£* + 2% 4 5(] "

00 4 200 4 50 = 4165 m
4
63. Since m'(x) =p{:5],rn=_[:p{.r}d.r=_l?{9+ 2?";)11:: [ﬂ:+ %Iﬂﬁ]u = 36 + % =0= % =4E%kg.

65. Let = be the position of the car. We know from Equation 2 that {100} — s{0) = ‘;m v(t) di. We use the Midpoint Rule for
0 <t < 100 with n = 5. Note that the length of each of the five time intervals is 20 seconds = 522- hour = 15 hour.
So the distance traveled is

% w(t)dt = Z=[e(10) 4 v(30) + v(50) + v(70) + v(90)] = 2=(38 + 58 + 51 + 53 + 47) = 2L =~ 1.4 miles.
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SECTION S5 THE SUBSTITUTIONRULE O 267

67. From the Net Change Theorem, the increase in cost if the production level is raised from 2000 yards to 4000 yards is

C(4000) = C(2000) = [0 J’{z]d:s
A (W) 4 2 7 4000
f C'(z)dr = f (3 = 0.0Lx 4 0.0000062") dz = [3,—, - 0.0052" 4 0.000002:
2000 2000 2000

= 60,000 = 2,000 = $58,000
69. To use the Midpoint Rule, we’ll use the midpoint of each of three 2-second intervals.
v(6) = v(0) = [, a(t) dt = [a(1) + a(3) + u.l[E}] -0, (0.6 4 10 + 9.3)(2) = 30.8 fifs

T1. Let P(t) denote the bacteria population at time £ {in hours). By the Net Change Theorem,

1 1 £ 1
P(1) = P(0) =£ P'(t)dt =£ (1000 -2")dt = [mun 1.21._2 = % (2' =2 = % 7= 1443.

Thus, the population after one hour is 4000 + 1443 = 5443,

T3. Power is the rate of change of energy with respect to time; that i1s, P(t) = E'(t). By the Net Change Theorem and the
Midpoint Rule,

E(24) — E(0) = f:‘ P(t)dt = =—L[P(1) + P(3) + P(5) + -+ + P(21) + P(23)]

= 2(16,900 + 16,400 4 17,000 + 19,800 4 20,700 + 21,200
+ 20,500 + 20,500 + 21,700 + 22,300 + 21,700 + 18,900)
= 2(237,600) = 475,200

Thus, the energy used on that day was approximately 4.75 x 10° megawatt-hours,

5.5 The Substitution Rule

1. Let v = 2x. Then du = 2dr and dx = -du s0 [cos 2o dr = [cosu {Edu} -:.-s:ulu+f-‘--hu|2::+[_f

3. Letu==z"+ 1. Thendu = 3z” drand " dx =  du, so

A2
f 2/ 1de = f‘u"—{adu )=33F A= W HO=RE ) e

5 Letu =z =5 Thendu = 4r* drand * dr = 1 du, so

1
£ 1(1 1 1 _
ff_ﬁdr_f;(idu)_E|n|u|+(:_dln|.r —5|+f:.

7. Letw =1 =z Thendu = =2rdrand rds = =3 du, so

JeyT=a de = [ u (=ddu) = =} 3™+ C= =31 =P + C.

9 letuw=1-2z Thetldu:—ﬂd::amidr:—%du,s‘.ﬂ

fl[l - EI}” dr = f u” {—%du} = —% . ll—num + O = —%{1 - ﬂ.r:l-m + .
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268 O CHAPTERS INTEGRALS
1. Letu= jt Then du = "dtandd‘.', Jdu‘mfcm{%] _rf_mu{zdu} —alnu-l-f, ——HI]’.I{ !}-I-—(-'

13. Lﬂu:E—Sz.Thendu:—ﬂdza.midI:—%du,SD

1
- [—%du} = —%ln|u| + = —%ll||5—3:5|+f:.

u

15. Let w = cos . Then du = = sin @ df and sin # dff = =du, s0
J't:u&xﬂ sinddl = | ut(=du) ==lu' 4 C==lens"04C.

17. Let x = 1 — ", Thendr = —e" du and e® du = —dz, 50

et _ 1 _ —a _ -1 1 W 1
fmd‘u—f:—i{—d.r}——fz dI——{-—I }-{-f.z—;-{-f.z—l_eu-{-ﬂ.

19. Let u = 3ax + br®. Then du = (3a + 3be?) dr = 3{a + be?) dx, s0

a + ba® gdu 1 =1/2 142 .
Wi .u=§f“ du=§-2u'" 4 C= 3v/3az + ba* + C.
1
2. Letu = Inz. Thendu = 2= f{"‘ﬂ dr= [udu=1u*+C=L{nz)* +C.

23 letu= lmﬂ.ﬂmndu:mjﬂdﬂ,snfﬁEEﬂ Lu.llﬂﬁ'dﬂ=fuxdu= %u" +ﬂ'=%lml"5‘+ﬂ'.

25 Letu=1+¢" Thendu = e*dr,s0 [T+ erde = [ Judu=2u** 4+ C= 21+ 4 C.
Or: Letu = /T + e=. Thenw® = 1 4+ & and 2udu = ¢ dr, 50
je*ul+e¢dz=fu-2udu=%ux+f-':%I[l+e':]-x‘r2+f:.

7. Letu = 2" + 3z Th-et‘ldu={h2+3}drmd%du={12+l}dam

J'{.rz + .'l]l[.rx + ﬂxrd.r = _ru-" {%du'_l = % : %us +C = ﬁ{.ra + 3z]5 +C.

29, Letu = 5'. Then du = 5' In5diand 5' di = ﬁdu,s‘.ﬂ

1 1 1
fﬁtsin{El}dt = f:.-sinu (ﬁ du) = =iz cosu +C= —ﬁtm{E:] +

3. Let u = arctanx. Then du = uidy = tu' 4 = %I::a.n:lun::}x + .

T4l
33. Let u = 14 5t. Then du =5df-ﬂndd'|l-=%du,5|]

Jreos(1+ Ei}d'.',:fu.mu[%du] = 2sinu +C = 2sin(l + 5t) + C.
35, Let u = cot z. Then du = —ese” zdr and ese? xdx = —du, so

Az
fvcutzcscjrdrzfﬁr;{—du] =—E+L = %I{L‘utI:‘a‘u + .

37. Let u = sinh x. Then du = cosh x dx, 50 fﬁinhzr cosh rdr = fuzdu = %ux +C= %Hinhxr-i- C.
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SECTION S5 THE SUBSTITUTIONRULE O 289

2 _.' . .
39. Sz e o [ ICST 9] Letu = cosz. Thendu = —sinzdz, 5o
l+¢.m2.r 1 4 cost

d . .
2;:-2[1‘;—“2 ==2.1m(l4u") 4+ C==ln(l+u")+ C==In(l +eos” ) + C.
w

Or: Letw =1 4 cos™ x.

] 1
4. fcut.:sda::fﬂ__mmd.r. Let uw = sinx. Thenduztuﬁrd:s,mfcut.:sd.rzf—du =ln|u| + C =ln|sinz] + C.
u

s5n T

43, Let v = sin~' x. Then du = _f du_|n|u|+f:_|n|hm .17|-+-f.;

m= f m-—m

45 Letu=1+ z°. Then du = 2rdx, so

_1+I = 1 %du_ -1 .
fl+$2d'r_f_l+:szdr+fl+.rddr tan~ x4+ T_t,.u.n I+Eln|u|+{‘.“-

:t.an-lm-l-%ln|l+.rzl + :lil.ll-jI-i-%lll[l-i-Iz] 4 [since 1 +-122::-D].

il. letu =245 Thendu = 2drand x = %{u—E:},m
Jx(2z + E]Hd.i,':f%{u—ﬁn]u“ {:% du) = %j‘{uﬂ—ﬁu"}du

= %{%um - Eu"} +0= ﬁ{ﬂr-{-— E]m - %{2I+ 5" +C

8. flr)=z(r" =1, u=r"=1 = du=2rdr so I

Jx(z* =1)*de = [u*(tdu) = tu' + C=1(z* = 1) 4+ O

Where [ is positive (negative), F is increasing (decreasing). Where f

changes from negative to positive ( positive to negative), F* has a local

FYLEFATTILETY { FRANITLET ).

8. f(z) =™ “sinz. u=cosxr = du=—sinzds, s0

femzﬁinrd:sz fe“ f_—du} = —p® (T = =t T

Note that at » = , f changes from positive to negative and F has a local
maximum. Also, both [ and F are periodic with period 27, so at = = 0 and

at £ = 2w, f changes from negative to positive and F has a local minimurm.
53 Lletu= il sodu= Fdl. Whent =0, u =0 whent=1u=1I. Thus,
f'; cos(mtf2) dl = nr"rz COS I {%d‘u] = 2 [sin :.:l'r"'I = 2 (sin T —sin0) = %I[l -0)==

85 letu=14+Tr,s0du=Tde Whenxr =0, u=1,whenx =1, u =5 Thus,

1
£ ma'::f u (L du) = & ["‘ ‘”‘] =£@EP-1=26-1)=8
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5. letu = cost, sodu = —sintdl, Whent =0, u = 1, when t = %,u = ﬁfE Thus,

= [ -.-'Tf-! vEfZ
f sint Sint _j- —{—du] [l] =i_1_
o cos2 t u |, V3

58, Letu = lf.r,snduz—lf:szd:s. “"J‘len.r:l,u:l;“«hen::i,u:%. Thus,

2 E1.,!'2
|z

&1. j'i}dfzx + 2% tan x)dr = 0 by Theorem T{b), since f(z) = * + =" tan r is an odd function.

2
o (mdi) = = [ = (@ = ) = e~ VE

63 letu=142r s0du =2dr. Whenx =0, u = 1; when r = 13, u = 27. Thus,

[ =

65, Letu = 22 + o, s0 du = 2o dx and xdr = s}du. When = =D,u=uj;\.\-hen.r:u,u=2u.j.'rhus,

a 20 as2
_ 12 _ a2 _ asz _ 2,802 ayar2] 3
L ryx2? 4 a® dr _ﬂz i {%d :I i[% ]ni _[_.—]iu ]nﬂ _%[{Zn} —{a] ]_%(2\-@—1){:

T
w2 (L du) = [— 3u1*'“] =3(3-1)=3.
1

6. letu=z—=l,sou+l=canddu =ds Whenz =1, u =0, when £ = 2, uw = 1. Thus,

ke
I

f VT —Tde= f{u+1}v’_du—f{u““+u1‘“]du—[3 u™? 4 fu W]D=§+

d
64. ]’.e’lu:lu::,mdu:—z. When z = e, u = 1, when x = &, u = 4. Thus,

xr

£
dx =12 [1;2]"
= ) du=2|u =2(2=1}=2
j; svinr 1 ( )

T. Letu=¢"+ z,50du = (" + 1)ds. Whenz =0, u= 1, whenz = 1,u = e <+ 1. Thus,

1.4 e41 ] i
f £t d::f —du = [].|||u|]n =lnle4 1] —In|l] =1lnfe + 1).
[ 1 u 1

et 4=

T3 Letu=1+ /T s0du= dr = 24Tdu=dr = 2(u=1)du=dr Whenr=0,u=1,whenz=1,

1
2./

[y [ e nai =2 (G- &) du=2f-gz+ 3]

=2[(-z+ %) - (-3+D=25%) =3

u =2 Thus,
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SECTION S5 THE SUBSTITUTIONRULE O 21

75 From the graph, it appears that the area under the curve is about 1

1 + (a litle more than 3 - 1-0.7), or about 1.4. The exact area is given by
A= [} Zr ¥ Tdx. Letu = 2x + 1, 50 du = 2dx. The limits change to
2.041=1and2-141=3 and

A= [P Vu(ydu) = 4[4 w] L3v3-1)=vI-1=~130

T7. First write the integral as a sum of two integrals:
= +3VI-2de=1+ L= [*,zyT=aPdz + [*,3/T= 2 dz. I, = 0 by Theorem 7(b), since
fix) = = +v4 =27 is an odd function and we are integrating from = = =2 to * = 2. We interpret [z as three times the area of
a semicircle with radius 2,50 f =0 + 3. 1 (. 2%) =6m.
79, First Figure Letu= ﬁ,mz:uznnddzzﬂudu.“’henzzﬂ,u=l];whenx=l,u= 1. Thus,
Ay = [ ev¥de = [} e*(2udu) = 2 [ ue® du.
Second Figure A3 = [ 2ze® dr = 2 [} ue® du.
Third Figure  Letu =sinx, sodu =coscdr. Whenz =0, u =0, whenz = &, u = 1. Thus,
As = [ 0= sin2edr = [[/* % (2sinx cosx)dr = [ e*(2udu) =2 [} ue"du.
Since Ay = Az = Ay, all three areas are equal.
81. The rate is measured in liters per minute. Integrating from ¢ = 0 minutes to { = 60 minutes will give us the total amount of o1l
that leaks out {in liters) during the first howr.
[0 vty dt = [0 1006~ dt  [u = —0.01¢, du = —0.01d¢]

=100 [ e (=100 du) = —10,000 [¢*]*° = —10,000(=2° = 1) = 4511.9 = 4512 liters

83. The volume of inhaled air in the lungs at time £ is

£ 1 A 2urtf5 1 5
Vit = f{u]du:f Eﬁul(? u)du:f E}jil:.ll (Ed'u) [Stlhﬁunnevz%u,dvz%du]
o o [

= —[- cosv] ;™" = 41 [-cm(—z) + 1] = 43 [1 - m(%t)] liters

a0 a0 . —S0r iV
8s. f ul(t) di =f = Coe™™/V dt = frgf
0 (1] 1

=30V

=Gi[-2]" " =Co(=e=®1V 41)

="V
(—dz) [d:: —Fe -"-'“"d:]

The integral fﬂm u(t) ot represents the total amount of urea removed from the blood in the first 30 minutes of dialysis.

87. Let u = 2. Then du =2d::,snjn?_f{2.r]d.r =J:_|I"{u:]-l:%du] =%f:j[u]du = ;(I0) =5
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89. Let u = —z. Then du = —dx, 50

v= fix) v =fl—x]
I2 f(=z)dx = [ZF flu)(=du) = [5* flu)du= [ f(z)dz
From the diagram, we see that the equality follows from the fact that we are
p R

reflecting the graph of [, and the limits of mtegration, about the y-axis. -]

M. letu=1=x Thenx =1 = uwand dxr = —=du, so

J'Ul (1 =z)tde = Lﬂ (1 =u)® u(=du) = J'ul ut(1 = u)du = J'Ul (1 = £)* dx.

TsinT sinx

. t
Tz 5 Tz = x f(sin ), where f(t) = I=F By Exercise 92,

T rsinx T sinax
_ = dr = — dr = — ——dr
f; T+ cos? I f x f(sin ) f [flsinx) Ji; 1+ colz

letu=cosxr Thendu = —sinzrdr Whenr=rnr,u==landwhenr=0,u=1 50

r [ sinx [~ du x ' du T 1 11
T 2B g =-I -z = ™[ tan-
Zﬁ 14 cos?ax 2]; 14 u? 2];114._“2 2[ 1 “]-1

St 1wl = 2o (D)) = 2

5 Review
TRUE-FALSE QUIZ

1. True by Property 2 of the Integral in Section 5.2,

3. True by Property 3 of the Integral in Section 5.2,

5 False.  For example, let f(z) = z*. Then [, vx%dr = [ xdxr = &, but /[ 2 dx = V/E: =
7. True by Comparison Property 7 of the Integral in Section 5.2
9. True.  The integrand is an odd function that is continuous on [—1, 1].
11. False.  For example, the function y = || is continuous on B, but has no derivative at = = (.
13. True by Property 3 of Integrals.
15. False. _[: J{z) dx 15 a constant, so % (f: flz) d.r) =0, not f(z) [unless f{x) = 0]. Compare the given statement
carefully with FTC1, in which the upper limit in the integral is .

17. False.  The function f{x) = 1/z* is not bounded on the interval [=2, 1]. It has an infinite discontinuity at = = 0, so it is
not integrable on the interval. (If the integral were to exist, a positive value would be expected, by Comparison

Property & of Integrals.)
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EXERCISES

1. @ Le=3 flzi) Az [Ar=t50=1

=1

¥ = fixi = flza)- 14 flz1) - 14 flze) - 1+ flza) -1+ flza) - 1 4+ fzs) -1

s 243544424 (=1)4+(-25)=8

td

i 2 X
HJ The Riemann sum represents the sum of the areas of the four rectangles

above the z-axis minus the sum of the areas of the two rectangles below the

T-AXIS.
(b) M = il fE)Az [Az=tiz2 1)
s = fixi = f(F1)- 14 f(Fa) - L4 f(Ta) -1+ f(Ta) - 1+ f(Ta) - 1+ f(Te) - 1
i = f(0.5) + f(1.5) + f(2.5) + f(3.5) + f(4.5) + f(5.5)
L] 2 X
w ~ 34+ 3.9+ 344034 (=2)+(-29) =57
The Riemann sum represents the sum of the areas of the four rectangles

above the r-axis minus the sum of the areas of the two rectangles below the

T-axis

3.jn1{1:+1.-'1—P;Id.r=j;1.:dr+fu1\-"l—.:!d.r=h+h. ¥ d
I can be interpreted as the area of the triangle shown in the figure

and [ can be interpreted as the area of the quarter-circle.

Area = 1(1)(1) + L(=)(1)* =L + 2.

5.f;f{.r]d.z:E_,I"{I]d.r-b—fff{:}dz = lﬂ:'r'+f:_f{1']d.z = fff{:]dz:lﬂ—?:ﬂ

7. First note that either a or b must be the graph of [* f(t)dt, since [ f(t) dt = 0, and ¢(0) # 0. Now notice that b > 0 when ¢
is increasing, and that ¢ > 0 when a is increasing. It follows that e is the graph of f(x), b is the graph of f'(z), and a is the
eraph of [* £(t) dt.

9. g(4) = [ ft)dt = [} fle)de + [7 f(t)de+ [ f(e)de+ [ F(t)dt

—_1.1. area of ranghe, L.1. . L.71.9—
==z 1.2 [bdmr!-ums + 3 1:241 2+2 1-2=3

By FTC1, g'(z) = fix), so g'(4) = f(4) = 0.
M [7 (8" +3c%) dr=[8- 2o+ 3. L) = [2e 4 2% = (2.2 4 2*) = (24 1) =40 =3 =37

13. jﬂl{.l- ”}d'rz[r_ﬁ"m];=[1—l—h]—l]=%

i -2 2 9 s § a1
15, [ L2 du:f (u 1f‘-2u}du=[2u""—u*] =(6-8)-(2-1)=-T6
u 1 t

1
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274 O CHAPTERS INTEGRALS

17. Lﬂu=y2+ l,mdu:?ydyandydy:%du.\’ﬂlﬂﬂy:ﬂ,u: Lwhengy =1, u =2 Thus,

Jo ulw® +1)° dy = [’ (3du) = § 3]} = HG1-1) = B =

Pt ) 1
19, f g does not exist because the function f(t) = ———— has an infinite discontinuity at ¢ = 4,
L (=

==y

that is, f is discontinuous on the interval [1, 5.

1. Le’lu:v{mdu:ﬂuzdu. Whenv =0, =0, whenv = 1, u = 1. Thus,

luzcm{na]dn =_ﬂ; -::Uﬁu{%du] =%[5inu]; = %[ﬁinl —ﬂ] = %.-sin 1.

=/ tant t*tant
. —_—dt=0 by Theorem 5.5.7(b), since f(t) = —ar 15 an odd function.
—xfa 2ol 24 cost

2 2
nf(ﬂ) dzzf(l_l) dzzjf(Lj_E+1)dx=_l-zh.|z|+r+r:
F A I I i F

2. Letu = £ + 4z. Thendu = (2r + 4)dr = 2(x + 2)dxz, so

2 - : -
A dz= f Vi(idu) =1 -2 +C=VE+C= VBT +C.
. Letu =sinwl Thendu = 7 coswidt, so [sinwl coswtdl :_fu{%du} =1l.w'4+C= L(sinmt)* +C.

M. Letu = \/F Thendu = —2 m[ﬁu—zfe"du—ze"+('—ze~"3+ﬁ
. . e = : ol

—sinax

33 Let u = In{eos ). Then du = dr = =tan rdr, S0

Ciks T

J‘ tan x ]Jll[u.mr}dr = —J‘ wdu = —%uz + 0= —%[lll{tmI}]j + .

11
35 Letu =1+ z* Thendu = 42* dz, snf1+I4d.r—4f;du:%h||u|+f}‘:%h|{l+—z"]+—ﬂ'.

3. Letu = 1 4+ sec . Then du = sect tanf df, so

sec i tan 8

1 1 .

3. Since z* —4 <0for0< z <2anda” =4 > 0for2 <z <3, wehave |o* —4] = —(z* =4) =4—2" for0 < = < 2and

|#* = 4] = 2" = 4 for 2 < x < 3. Thus,

| . @ a 3 N :E?.' E Iﬂ: 3

f |= —4|dr=f{4—:s]dx+f{z -4}::::[4:-—] +[—-4;]

0 o 2 3 1q 3 2
— —_— — A2 o 3
=(8=3)=04+(9-12)= (3-8)=F =34 F=F-3=%F
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M. letuw=14sinz Then du = eos zdx, S0

s T dx ;
L: w= gy =2 0 =24 T $sinx + O
v 1 4 =inx

=

43. From the graph, it appears that the area under the curve y = x /= betweenz =0

and = = 4 is somewhat less than half the area of an 8 x 4 rectangle, so perhaps

about 13 or 14. To find the exact value, we evaluate

[t ayTde = [ +¥? dx = [‘ ﬁfﬁ] =)= =128

L Lj d = !2 IE
45 Fz) = — i Flir) = — di =
=) ﬁ e = Fl dzj; T+8 1+

dyg d_q du

du
a7, Letu =z, ThenE_:Lz Also,dl_ o d:m

“+
o d ™ g d .,
g'(x)= E]: u.m{-',j]-dt = Hjn- cos(t”) dt - ﬁ = cos(u”) d'T: = 4a" cos(z").

9.y = —d.',—f —d.-,+f dt = f —-:.E:+f St =

dy  d [ [VFe d [ [* e _
E"E([ Td!)+E(fl Tcu).mu_ﬁ.mn

d [Ty d [ At du e 1 _eF 1 e~

dr [, t T dr . T du " de ~ u 2\-";_ T 2.,‘.-";_21:'
o dy e¥E + e _ 2e* — g¥E
dr 2z x 2 '

SMIfl<z<3thenyTE+3< /243 +3 = 2<,/27+3<2.7 s0

23-1)< [ VT +3dr £2/3(3-1); thatis, 4 < [ aTF3dr <43
5. 0<x<]1l = 0<cosz<]1l = Izcm.rfrj = fﬂlrju.mrdz:ﬂfﬂlzzdxzilz:x];:% | Property 7).
Besr<]l = efosr e = _ﬁ; e* cosrdr < fﬁlezd.: = [E‘EE —eg=1

57. Ar = (3—0)/6 = 1, sothe endpointsare 0, 3,1, 2,2, 2 and 3, and the midpoints are 1, 2,2 2 2 and 1L

The Midpoint Rule gives

J2 sin(z*) dx = t.iljl[f.}ﬂu: = L|sin(%) +sin(3)" +sin(2)" + sin(L)" + sin(3)° +sin{%}"‘] = 0.280981.
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59. Note that r(I) = b'(2), where b{t) = the number of barrels of o1l consumed up to time ¢. So, by the Net Change Theorem,

f;' r(t) dt = {8) = b(0) represents the number of barrels of il consumed from Jan. 1, 2000, through Jan. 1, 2008,

61. We use the Midpoint Rule with n = 6 and At = 2£=8 = 4 The increase in the bee population was

() dt 7= Mg = 4[r(2) + r(6) + r(10) 4 r(14) + r(18) 4 r(22)]
2 4[50 + 1000 + 7000 + 8550 + 1350 + 150] = 4(18,100) = 72,400

63. Let u = 2sinf. Then du = 2 cosf dff and when & = 0, u = 0; when & = E,u:Z. Thus,

L2 f(25in8) cos8d0 = [} f(u)(Ldu) =1 [2 flu)du =1 [? f(z)dz = 1(6) =3.

65. Area under the curve y = sinh ex betweenr =0andr = 1 isequaltol = 4
jﬂlsinhc:sd.r:l == %[{mhc.r]é:l = i{u.m]lc-l}:l ==
coshe —1=¢ = ecoshe= e+ L From the graph, we get ¢ = 0 and

e fz LG161, but & = 0 isn't a solution for this problem since the curve

y = sinh ex becomes y = 0 and the area under it 15 0. Thus, ¢ == 1.6161. —2% o z

67. Using FTC1, we differentiate both sides of the given equation, [[* f(t) dt = (x — 1)e** + [ e™" f(t) dt, and get

2r
f(@) = 42z =1)e* 47 f(@) > f@)(1=eT) = 42x =1 > flz)= D
89. Let u = f(x) and du = f'(x) dz. S0 2 [} f(=)f'(x) dz =2 [{i} udu = [*] | = [f(b)]* = [f(a)]".

T. Letu=1—:x Thendu= —d::,mf;f{l—.r]-d.rzﬁf{u}[—du} =j:: f{u}du:f; fix) de.

73. The shaded region has area || f(x)ds = 1. The integral [, f~(y)dy

gives the area of the unshaded region, which we knowtobe 1 — 3 = 2. ¥ =n{l-”
. - = f"Y¥
So [ f7 ) dy =
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[1 PROBLEMS PLUS

2
1. Differentiating both sides of the equation xsinwr = fﬂ’ Sit)dt {using FTC1 and the Chain Rule for the right side) gives
sinwr 4 wreoswr = 2rf(x”). Letting x = 2 so that f{z*) = f(4), we obtain sin 27 + 27 cos 2x = 4 f(4), 0

f(4)=30+2-1) =%
3. For I = [ 2" dr letu =z — 250 that = = u + 2and dr = du. Then
I=[2(u+2)e" du= [2, ue" du+ [2,2¢" du=0 [by 5.57(b)) +2 [ =" dr = 2k.

al=]) 1 SSRE
5 flz)= f dt, where g(x) = f [1 4 sin(t*)] dt. Using FTC1 and the Chain Rule (twice) we have
o o

N
SR S
W1+ [g(=)P VI+[ag(m)F

1

f{f}=ﬁ{

7. By I’'Hospital’s Rule and the Fundamental Theorem, using the notation exp(y) = e¥,

ik
fMz) = [1 + sin(cos® z)](— sin x). Nowg(%) = L [1 + sin(t*)] dt = 0, s0

l4sin0)(=1)=1:1+(=1) = =1.

] b

(1 = tan2t)** dt — tan 2p)if=
lim fo ( an2t) L lim a 2x) = ’E}"P(
2= T F—sl) 1

H i =256 22} _ =2-1°Y _ _,
- S Ttz ) P\ T=0 ) TF

9 flzr) =24 r=0"=(=24+2)(z+1)=0 & z=2uwz==1.[f(z)>0forzre[=1,2]and f(zr) < O everywhere

iy (1= Lanﬂzj)

else. The integral f:{ﬂ + = = x”) dx has a maximum on the interval where the integrand is positive, which 1s [=1, 2]. So
a= =1 b=2 (Any larger interval gives a smaller integral since f{x) < 0 outside [—1, 2]. Any smaller interval also gives a

smaller integral since f{z) > 0in [=1, 2].)

i

11. {a) We can split the mtegral J'r_.l" [z] dx into the sum El [f.'., [=] d.:] But on each of the intervals [i — 1, i) of integration,
-

[z] is a constant function, namely ¢ — 1. So the ith integral in the sum is equal to (i = 1)[i = (i = 1)] = (¢ = 1). So the

Dr]glml ]ﬂt&grﬂl .seqmlm i{: - 1} = “ili — {71 —21}11.

imi1 imt
(b) We can write [ [z] dx = [ [] dx — [ [¢] d=.
Now [y [e]dz = [} [z]dx + [5; [x] dx. The first of these integrals is equal to $([6] — 1) [H].
by part (), and since [x] = [b] on [[4] . 8], the second integral is just [5] (& = [4]). So
Jo [=1dz = 3([6] = 1) [] + [] (b = [8]) = £ [¥] (26 — [] — 1) and similarly [}’ [z] dz = § [a] (22 — [a] = 1).

Therefore, [* [x]dx = &[] (2b — [b] = 1) — 4 [a] (2a — [a] = 1).
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b oo g i
=1 =f
3 + =" 4

13. Let ()(x) = fPt}d: |:a-t+- 3 43"] _ax+-f+-x +§z"'.1’hen£}{ﬂ]=l],a.rui£.}[1]=ﬂh}'1he
0

] il ;s
given condition, a + = + % +5=0 Also, Q' (x) = P(z) = a+ bz + cx? + dx* by FTCL. By Rolle’s Theorem, applied to
€2 on [0, 1], there is a number r in (0, 1) such that ¢’ (r) = 0, that is, such that P(r) = 0. Thus, the equation P(x) = D hasa
root between 0 and 1.
iy

More generally, if F(x) =g+ o ® + iax” + oo Fay ™ and ifag +% + %-ln ven o Pl = 0, then the equation
a TE

P (x) = 0 has aroot between 0 and 1. The proof is the same as before:

Lﬂ@{:}:ﬁti—‘{t]dizmz+%zz+ c;—ﬂrﬂ-l-----i'- _:1.17" Then Q0) = (1) = 0and O (z) = Plz). By

Rolle’s Theorem applied to 2 on [0, 1], there is a number r in (0, 1) such that '(r) = 0, that is, such that PP{r) =

15. Note that (L U:fqa}dz] d'u) :j:f{:}dwyncn,“mle

“ [ [ fu)(z - u}d’u] == [,—, L . f[u}du] -= [f Fu)u du]

= f; flu)du + zflz) = flz)z = f; Slu)du
Hence, [ f(u)(z =u)du = [ [[* f(t)dt] du+ C. Setting z =0 gives C = 0.
m Let e be the nonzero z-intercept so that the parabola has equation f({x) = kz(x — ),

ia, k)
ory = kx” = ckx, where k < 0. The area A under the parabola is

A= [ kx(z —c)dz =k [} (= — cx) dx = k|3 — Lez”]

fe.0) =k(3c" - §c) = -3k
LR X
\ The point (a, b) 5 on the parabola, so fla) =6 = b=kala=c) =
b

Substituting for k in A gives Ale) = -
il =

_ b
T ala-o

b la=cBct)=cl(=1) _ _b Pla=c)de _ _bi(3a=2c)

AO=-5 (a=o)? 6a' = (@-cp bafa = c)*

NowA'=0 = c¢= Ea. Since A'(c) < Dfora < c < %uand:i"[c} = 0 for e = %u,m;’l}msanahmlme

b Eb 2b

minimum when ¢ = 2a. Substituting for ¢ in k gives us k = - 0 f(x) = == z(z = 2a), or
ﬂ-

ﬂ[ﬂ-%u.}
2% , b -

f(z) = == =* + — . Note that the veriex of the parabola is (3a, 7b) and the minimal area under the parabola
[rd £

isA(3a) =2
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1 1 1
19. & <+ + o ——
“I—I'I:f-(ﬁ\.-'rn-{-l Wyn4 2 ».,-"'Eﬁn-{-—n)

f f M n
= 1 -
ﬂEI;t.ﬂ-( n.+_'l r|:+2 n4+n

1
= lim

:,.I'_I.'L;ZI( ) [wheref{-ﬂ: 11+z]

il

Edm:[?xﬁ".H-_I];ZE(\ﬁ—l}

:[W
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6 [1 APPLICATIONS OF INTEGRATION

6.1 Areas Between Curves

1. :fﬂﬂiw-yn}dr:f(é’?-i)dz: E;"”"-lnhqj:{12-|n8}- G-h.l) :?—Iuﬁ

el

3 -’l=fy-1{rk-n}dy=f_]1 [E‘”-{yz—ﬂlldy=£ll[2”—y2+2}dy

=1

= - b n), = (¢ -1 - (e men L4 0

1
i zl:f [ez—{.rz—l]] dr = [e-!—i.rﬂ'+r]l_ ¥
=1

:I[s_'—%+1]—|[e-'l+&—l}:e—%+:.%

et =t =1

o v=a"—1

7. The curves intersect when (£ =2)* =2 & ' =dzs+d=z & ' =5cr+4=0 &

{I—l}{I—4}:ﬂ & r=1lord

A =j:‘[r- [z = 2)"]dx =‘/:‘{—I‘ + 5z — 4) dx

= [-4 + 32" - 1a]!

r— =2

= (<% 440-10) = (<34 5= )

®
]

2 2
9, .-l:f (l—i,)da::[ln.r+l] ’
Y A z],
bod
=(n24+%)=(lnl+1) VA
=In2=1=019 VA
Y | 2 *
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282 O CHAPTERE APPLICATIONS OF INTEGRATION
11. The curves intersect when 1 = y° =9 =1 & 2=2%* & 3y =1 & y==%IL

f =) - P -] dy

1

j;l 2(1 = y*)dy

1 I————————————
1 ) I=v—(¥' =1
=2 -Ef (1=y")dy
o

=afy= 8, =4(1-4) =%

A

13 12=2"=2"=6 & 2'=18 o
0, 12)
£2=9 & =43 %0
3 L [:
A= [ [02-) - - 0)]ds i
=3
q- [}
=32 f (18 =2")dx by symmetry] 3
0
= 2[182 — 22°]] = 2(54 — 18) — 0] '
=2(36) = T2 y=12— 4
i, =iy

15. The curves intersect when Beosz = sec”z = Bes®z =1 = cos" =g = cusI:a} =

x= % for0 < z < 3. By symmetry,

w3 )
.n'l:ﬂf {:BLUHI—HECAI}{II
o

i3
i

=2(8- - 3) =2(3v3)
=643

=12 [Ea-iin.': — tan I]

Boosy— -.w.;::l.'

Ax

1. 2y =4+ =& =4 & y==+2 s

'
A:f [(44 %) = 2" dy ‘ .20
=2 + 2

=2 f “a—y?dy by symmetry) - —

= 2[‘13-" - %Uﬂ]z =2(8 - %l = é{'! [ T
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SECTION 6.1 AREASBETWEENCURVES O

19. By inspection, the curves intersect at x = t%.

A= fm [cos mr = (4" = 1)] dx

12 y=dri—|

12 )
= EJIr (cosmr —4x” 4 1) dr by symmetry]
0

[E1B

i

= 2f2uinmr =42 42} =2[(2 = £ 4+ 4) =0] /\/\ o
v =L WA
A4y =243

21. The curves intersect when tanx = 2sinz  (on [—=x/3,7/3]) < sinz=2sinzr aszr <

2ginx cosr —sinr =0 < ::ii.ll.z{iu.m:-l}:l] = H'III:EZU'DI'LWI:% = I:ﬂ'ﬂl’.i::i%.

wfa
A= Ef (2sinx — tanx) dr [y symmetry]
o

wfa
=2 [—Ecmr— 1|'1|5|'-_l<:;|:|]£I

=2[(=1=1n2) = (=2 = 0)]
=2(1=In2)=2=2In2

1
.:I_Iﬁ = 2Wr=x

(2*)

Hﬂwcun.‘esmtermwhen\fjh:%;r” = 2= B oo ool =0 =

.1:{.:"'—21”:]:{] o rs=0orz"=2" & r=0orxr=2"=4zoford=<r<6,
4 . ' . 1 &
_«1=f ('\.-': 2x - %Iz)d.z+f (%.IJ - 'u': 21) dr = [%\:-"E.Iqﬂ - ﬁ:a] + [ﬁ:ﬂ— %ﬁ]__ﬂﬂ]
0 1 0 4

= (202490 -8)—(0-0)+ (22 -372.6V6) - (8 -272.497)

=6-3+0-3VI2-546=4% - 3712

¥
44
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284 O CHAPTERE APPLICATIONS OF INTEGRATION

5. By inspection, we see that the curves intersect at x = +1 and that the area

of the region enclosed by the curves is twice the area enclosed in the first

quadrant.
1
.n’l:ﬂf [(2 = z) = *]dx :2[2x—%rj - %Iﬁ];
o
—2flz-1-)-o] =2() =%

N lfr=z = 1= = J:::I:lﬂﬂ-dlf:s:%z =

4=z

& x==%2 soforxz >0,

[ (e [ ()
[ [ (24)

= [%.1:1]{; =+ [In III = %Iz]l‘:

=24+(m2-i)=-(0=%)=n2

2. (a) Total area = 12 4 27 = 30,

(b) f(z) < g(x) for 0 < z < 2and f(z) = g(z) for2 <z < 5,50

[ f(2) = gla)ldz = [} [f(z) = g(z)]dz + [ [f(z) = g(z)]dz = = [, [o(zx) = f(z)]dz + [, [f(z) — g(x)] dx
=—(12)+27T=15

oz _ = )
l4xf " 142

. & riri=2tast 8 =2 =

2

O0=z"=z & 0=z{z=1) <& z=0orzx=1

1 T x 2 3,11
1= [ (- rim) de =m0+ 2 - g+ ),

:{%Inﬂ—éhlﬂ—{{]—{]}:élﬂE

33. An equation of the line through (0,0) and (3, 1) is y = 1 =; through (0,0) and (1,2) 15y = 2x;

through (3,1) and (1,2) isy = =1x + 3.

A= [ o= tmyars [ (44 8) - 4o
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SECTION 6.1 AREASBETWEENCURVES O 285

35 The curves intersect when sinr = eos2zx  (on [0.7/2]) < sinr=1=2sinsr < Zein‘risinz—1=0 &

(2sinz — 1)(sinz+ 1) =0 = }iill.r:% = =

==

wf2
z'l:f |sin = — cos 2| dx
o

':I y=sEnx

=6 T
:Jf {cmEI-si.llI}dI-{nf {.-sin.r—cmﬂ::}dr
o i

/6 /2 i

EER

= [%ﬁinz.r +EUHI]L.| + [—u.m:: —%:.-iinﬂz]’fﬁ T
=(1V34+3VB) =0+ D)+ (0=0)= (=3V3=33) v = cos 24
it
=2v3-1
3r. L . From the graph, we see that the curves intersect at * = 0 and = = a == 0.896, with
' xsin(z?) > ' on (0, ). So the area A of the region bounded by the curves is
@
A= f [Ih‘i]’.l{:Iz} - 1:"] dr = [—% {.‘U&{IE - %.rs]:
¥ =xsin{x) o
) = —%cml[uz:l - %ﬁ."’ 4+ 1 = 0037
=X
0 g
39. i From the graph, we see that the curves infersect at
v 31':—2\. I".
Y r=arm =111 =06= 125 and r = ¢ = 2.86, with
\
N\ ' —3z4+4>3c"—2ron (g, b)and 3z* — 2 > 2* —3r 4+ 4
y=a—ded /.—\\ on (b, ¢). So the area of the region bounded by the curves is
== t
B =]
.."1=f [{:r:.z—:h'-i- 4) = (3z* —2:]]dr+f [[3:52—2.1:}—[1:3—31:-1- 4:]-] dr
a ]
B ) e
=f [zﬂ—ﬂr‘é —I+4:Id.:s+f [—.ra+3z2 +.r—4:|-d.r
a L]
= [%:5"' —-a® = %Ij -+ 4.1:]: + [—%z‘ + 2% + %Iz - 4.1:]: = 838
4. Graph ¥1=2/{1+x=x"4) and Yz=x"2. We see that Y1 > Yz on (=1, 1}, so the

! 2
area 1s given by f (1 o Ij) dx. Evaluate the integral with a
=1

command such as fnlnt (¥y-¥z,x, -1, 1) to get 2.80123 to five decimal

places.

Another method: Graph f(x) = Y1=2/{1+x"4) -x" 2 and from the graph
evaluate [ f(x)dr from =110 1,
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286 O CHAPTERE APPLICATIONS OF INTEGRATION

E] The curves intersect at &+ = 0 and x = a == 0.749363.

_gl- :

A =f (VT —tan” z) dr == 0.25142
[1]

45. As the figure illustrates, the curves y = rand y = z* — 6" + 4z

enclose a four-part region symmetric about the origin (since

z* = 6ir” + 4z and x are odd functions of ). The curves intersect

at values of = where £* = 6z” + 4r = r; that is, where
y=x—fr'+ 4

z(z" = Gx” 4 3) = 0. That happens at x = 0 and where

, 6G+I=12
= — 5 =3% VB, that is, at + = =/3 4+ VB, =/3 = V6.0, /3 = VB, and v/3 + +6. The exact area is

e

T )
zf |[z"-ﬁ¢“+4;s}-x|dx:2f |z" = 6z + 3z da
0o L1
Va-vE VarvE ] ]
=2 1" = Gz + 3r)dr + 2 =1 + fix” = Jx)dr
[ etz [ ( )
C'Aﬁlzvl.—_

47. 1 second = g hour, s0 10 s = == h. With the given data, we can take n = 5 to use the Midpoint Rule.
At = J— = =t S0
distance kay — distance chis = [}/ vic dt = [ ve dt = [} (vx = ve) dt
~ My = 25 [(vk = ve)(1) + (vx = v6)(3) + (vx = ve)(5)
+ (vg =vc)(T) + (ve = ve)(9)]
= L[(22 — 20) 4+ (52 — 46) + (71 — 62) + (86 — 75) + (98 — 86)]
= g (246494 11 4 12) = 5= (40) = - mile, or 1173 feet
49. Let h(z) denote the height of the wing at = cm from the left end.

200 =0
J'i.’n‘! ﬂ-fs:

[h(20) + h(60) 4 h(100) + A(140) 4 h(180)]
= 40(20.3 + 20.0 4 27.3 + 20.5 + 8.7) = 40(105.8) = 4232 em”
51. (a) From Example 5(a), the infectiousness concentration is 1210 cells/ml. g(t) = 1210 < 0.9f(f) = 1210 <=

0.9 —£)(t = 21)(t 4 1) = 1210. Using a calculator to solve the last equation for § > 0 gives us two solutions with the
lesser being & = 3 = 11.26 days, or the 12th day.

(b) From Example 5(b), the slope of the line through P, and P is =23, From part (a), P = (I3, 1210). An equation of the

line through /7 that is parallel to Py Py is NV = 1210 = =23(t = 1), or N = =23¢ 4 23ta 4 1210. Using a calculator, we
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SECTION 6.1 AREASBETWEENCURVES 0O 287

find that this line intersects g at § = £q = 17.18, or the 18th day. So in the patient with some immunity, the infection lasts

about 2 days less than in the patient without immunity.

ic) The level of infectiousness for this patient is the area between the graph of g and the line in part {b). This area is

17.18

ty
Jf [9{1] — (=23t + 23t; + 1211]}] dt = f (=0.9t* 4 18¢% + 41.0¢ — 1468.94) dt
Ix 11.26

. 1T.18
= [—!}225!‘1 + 6t* + 20,95t - liﬁﬁ.ﬁ-ﬂ] " = T06
11.

53. We know that the area under curve A betweent = Dand t = xis [ va(t) dt = s.a(x), where va(t) is the velocity of car A

and s, is its displacement. Similarly, the area under curve B betweent =0 and t = x is [ vg(t) dt = sp(x).

{a) After one minute, the area under curve A is greater than the area under curve 5. So car A is ahead afier one minute.

(b) The area of the shaded region has numerical value s, (1) — sg(1), which is the distance by which A is ahead of B afier
1 minute.

ic) After two minutes, car B is traveling faster than car A and has gained some ground, but the area under curve A from £ =0
to ¢ = 2 is still greater than the corresponding area for curve B, so car A is still ahead.

(d) From the graph, it appears that the area between curves A and B for 0 < ¢ < 1 (when car A is going faster), which
corresponds to the distance by which car A s ahead, seems to be about 3 squares. Therefore, the cars will be side by side
at the time = where the area between the curves for 1 < ¢ < x (when car B is going faster) is the same as the area for

0 <t <1 From the graph, it appears that this time is = = 2.2, So the cars are side by side when ¢ = 2.2 minutes.

55. y=—x \, 43 To graph this function, we must first express it as a combination of explicit

functions of y; namely, y = += +/r + 3. We can see from the graph that the loop
extends from x = —3 to = = 0, and that by symmetry, the area we seek is just
3% 15  twice the area under the top half of the curve on this interval, the equation of the

top half being y = —x /= + 3. So the area is A =2I_nﬂ|:—.r-.,.|".r+ 3)dx. We

substitute u = x 4 3, 50 du = dr and the limits change to 0 and 3, and we get

yeaies A= =2 2 [(u=3)y/a]du= =2 [}(u** = 3u"/*)du

= -2/ 2] = <2[3(3*V3) ~2(3v5)] = £ V3

By the symmetry of the problem, we consider only the first quadrant, where

y=z' = z= \,.-“;. We are looking for a number & such that

[ vow= Vi = s =3 -

B A g o ot oy = P2y = b=4f mase
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288 O CHAPTERE APPLICATIONS OF INTEGRATION

59. We first assume that ¢ > 0, since ¢ can be replaced by —c in both equations without changing the graphs, and if & = 0 the
curves do not enclose a region. We see from the graph that the enclosed area A lies between = = —cand x = ¢, and by

symmetry, it is equal to four times the area n the first quadrant. The enclosed area is

3 2
y=om—a

A=4[5( —r)dz = 4[4:21: - %Ia]; = 4{1:’1 - %c’q'] = 4{%4:*] = %t‘ﬂ
SoAd=5T6 = 2, =5T6 = =21 = ec=¢T6=

]

Note that ¢ = =6 is another solution, since the graphs are the same.

61. The curve and the line will determine a region when they intersect at two or ¥

more points, So we solve the equation «f(«” + 1) = mx =

s=z(mzl+m) = rimd+m)-z=0 =

fmr' +m=1)=0 = z=0or mz+m=1=0 =

/1
r=0orz’= = x=00rx==%y = =1 Notethat if s = 1, this has only the solution x = 0, and no region
T

is determined. But if 1/m = 1>0 < 1fm>1 & 0< m < 1,thenthere are two solutions. [Another way of seeing
this is to observe that the slope of the tangent to y = x/(z” 4+ 1) at the origin is ' (0) = 1 and therefore we must have
0 < m < 1] Note that we cannot just integrate between the positive and negative roots, since the curve and the line cross at

the origin. Since max and =/(z” + 1) are both odd functions, the total area is twice the area between the curves on the interval

[D._ m] So the total area enclosed 15
A

2 —
o 241

- rru:] dr = 2[4 In(z* + 1) = ma?]Y ™" = [n(1lfm = 14 1) = m(1/m = 1)] = (In 1 = 0)

=|.T.|[1fnt]|—l+ m=m=Inm =1
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SECTION6E2 VOLUMES O

6.2 Volumes

1. A cross-section 15 a disk with radius x 4 1, so 1is area is
Alz)=m(z+1)" ==(z" +2c + 1).
V= f; Alx)dz = f; m(z" + 2r + 1)dr
=7[da +2* +.2];

=m(3+442) =5

3. A cross-section is a disk with radius /T = I, so its area is A{zx) = T(vz— | ]1 = m{x = 1).

Vv =]; .-1{::]:!:::£I n{z—l]d::#[%rl —I]I: ZH[E% -5) - (%—l}] =&rx

EF| i v=1 5 1 0 ¥

5. A cross-section 15 a disk with radius 2 +/y, so 15

area is A(y) = rr(i VE)I
1.-=f;1{y}dy=ffr(z v"';)!dyzdﬂﬁ!iydy

= 4n[§y?], = 2n(81) = 162r

T. A cross-section 15 a washer (annulus) with inner
radius =* and outer radius x, %0 115 area 15

Alx) = w(z)? - rr{r'*}“ = m(z" = %),

i-'=j: A{:)d::fﬁl w(z® = £ dx

=t - 3y = x(3 - 3) =

B

T

L
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290 O CHAPTERE APPLICATIONS OF INTEGRATION

8. A cross-section is a washer with inner radius ¢

and outer radius 2y, s0 i1 area 15

Aly) = 7n(2y)* = 7(p*)* = aldy® = ¢*).

v —f fl'[y}dy—ﬂf (4w =y — 0 T

=a[f’ =l =7($ - %) =%

11. A cross-section is a washer with inner radivs 1 — /7 and outer radius 1 = =°, so its area is
JI{I}:H[{I —-z?) = (1= ﬁf] .
N _‘-'—.I.!
=x[(1-2="+2Y) = (1 -2/ + z]] _'.'—I\
=?I'{J:‘q —E.Iz-{-Eﬁ—I].

V= If::: Alx)drs = Irﬂt izt =22 422 — ) ds i

13. A cross-section is a washer with inner radius (1 4 sec ) — 1 = seex and outer radius 3 — 1 = 2, so its area is

:1{.:}:#[22—{53:1'}1] = w(4 = sec’ ). L .

3y (53
wfa wfa
V= " Alz)de = f . (4 = sec” x)dx y=1+secy
= -

i3

w f3
= 2#[ (4 =sec” )dr by symmetry)

IJ-'I

=2'.'T[=I.I—t-an:r]:ﬂ=21r[ "_T“—x-ﬁ}—ﬂ] 1] A
— 2#(41 vﬁ}

=

15. A cross-section is a washer with inner radius 2 — 1 and outer radius 2 — 3%, so its area is
Aly)==[(2- 37)* -{2-11]_n[4 137+ % '-1]

1 1 ; ; : arall . .
v :f Aly) dy = (3 — 4y:.r'.c + y“m}dy = #[33. _ jy-:f.! + %yzf.!]a = #(3 -3 4 %} = %'.IT
o (1]

L]
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SECTIONG.2 VOLUMES 0O 291
17. From the symmetry of the curves, we see they intersect at & = %am:lsq:ng,.-2 =% o y= :l:‘/g_h Croas-5ection is a

washer with inner radius 3 = (1 _yz} and outer radius 3 = y”, so its area is

Aw) = =[3 =3 = @ +37)]
= rr[[{l -6t +u*) =4+ 4y + y":]-]
= (5 = 10y°).

Ji7
v=/[ gL
fwm

Sa(1—2y")dy  [by symmetry]

=10nly ~ '], =10 (2 - 2)

=102 () = 2=

19. &, about (14 (the line y = 0);

. R, about A8 (the line = = 1);
! ! z ! 2 2 al
'Ir’:f_fil[y}dy:f (l—y) dy== (1=2y+y ]Idy:i'l'[y—y +%y]ﬂ:%ﬂ
o i} (1]
23. Mo about (14 (the line y = 0):

1 1 , 1 .

=f :1.{.1:}:!.1::[ #[12—{'}"5] ]da:::rr I[l—Il‘iz]d:l::#[I—E.ra"u]
o o o

25. Mo about A8 (the line = = 1):
1 1 1
1":f zl[y}dy:f ﬂ'[lz—{l—yd]z]dy:ﬂ'f M=(1=2y"+3")]dy
o o o
1
= [ =)y = (3 - 3] = (2 §) = B

2T. Wy about (14 (the line y = 0):

V= [(a@de= [ 1[(¥7) - & de = @ = e = - 1] = w3 -

i) =

Nove: Let e =W, U Ra U Ry If we rotate T about any of the segments 04, OO, AB, or BC, we obtain a right circular

w

.-~|--
=

cylinder of height 1 and radius 1. Its volume is #v*h = (1)* - 1 = #. As a check for Exercises 19, 23, and 27, we can add the

answers, and that sum must equal «. 'Dius, T 4 —:rr+ 1:1 ==,
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292 O CHAPTERE APPLICATIONS OF INTEGRATION
29. Ry about A8 (the line = = 1)

V= [(Awds= [ o0 - = == [0t 40" = 0= 20 4y

ﬁ-l—
-
-1

ks

1
=:'rf {y"-zy"-yE-I-Zy]-dy:#[%y”—%ya—%yx+yz];:#{%— -3+1)=
o

Nowe: See the note in Exercise 27, For Exercises 21, 25, and 29, we have E#‘" Err+ ” = .

3. (a) About the z-axis: ! -
i t —elia Va2
V= me™ Vdx :2:I'rf e™™" dr [by symmetry)
-1 i} 4 n
=~ 3.75825 - PV
(b) About y = =1: ! _
y=ie
1
ve [ w{le™ - (-0 -0 - (-1f ) a /\
- a i X
. 1 g v ]
—Eﬂf [{‘--: = 1]dx —erf (6™ +2e7 )dr y==I n
0 v
a2 13.14312
33 (a) Abouty = 2 —s v ﬂ
Py =4 = ¢1;|r2:=i—;|:2 = y2=1—12f4 == | U
y==/1 =x*/4 //i—-—-——\\
2 _Z\—-—,_-—’/: :
{[2- (-vT==T71 )] - (2= VT==71) }d; S1] x+ayi=d

2
:211']'- B/l = z2ddr = TR 95684
i

ib) About r = 2 . CED

4y’ =4 = =d-4 = r=31-Y Figi=g le
2 3
bV - - v <
1 I'._E
=2x f 84/4 = dy? dy == TR.O5684
o

[Motice that this is the same approximation as in parn (a). This can be explained by Pappus’s Theorem in Section 8.3.]

35 y=In(z" +2)and y = /3 = 2% intersect at r = a = =4.091, 10

= Inf i
& =bs =1467,and r = ¢ = 1.091. p=Inid+ 2

-5 4]

V= :rrjrb{[lnl[.zﬁ +2)]* - (\.-""3—_1:3)2}dx+ nf{(ﬂ)"- [in(z*® +2]]2}dzz 59.023

al

=]
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SECTION6E2 VOLUMES O

¥ sinT

T V= #L'{[.sinzr—{—l}]z_[ﬂ_ {—l]]z}dz .

-

AS

:.1'I

u:l"'

2
M o7 [ sinzde = [ (v':.-in .r) di describes the volume of solid obtained by rotating the region
- {{;, y)|0<z<m0<y< 1.-"5in1:} of the zy-plane about the z-axis.

N = [y —y")dy == [} [(v°)* — (u*)*] dy describes the volume of the solid obtained by rotating the region

% ={(z,y) |0 <y < Ly" <z <y} of the xy-plane about the y-axis.
43. There are 10 subintervals over the 13-cm length, so we’ll use n = 10/2 = 5 for the Midpoint Rule.

V= [(" A(x) dr = M; = £28[4(1.5) + A(4.5) + A(7.5) + A(10.5) + A(13.5)]

= 3(18 + 79 + 106 + 128 + 39) = 3 - 370 = 1110 cm®
85 @) V=2 [f(2)] dr = 72022 {[/3)]* + UGN + (D2 + O)])
=27 [(L5)* +(2.2)° + (3.8)* + (3.1)*] = 196 units®
{b) V= " = [(outer radius)* — (inner radius)*] dy

= wdz0 1[(0.9)* — (2.2)°] + [(9.7)* - (3.0)%] + [(9.3)* - (5.6)] + [(8.)* - (6.5)"] }

= 838 units”
47. We’ll form a nght circular cone with height & and base radius r by ¥
i,
revolving the line y = - about the x-axis. -
h 3 ho o h
l’:#f {11:) de=m ﬁzzzdzzﬂ%[lzx] A
g Mh g M 13 |, o W

a
T ]. q ]. ]
— — - — h
#hz(a ) 3

Another solution: Revolve r = —; y 4+ r about the y-axis.

V= — = - I !
#j;{ hy+r ﬂf [hjy y+r] U ¥

P2
—_—y = —y +r y] = Eréh —h 4+ rh) = E#r *h
%j h o ( }

* Or use substitution withu = r = }yanjd'u :-;dymgﬂ
[ [

0 0
! kil } 1 1
#f uj(——!d ) || =—n —1(-—:-3) = —mr’h. o= (i E
- r|3 . r 3 3
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294 O CHAPTERE APPLICATIONS OF INTEGRATION

B by =r" 8 F=rayt

Ve [ -amafru-L] == 2] [re-n- €3]
=a{§r* = §(r = h)[3r" = (r = 1)"] }

=
1x{2r* = (r = h)[3r" = (+* = 2rh + h*)] } T
ix {2 = (r = h)[2+* + 2rh = 1*]} [ ok E- \

ix(2r® = 2¢* —20%h + rh® +2¢7%h 4 2rh* — 1P)
(

=

=

1
3w

; h
3rh* = h*) = 1xh?(3r = h), or, equivalently, mh* (r - E)

2 -
51. For a cross-section at height i, we see from similar triangles that -b;ﬂ T S0 = b(l - %}

Similarly, for cross-sections having 2b as their base and 3 replacing o, 5§ = 2&(1 - ;E) S0

ol o B-BIRC-Ble _
_f (1-%) dy—zg.j;( 2 H_z) i ._,_._f‘

|
a 3 qh
=2b”[y-%+1%] =2 [h = h + }h] b '
h 1]

= 2b*h [ = iBhwhere B is the area of the base, as with any pyramid.)

53. A cross-section at height = 1s a triangle similar to the base, so we'll multiply the legs of the base triangle, 3 and 4, by a

proportionality factor of (5 = z)/5. Thus, the triangle at height = has area

:4{;}:%-3(5;;)-4(5%) =E(l—§)2,sn
v _f A= d.,_ﬁf (1-7} d= =sf u®(=5du) [::zl_';i”]

= —ﬂﬂ[iux]? = —.'iD{—i;l = 10 em®

55. If [ is a leg of the isosceles night triangle and 2y is the hypotenuse, typical cross-
section of length
thenl” +1" = (2y)* = 2 =4 = =" 2y =36 — oy

e

v —f Alz)dz = E‘fﬂ Alz)de =2 {I}{I]d.r EJ- yj dr

i
"

=2 [ 1(36 = 92%) dx :gjf(d- ) dr

- %[4;— %Iﬂ:]; = %[B— %} =24

Copyeight 3046 Conpoge Lemmiog. AB ights Reverves. Moy st b copind, scomm o dmphicate, o whole o . o b et ightn, s shind oty contnt sy b e s the ek e o mptts
Esbirrea rovars b decmacd that as wepy By affect the ovorall bermirg cupencece. Uagage Lcameng rescrves the nght 0 remens sckdtamal oot 2t 2z hine o vebusguent gt s icton regues i




57. The cross-section of the base corresponding to the coordinate = has length
y = 1 = x. The corresponding square with side s has area
_4{.1:} =3 = {l —:l:'_l2 =1="2r4 Therefore,
1 1
1;=f ;li:z]d_:s:f (1=2x -I-Ij:]-df.r
o o
— [I—Iz+%f1];={l—l+%}—ﬂ=l

1 0
o [[msin [t oo = [T

SECTIONGE2 WVOLUMES 0O 295

LI K]

LN L x

59. The cross-section of the base b corresponding to the coordinate = has length 1 — £*. The height k also has length 1 = =,

so the corresponding isosceles triangle has area A(x) = 2bh = £(1 — =°)*. Therefore,

1 1
V= Alz) dz = F(1- =) dx

-] =1
1 ]
=2. ,}f (1 =2" 4 =%)dr [by symmetry]
o

o

:[I—%Ix-ii-%Is];:{l—%_{uL]_ﬂ:%

61. The cross-section of 5 at coordinate =, =1 < x < 1, 15 a circle
centered at the point (, £(1 — %)) with radius (1 — =*).
The area of the cross-section is

Alz) =7 [3(1 = 2)]" = 5(1 = 22" + %)

The volume of 5 is

1 1
'Ir’:f JJl.l::I:idIIZI %{l—Exj+I"]d.r:§[:-§f+%:5];:§{l—_
- L]

63. (a) The torus is obtained by rotating the circle (x = R)* + y* = r* about
the y-axis. Solving for z, we see that the right half of the circle is given by
z=R+/r? —y? = f(y) and the left half by = = R — /2 —y? = g(y).
So
V== [T {fW)l* = o)} dy

y=1—x"

=2 fy [(Rj+ﬂﬂm+r“—y”) - (B =2 VT =7+ -y”)]dy

=2:.'I'J':r=lﬂ1."r"!—yidy =3:|'er; Wt —yidy

(b} Observe that the integral represents a quarter of the area of a circle with radius r, so

SR [ /7 =y dy =8xR. f7r’ =20 R.
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295 O CHAPTERE APPLICATIONS OF INTEGRATION

65. (a) Volume(S,) = j:;’ Alz) d= = Volume(S:) since the cross-sectional area A(=z) at height = is the same for both solids.
(b) By Cavalieri’s Principle, the volume of the cylinder in the figure is the same as that of a right circular cylinder with radius r
and height h, that is, 7r"h,
67. The volume is obtained by rotating the area common to two circles of radius r, as ¥

shown. The volume of the right half is

Vise=n [y de = x [ [1* = (4r 4 o) | da

o=

=n[rz - %{%ruf]; =a[(ir* = 1) = (0= L+%)] = &ar?

S0 by symmetry, the total volume is twice this, or S

I{.-.' } %]:F yi=

Another solution: We observe that the volume is the twice the volume of a cap of a sphere, so we can use the formula from
Exercize 49 with i = %T: V=2 %:I'rh”l[ﬁr - k)= %n{%r}z{ﬂr - %r:l = 1'—111‘1'::.

69. Take the z-axs to be the axis of the cylindrical hole of radius r.

A quarter of the cross-section through y, perpendicular to the

y-ax1s, 15 the rectangle shown. Using the Pythagorean Theorem

¥
"\ \ .
R
R =y and z = /r? =92, 50 >
%_fﬂy} =zr= 1.,."rr2 -y wl,-"{H2 - y*, and

V= [l Ady = [1 4P = VR =P dy =8 [ =yt VRE =yt dy

T1. (a) The radius of the barrel is the same at each end by symmetry, since the

twice, we see that the dimensions of this rectangle are

v=HK—rx’
function y = A = ex” is even. Since the barrel is obtained by rotating

the graph of the function y about the z-axis, this radius is equal to the

value of iy at x = %h, which is R = c{%h]z =RH=d=r.

(by) The barrel is symmetric about the y-axis, so its volume is twice the volume of that part of the barrel for = > 0. Also, the

barrel is a volume of rotation, so

V= gﬂm rydr = 2% j:ﬂ (R —ca®)’ de = 22 [Pz — 2Res® + 122°])7°
=2x(1F*h — L Reh® 4+ i*hY)
Trying to make this look more like the expression we want, we rewrite it as V' = 3xh [EH2 + (F* = 1Reh® + 2.
But B — LReh® 4 £2h% = (R = 2eh?®)” = £2ht = (R=d)* = §(4eh?)” =% = 3%

Substituting this back into V', we see that V' = $xh(2R* + * — 2d?), as required.
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SECTIONE3 VOLUMES BY CYLINDRICAL SHELLS 0O 297

6.3 Volumes by Cylindrical Shells

1. ¥ If we were 1o use the “washer™ method, we would first have to locate the
= (aiv)

= e b /_,.. _j:/ local maximum point (a, b) of y = x(z = 1)° using the methods of
. Chapter 4. Then we would have to solve the equation y = x{x = 1)*

[ .

i x
for = in terms of y to obtain the functions = = g (y) and = = ga(y)
shown in the first figure. This step would be difficult because it imvolves
the cubic formula. Finally we would find the volume using
4@” . . b 1 :
—— V=nfy {lo()]* = lo2(u)]" } dy.

Using shells, we find that a typical approximating shell has radius =, so its circumference is 2xx. Its height is y, that is,

x(x = 1)%. So the total volume is

o

1 1 4
1-':[ EEI[I{I—l:]j]dIIZHf {z‘—213+rj}dz:2#|:xf—21—+l—
o a ] 4 3

sl

1 1
k) 1"=f 23:&?’?{1::2#[ 23
[i] (1]

—ag[am]t = 6
2#[ H]u 2r(2) = Lx

iV= J}Il 2rre=* dr. Letu = z°.
Thus, du = 2Zrdx, 50

V= "fnl e du = '.lr[—e'-“]; ==(1=1/¢).

TLa'=6r=21" o 3r'=6r=0 & 3z(r=2)=0 & r=0or2
2
V= f 2xr[(bx = 21") = '] dr y ¥=6o—2x &
o
< [
=2”f (=32" + 62") dx
o

= 2#[—%14 + 2:“]:

=27 (=12 4 16) = 8=
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298 O CHAPTERE APPLICATIONS OF INTEGRATION

9 sy=1 = z:ﬁ.Theghellhasrad.itBy,

circumference 2y, and height 1y, so

3 1
o= [onll)o
1 v
a 3
=2#f dy:En‘[y]'l
1

=2m(3=1) =4r

My=2 = =y The shell has radius
y, circumference 2xy, and height w2 so0
" 2/ * s
V:[ zrry{y"}dyﬂrf ™/ dy
o o
B
—ax2 n,m]
#[by .

=2 .2 .256 = 192x

13. The shell has radius y, circumference 27y, and height

2=[14+w=2"]=1=(u=2"=1= (4" -4y +4) = =* + 4y = 3,50

r_ :
V = [, 2ry(=y* + 4y = 3)dy
3
=2#_r1' {—yx+4y2 — 3y dy
4 4_3 3

=am[-4u' + §* - 3]

= on{(-5 +36 - ) - (=3 + - 3]

x=1+(y—2f

B

(3]

of
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15. The shell has radius 3 = =, circumference
2m(3 = z), and height 8 = =
V= [ 2%(3 = x)(8 — %) dx
= 2x [X(z" = 3% — Bz + 24) dx
= zw[;f' P +24;]:

=2n(2 - 12-16 4 48) = 2 (1) = &=

SECTIONE3 VOLUMES BY CYLINDRICAL SHELLS 0O 299

17. The shell has radius = = 1, circumference 2x(x = 1), and height (4r = %) =3 = =z 4+ 4r = 3.

V= [ 2x(x = 1)(=2* + 4x = 3) dr
=27 [}(=z* + 52" = Tx + 3)dr

= 2n[=tat + B2t = Ia? 4 3a]]

2[(-% +45- $+9) - (-1 +§-F+9)

2#[%} =z

.  x=1
y=dx—ux" +

AN\

=13

|

19. The shell has radius 2 — g, circumference 2x(2 — y), and height 2 — Iy

V= [ 2m(2=y)(2 - 2%)dy
=dx [[(2=y)(1 =*)dy
=dr [ (' =2® =y +2)dy

=an[by* - 3P - b' + 2],

2 2
A (@) V =2x f z(ze™")dr = 27 f e~ dr
(i} (1]

(b) V' = 4.06300

w f2
(7 =x)[eos’ £ = (= cos’ £)] dx

7. (a) 1—':2#[

- fE

w2
:4#}{- (7 =) cos® rdr

= f2
or 87¢ [™? cos?® x dr using Theorem 5.5.7
[ 2

(b) V = 46.50042

vl
-
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300 O CHAPTERE APPLICATIONS OF INTEGRATION

5. (2) V = [ 27(4—y) /Sinydy (b) V == 36.57476

X =s/miny

. V=J‘;2#IV1+IEEdI. Lﬂfl[.r]:.rul-{-—ri_ b Y=+
Then the Midpoint Rule with n = 5 gives ffi/

I flz)dz = 352 [f(0.1) + f(0.3) + £(0.5) + F(0.7) + f(0.9)]
== 0.2(2.9290)

Multiplving by 27 grves 17 == 3,68, 0 I *

B. [2ns® dr =2x [ x(x") dr. The solid is obtained by rotating the region 0 < y < x*, 0 < = < 3 about the y-axis using

cylindrical shells.

4
y+2 ! 2
. = — 3 | Lo L <y
N E#j; " diy 2#[{y+2} (yz}dy The solid is obtained by rotating the region 0 < = < 1/y°, 1 < y < 4 about

the line y = =2 using cylindrical shells.

33. From the graph, the curves intersect at x = 0 and o = a = 2.175, with

I
41
—iL5
obtaned by rotating the region about the y-axis 15 ’/

> z* = 2r on the interval (0, a). So the volume of the solid el

2y
1-':2:[ I[%—{zz—zz}]dm:‘sl{dﬁﬂ
a 41

BV = ZIL’II [[% - I}{ﬁi.llj T —Hin"'I}] dr ¥

L}
L Y
. -

Il

=T

Lo 4
¥ =sinr w X

vl 1 4
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SECTION 63 VOLUMES BY CYLINDRICAL SHELLS 0O 301
37. Use shells: !
v=[,2 2 — d; 2 2 y=—x'+br—§
= [, 2xx(=z" 4 6x = B) dx = 27 [ (=2* + 6z* = 8x)dx 1

=27 [=1a* 4+ 2% — 42%]]

il
= 2x[( =64 + 128 — 64) — (=4 + 16 — 16)] /ﬁ 4\
= 2#{4} =
39, Usewashers y° =2 =1 = y=Hy*1
v=[" s[e-07- (vETi-0) ] ~]
i Y

N —

= Erf [d4=(z +1)]dr [by symmetry) Y ! FER
(1]

L Vi
=2#Jf {E—IA}MZE#[HI—%IRIU
(1]

=2r(3uﬁ-ﬁ] =443n

M. Usedisks: = + (y=1)*=1 & z==%,/1=(y=1) !
] 3 2 ) 2 S y—1t=1
ver [ VTG dy=n [ u-st)ay
1] (1]

= el -2 = (4= 3) = 4x

By+l=uy-17 & y+l=y -+l & 0=y -3y & 7
O=y(y—-3) & y=0ord.
Use disks:

1 ) . .
Ve [+ )= (0P = [ =) = (-DF

- #j;x['[y +2)° = (v* = 2y +2)°|dy

1 1
=#j; (" + 4y +4) = (" —4y" + 8y" — 8y + 4)]dy =#£ (=y" +4y" = Ty" + 12y) dy

=a[-b® +u' = I + 6y?], = (-2 481 - 63+ 54) = Ur

45. Use shells: 1
V=2 J'ﬂr 2 /T2 = xldr = =27 ‘H;Il:r2 - zz}l‘r":{—ﬂ:s:] dz yeart—al

e 22 maye]” _ _a R S
_[Err 2(s2 = 2%) ]n_ i7(0 = r*) = dar’
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302 O CHAPTERE APPLICATIONS OF INTEGRATION

" h * = )
47. 1":2#] I(——I‘f—h)da?:E:lfhf (——-‘i—z)d.r by
0 r [ r

S o e
—oxh|-Z 4 Z| o =FC 0
r 2 a

6.4 Work

1. (a) The work done by the gorilla in lifting its weight of 360 pounds to a height of 20 feet
is W = Fd = (360 Ib) {20 ft) = 7200 fi-1b.
i) The amount of time it takes the gorilla to climb the tree doesn’t change the amount of work done, so the
work done is still 7200 fi-lb.

10 - =1 b
3 W= [ f(z)de = ["5x d:—s.[-; ] = 5(— +1) =45 flb

5. The force function is given by F(z) (in newtons) and the work (in joules) is the area under the curve, given by
fy Flz)dz = [ F(x)dz + [] F(x)dr = 3(4)(30) + (4)(30) = 180 .

7. According to Hooke's Law, the force required to maintain a spring stretched = units bevond its natural length (or compressed
 units less than its natural length) is proportional to -, that is, f(x) = kx. Here, the amount siretched is 4in. = & ft and
the force is 10 [b. Thus, 10 = k(%) = k= 301b/f and f(x) = 30z. The work done in stretching the spring from its

natural length to 6in. = 4 ft beyond its natural length is W = [;/* 30z dr = [152%] /% = L& filb,

]0.11

9. (a) If [  kadr =21, then 2 = [Lkz = £k(0.0144) = 0.0072k and k = ;7= = &0 = 277.78 N/m.

Thus, the work needed to stretch the spring from 35 cm to 40 cm is

= [ S ) = B0

i(b) flz) = kz, 50 30 = 2::'_.,,':":'.1:3.“1:[.1,': j:;'ﬂ m = 10.8 cm

11. The distance from 20 cm to 30 cm is 0.1 m, so with f(z) = kx, we get W1 = Jf'lk::d.r = k[%milg'l = g k.
Now Wa = [y kede = k[12%]07 = k(55 = 25) = magk- Thus, Wa = 305
In Exercises 13—22, n is the number of subintervals of length A, and =} is a sample point in the ith subinterval [x;_,, x;]-
13. (a) The portion of the rope from x fi to (x 4+ Ax) ft below the top of the building weighs 4 Az Ib and must be lifted « fi,

%0 115 contribution to the total work is %:s:' A fi-lb. The total work is

W= lim 3 a7 Ar = [ drde = [222] = 290 _ 625 filb

A= -]

Notice that the exact height of the building does not matter (as long as it i1s more than 50 fi).
() When half the rope is pulled to the top of the building, the work to lift the top half of the rope is
Wi = % irde = [is j]ﬂ = %2 fi-Ib. The botiom half of the rope is lified 25 fi and the work needed to accomplish
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that is Wa =

%ﬁ——[]
W =W+ W =50 L 828 _ 3 595 — 1970 fiph

25 3 = 2% fi.1b. The total work done in pulling half the rope to the top of the building

15. The work needed to lift the cable is lim 3jo, 227 Az = [ 2zdr = [+*]}™ = 250,000 ft-b. The work needed to lift
the coal is 800 Ib - 500 ft = 400,000 fi-lb. Thus, the total work required is 250,000 4 400,000 = 650,000 fi-lb.

17. At a height of = meters (0 < = < 12), the mass of the rope is (0.8 kg/m){12 = x m) = (9.6 = 0.8x) kg and the mass of the
water is {% kg/m)(12 = x m) = (36 — 3x) kg. The mass of the bucket is 10 kg, so the total mass is
(9.6 — 0.8z) + (36 — 3x) + 10 = (55.6 — 3.8z) ke, and hence, the total force is 9.8{55.6 — 3.8x) N. The work needed to lift
the bucket Az m through the fth subinterval of [0, 12] is 9.8(55.6 — 3.827 ) Aur, so the total work is

12
W= lim 3" 9.8(55.6 - 3.82]) Ar = [1(9.8)(55.6 = 3.8¢) dx = 9.3[55.5:- 1.*;|n:"]£1 = 9.8(303.6) == 3857 J

e =T |

19. The chain’s weight density is % = 2.5 Ib/fi. The part of the chain = ft below the ceiling (for 5 < =+ < 10) has to be lifted

2(x — 5) fi, so the work needed to lift the ith subirterval of the chain i1s 2(x] — 5)(2.5 Ax). The total work needed is

W= lim 3" 9(xf = 5)(2.5) Ar = [°12(z = 5)(2.5)] dz = 5 [}*(x = 5) dz

-l
= 5[12* — 52" = 5[(50 — 50) — (& - 25)] =5(%) =625 fIb
21, A “slice” of water Ax m thick and lying at a depth of =} m (where 0 < x] < 1) has volume (2 x 1 x Ax) m®, a mass of
2000 Ax kg, weighs about (9.58)(2000 Ax) = 19,600 Ax N, and thus requires about 19,600x=] Ax J of work for its removal.

12

SoW = lim 3 19,6002 Az = [/ 19,600z dx = [98002%]2/* = 2450 .

fi e a0 {1

23. A rectangular “slice™ of water Az m thick and lving = m above the bottom has width = m and volume 8z Az m®. It weighs
about (9.8 x 1000) {8z Ax) N, and must be lifted (5 — =) m by the pump, so the work needed is about
(9.8 % 10*)(5 = £)(8x Ax) J. The total work required is
W= [}(9.8 x 10*)(5 = 2)8xdz = (9.8 x 10*) [(40x — 82%) dr = (9.8 x 10*)[202* - §2°]}

= (9.8 x 10*)(180 = 72) = (9.8 x 10*)(108) = 1058.4 x 10* = 1.06 x 10" J

25 Let x measure depth (in feet) below the spout at the top of the tank. A horizontal

disk-shaped “slice™ of water A fi thick and lying at coordinate = has radius - -

2(16 =) ft (+) and volume =r®Azr == . (16 = )* Ax ft*. It weighs { d

about (62.5)2X (16 — )* Az Ib and must be lifted = fi by the pump, so the S—y "

work needed to pump it out is about (62.5)x 2X(16 — z)* Az fi-lb. The total -

work required is AT SO— _dz _ E

w 62.5)x 2216 = x) ¥ dr = (62.5) 4% 956 — 32¢ + =) dx
RSJ?{ Je gl z) ( }HEI{ +a) Sor=3+d=3+ (8 —x)

= (62.5) 2 [ (256 — 32¢* 4 =*) dr = (62.5) 25 [128+* — £ + L2%]] - ”‘{“] fH_I;
= (62. 5}2; ( 11’3264) = 33,0007 = 1.04 x 10° fi-Ib - “{15_’}
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304 O CHAPTERE APPLICATIONS OF INTEGRATION

27. If only 4.7 » 10 J of work is done, then only the water above a certain level (call )

it k) will be pumped out. So we use the same formula as in Exercise 23, except that
the work is fixed, and we are trying to find the lower limit of integration: .

]
AT % 10° == [[(9.8 % 10°)(5 — 2)8zdx = (0.8 x 10°) [20+* - 24%]] = [ \I

AT % 10° = 48 = (20 - 3= %-33}-{20#12—%!:3] = a0

2h* = 15h” + 45 = 0. To find the solution of this equation, we plot 2h* = 15h* + 45 between h = Dand h = 3.
We see that the equation is satsfied for b = 2.0. So the depth of water remaining in the tank is about 2.0 m.

2. V = xr’z, 50 V is a function of = and P can also be regarded as a function of . If Vi = mr2z; and V2 = mriis, then
2 2 2
W= f F(z)dr = f o P(V(z)) dx = f P(V(z))dV{z) [Let V(x) = mr'z,sodV(x) = xr’de.)
£ T B |

Vi
- f P(V)dV by the Substitution Rule.
Vi

@ w= [ fea= [ feopoa (220,

=/:ima{t}vl[t]d!=j:2m“du [L?:.;Tﬂ:]

— 1 e _ 1 @ 1 o
= [Em“ ]t_1 = pmug = jmv)

12 I 3
b} The mass of the bowling ball is _
) ¢ 320 8

slug. Converting 20 mifh to ftfﬁﬂ Zives us

20 mi . EZBth_ lh
h 1mi 3600 s2

= S—_f ft/s*. From part (a) with v, = 0 and v, = 22, the work required to hurl the bowling ball

isW=1.2(8)y _1.300)* = 24 = 1617 fi-Ib.

B b mims =1 b 1 1
33 (a) W =f F{r]dr:f G —— dr = (31 M [—] =Gm,rmz(———)
@ a r T la i b

1 1

(b) By part (a), W —f:lﬂ-fm(ﬂ m

)where_-'luf = mass of the earth in kg, K = radius of the earth in m,

and m = mass of satellite in kg. {(Note that 1000 km = 1,000,000 m.) Thus,

1 1
6.37 x 108 7.37 x I0F

W = (6.67 x 10~1)(5.98 x 10*4)(1000) x ( ) = 8.50 x 10° ]
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SECTION 6.5 AVERAGE VALUEOF AFUMCTION O 305

6.5 Average Value of a Function

1 fae = gz [} f(z) dz = == [2, (32" + Br)dr = [o* + 4272, = §[(8+ 16) = (-1 4+ 4)] =7
w2 w2
ES gm&:—f g{ }dI m,’:,”acmzﬁ_?ﬂ‘z A cos xdr [byTheoremS.:'.?]
wf2
= %[si.nr]n = %{l—ﬂ-} =L
5. fme = gz [} () dt = i [77 0 costdt = 2[E R = 2e - 1)

T by = ‘Li_nf: h(x)der = e2= ["cos’ r sinzrdr = éfl-l u'{=du) [u=cosc du = —sinzdz
= % f_ll ul du = % -Efnl u'du  [by Theorem 55.7) = %[%u:']; = %
1 E 4 11 41"
9, = — =3 dr === -3 ¥
() fine 5_2£ (x —3)%dr 3[3{: ’, ©

=L - (-1))] =B8+1)=1

y=ix— 3

() fle) = fue & (e=3V=1 &

20 [EN|
c=3=%+1 <& =2 or 4 T
"I 2 i 4 !
1. (a) fae = - inx =sin2x)dx {c) 3
f
= %[—Zc{mx-b-%cmii.r];

=2[2+8) - (<24 3)] =2 [

(b) fic) = fae = EHiIIE—ﬁiIIECZ% P

c=r¢p 7= 1238 or ¢ = ca == 2.808
13 [ is continuous on [1, 3], so by the Mean Value Theorem for Integrals there exists a number ¢ in [1, 3] such that
jf‘f{z] der= f(e)(3—1) = B8=2f(c): that is, there is a number ¢ such that f(c) = 3 =4
15 Use geometric interpretations to find the values of the integrals.

fo flx)dz= [ flz)dx + [ f(z)dz + [} fz)de+ [; f(x)de+ [} flz)dz + [ flz)de+ [ f(z)dz
-1+3i+1+1+4+2+2=9

Thus, the average value of f on [0, 8] = fae = 725 ﬁ'j{:}d;_- =i(9)=2
17. Let t =D and ¢ = 12 cormespond to 9 AM and 9 PM, respectively.
Tave = o5 o [0+ 14sin &t] dt = ﬁ[sm — 14+ 2 cos &omt]

=&[s0-12414. 2 4 14. B] = 2)°F = 59°F

T
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36 O CHAPTERE APPLICATIONS OF INTEGRATION

1% 12 3 [* . 8
19, — - — = - ]_-"fd = |3+ 1 =0=3=6k
Pave & o \."".i:-i-_]. ZL{I-‘- :I' L [ T+ ]r_'| Bfm

. Pue= g [0 P(t)dt = & [0 2560 dt  [with b = 0.017185]

- W o
2560 [ 1 2560
= ;ﬂ [EEML = —— (" — 1) = 4056 million, or about 4 billion people

B Ve =2 [[ V(0 dt =2 [} & [1 = cos(Eat)] dt = 3= [ [1 = cos($x1)] dt
=2 [t— Zsin(int)], =2 [(5-0)-0]= & =~ 04L
2. Let F(z) = [ f(t)dt for = in [a, b]. Then F is continuous on [a, b] and differentiable on (a, b), so by the Mean Value
Theorem there is a number ¢ in (a, &) such that F(b) = Fia) = F'(c){b = a). But F'(z) = f(z) by the Fundamenital

Theorem of Caleulus. Therefore, J': flt)dt =0 = fe)(b = a).

6 Review
EXERCISES

! e 2t —dr=0 = . y=a°

1. The curves intersect when ° = 4= — x
2;{1—2]:0 & ox2=0or 2

.l'l.:J'r-_l2 [{4;[—1.2}_1_2] dI=I;{‘tT—2I2}dI

=2 - 3 = [(5- ) - 0] =3 S TV

3. If £ > 0,then | z| = z, and the graphs intersect whenr =1 =2 & 25 4x-1=0 & (2z-1){z+1)=0 &

x=2% or =1 but =1 < 0. By symmetry, we can double the area from = = 0tox = 3.

A=2 [} (1 =2") = 2] de =2 [}/*(=22" =z + 1) dx

2[4 = o+ 2]  =2(~d -2+ 3) 0]

12

=2(%) =4

12

e
&
e
I

j: [--.lrl(:rr2 ) —{I —EI}] dr
%cw{#—r) - %I’q'-i-z ]:

Eot)o(-2-0s0)=f4 s

I
— —
I

x
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CHAPTERG REVIEW 0O 307

T. Using washers with inner radius * and outer radius 2, we have ¥ (2.4
V=mr [ [(2e)* = («*)*] dz = = [ (42* — =) dx y=12x
— 3 512 _ Al 12
=a[zz’ =]y =7(F - F)
=32r - % = %n
i

0. V=% {[0-v") = (~1)]* =0 - (~1)]* } dy ,

=2 [} [(10 = 5*)* = 1] dy = 2= [;'(100 — 205" + y* = 1) dy

3 q -
=27 [(99 = 20y° +y*) dy = 2[99y = Ly 4 L)

=2n(207 - 180 4 22) = 1%+

11. The graph of z* = 3 = a” is a hyperbola with right and left branches.
Solvingfory givesus y” =2 —a® = y=xV2rF —dl
We'll use shells and the height of each shell is
Vil —a? = (V2T =d? ) =2v/2T =d’.

The volume s V' = f:"'h 2x - 2/TE — aldr. To evaluate, let u = * — a?,

S0 i =2zdzand.rd::=%du. Whenz=ag,u=0,and whenx =a + i,

u=(a+h)’ —a® =a®+ 2ah + h* —a® = 2ah + K*.

Sahdh? 1 2 Tah4h? 4 s
Thus, V = 4::[ Vau (—du) =27 | Zu*/? = =w(2ah + k%),
A 2 3, 3
13. A shell has radius § = x, circumference 27 ($ = z), and height cos™ = = £, i r=Z
y = eos” z intersects y = %WHEHELE:!I:% = T_ny'\ T
V= os |
PR _ y=-L
cosr =25 [|z]£7x/2] & z==%. — — —
_E_a=o 0 =z x
R ]

wf3
'Ir":f Eﬂ(z—m) (Lu-.'ja:—l) dr
e 2 4

15 (a) A cross-section is a washer with inner radivs = and outer radius .

(b} A cross-section 15 a washer with inner radius i and outer radius ,_,-"E

=1E]

V=1 #[(v@)z -y”] dy = [y wly —u")dy =n[}y* - '], =7[3 - 3] =
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308 O CHAPTERE APPLICATIONS OF INTEGRATION

{c) A cross-section is a washer with inner radius 2 — & and outer radius 2 — .

= [y 7l2=2")? = (2-2)")dz = [, n(z* = 52® + 4z)dr =w[Le® = 22 4+ 227 =w[l-242] = Ln
17. (a) Using the Midpoint Rule on [0, 1] with f({x) = tan(z®) and n = 4, we estimate
A= [} tan(z?)dr = L [t.un({‘ “) +tan((2)%) + tan((2)*) + m.({{]z)] =~ 1(1.53) =~ 0.38
ib) Using the Midpoint Rule on [0, 1] with f(z) == l:uu”[::ﬂ} (for disks) and n = 4, we estimate

V= [ flz)dz = in[umﬂ({i]ﬂ) +tan®((2)%) + tan?((£)°) + mnz({%}z)] ~ E(1.114) = 0.87

19. f;"f 2rrcosrdr = -rl‘.'l =2 {E#J::I cos rdr

The solid is obtained by rotating the region ® = {{a:,y] |0z 202y = l:mm} about the y-axis.

. [ #(2 =sinx) dr

The solid is obtained by rotating the region R = {(z.y) |0 £ = € 7,0 <y £ 2 — sinx} about the z-aas.

23. Take the base to be the disk +* +3* <9 Then V = E1 Alz) dx, where A(zy) is the area of the isosceles right triangle
whose hypotenuse lies along the line = x4 in the zy-plane. The length of the hypotenuse is 2 /9 = =2 and the length of

eachlegis 20 =22 A(x) =%{v"§v’9—mﬁlz =9—z" 50

V=2 Ax)dr =2 [* (9 - 2*) dr = 2[0z — £2]} =2(27 - 9) =36

25. Equilateral triangles with sides measuring ;z meters have height 3 sin60° = -'lh_&:. Therefore,
Az) =4 ke Br=s" V=["Ar)dr =G [P de = G[1:°])" = 20T _ LTy

A flz)=kzr = 3ON=K15-12)cm = k=10Nfcm=1000N/m 20cm—12em=008m =

I'.'I-I'Jh-

W= [P kzde = 1000 [} zdz = 500[z*]0** = 500(0.08)* = 3.2 N-m = 3.2,

29. (a) The parabola has equation y = ax” with vertex at the origin and passing through

K
= it —p———e]
(4,4). 4=a.-4" = a=1 = ;,r:]t—.::2 = r=dy = T
z:ﬂ-.,a";.Eachclm.llaldlsk}msmdmszv’;am:llsmvedat-yfL J'Ir'
2
W=[ix(2v/y) 62.5(4=y)dy =250x [} y(4 - y)dy :

= 2507 [2y* — 1y%], = 250m (32 — &) = 2000% - 5378 fi-Ib
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CHAPTERG REVIEW 0O 309

(b} In part (a) we knew the final water level (D) but not the amount of work done. Here

17
we use the same equation, except with the work fixed, and the lower limit of [\
il

integration (that is, the final water level —call it k) unknown: 11" = 4000 <= l 4

S

250x[2y" = L"), = 4000 & L =[(32-%) - (2" = 1rY)] =

h* = 6h® +32=-Z =0 We graph the function f(h) = h* = 6h* + 32 =

on the interval [0, 4] to see where it is 0. From the graph, fih) = 0 for f = 2.1.

So the depth of water remaining is about 2.1 fi.

1 b 1 o, 4 w4 4
. = — 1)l = ——m tdt = = | tant ==(l=0)==
S b—u£ 1) rrf4-l]£ e T [ A ]n rr[ ) T

*h Flz + h} F(z)

31 hm Jo = lm Fle)dt = ln-n ,where F((x) = [ f(t) dt. But we recognize this

I[.r-l-h:l-—z

limit as being F'(x) by the definition of a derivative. Therefore, .l!iuh Joe = F'(z) = fix) by FTC1.
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[1 PROBLEMS PLUS

1. (a) The area under the graph of f from 0o ¢ is equal to )] f{x) d, so the requirement is that [[| f(z) dz = ¢* for all t. We
differentiate both sides of this equation with respect to ¢ (with the help of FTC1) to get f(t) = 3t*. This function is
positive and continuous, as required.

{b) The volume generated fromx = 0toxr = bis J'; #[f(x)]* dx. Hence, we are given that b° = _ﬁ_.:’ =[f(z)]? dz for all
b = 0. Differentiating both sides of this equation with respect to b using the Fundamental Theorem of Caleulus gives

==[f(B)]° = f(b) =+/2b/x, since [ is positive. Therefore, f(x) = +/2z/7.

3. Let a and b be the r-coordinates of the points where the line intersects the ‘o B 270
curve, From the figure, By = A2 = k.
1 r=r
[Fr ¥ n] i
I [e = (82 = 272*)] d = [* [(82 = 272%) = ] da Ry

b

a

-'I
- I'.'I]

[E‘I -4 + %Id]ﬂ [4.: H

l‘—u-r:}

ac—4a” + Fa' = (46" = Lb" —be) = (40 = La
0=4b" = Zb* — be = 46" = Lp* = p(8b = 278°)
=4b" = Zp* — 8" 4 278" = Zp* = 4

=b" (b —4)

Soforb>0,6" =% = b=3 Thus,c=8b-270" =58(3)-2T(H)=F -8B =%

5 (a) V = nh*(r = h/3) = £xh*(3r = h). See the solution to Exercise 6.2.49.
(b} The smaller segment has height b = 1 — = and so by part (a) its volume is
V =21m(l = x)*[3(1) = (1 = z)] = x(x = 1)*(x + 2). This volume must be £ of the total volume of the sphere,
whichis §7(1)*. Sodn(z = 1)z +2)=%(37) = (@ -2c+1)(z+2)=% = F-3z42=% =
3% — Oz 4 2 = 0. Using Newton's method with f{z) = 32% = 0z + 2, f'(x) = 92% — 0, we get

3z} = 0z, + 2

g Taking x; = 0, we get xs == 0.2222 and x3 = 0.226] == x4, so, correct to four decimal
Ty ™

gl — Tn =
places, = = 0.2261.

{c) With r = 0.5 and s = 0.75, the equation z* — 3rz” 4+ 4r*s = 0 becomes =* — 3(0.5)=? + 4(0.5)*(0.73) =0 =

a® =32 +4(2)2 =0 = 8z* —12¢" 4 3 = 0. We use Newton’s method with f(x) = 8z* = 122" + 3,
31
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312 O CHAPTERG PROBLEMSPLUS

Bzl — 1212 43

i) = 24" — P4 S0 Tpg1 = T — 2422 — 24,

. Take x; = 0.5. Then xy == 0.666T, and x3 == 0.6736 = 4.

So to four decimal places the depth i1s 0.6736 m.

(d) (1) From part (a) with v = 5 in., the volume of water in the bowl is

dV o
V = 1xh*(3r = h) = 1xh*(15 = h) = 57h”° = Lah”. We are given that — =02 in*/s and we want to find d—:

dv dh _,dh _ dh 0.2
hen h = 3. Now S = 10mh T = wh* 2, 50 S5 = ———=— When h = 3, we hav
when oWt T i’ T(10h — hZ) " e s We have
dit 0.2 1

- = 0.003 in/s.
& " R(10-3-37) ~ Toaw - D008 in/s

(11) From part (a), the volume of water required to fill the bowl] from the instant that the water is 4 in. deep is
V=1.22(5)=in(4)*(15-4) = 3 -1257 = L* . 11z = Zlx To find the time required to fill the bow! we divide
this volume by the rate: Time = 23203 — 30 = 387 5 = 6.5 min.

r

dV
T. We are given that the rate of change of the volume of water is 5= —kA(x), where k is some positive constant and A(x) is

the area of the surface when the water has depth = Now we are concerned with the rate of change of the depth of the water

with respect to time, that is, d—I But by the Chain Rule, % = ‘:;j: s0 the first equation can be written
dl" dr
g —kA{x) (*). Also, we know that the total volume of water up to a depth z is Vi) = j:_f Als) ds, where A(s) is

the area of a cross-section of the water at a depth 5. Differentiating this equation with respect to =, we get dV/dx = A(x).
Substituting this into equation +, we get A{z)(dc/dl) = =kA(z) = drfdi ==k, aconstant.

9. We must find expressions for the areas A and B, and then set them equal and see what this says about the curve . If
P = (a.2a"), then area A is just ['(2r* — 2*)dr = [ 2" dzr = 2a®. Tofind area B, we use y as the variable of
integration. S0 we find the equation of the middle curve as a function of y: y =22 & z = 1,.1";72, SiNCe We are

concerned with the first quadrant only. We can express area B as

ﬁﬂni [ V"yj'_ﬂ-f-"-‘[y}] dy = [; (y },2}3;:,] :ﬂﬂ ) nh Clo)dy = _u _ Lh? Oy dy

where C'{y) is the function with graph . Setting A = B, we get 3 e 141 :"2 Cly)dy <= jfﬂ Cly)dy =a®.

Now we differentiate this equation with respect to @ using the Chain Rule and the Fundamental Theorem:
C(2a*)(4a) = 3a* = C(y) =3 ,/ufZ where y = 2* Nowwe cansolve fory: =3 /32 =

f:%[y;’ﬂ} = HZ%IQ.

11. (a) Stacking disks along the y-axis gives us V' = j;: = [f(w)]" dy.

. di  dV d'.h. _ g.dh.
ib) Using the Chain Rule, raalr T [f{R)] =
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CHAPTERG PROBLEMSPLUS O 33

(c) kA VE = =[f(h)]? %. Set ‘:‘T —CAlf(WPC =kAVE = [f(h)]?= ﬁ ~ f(h)= 1! R that
is, fly) =1/ ;‘ /4 The advantage nfhawng — = " 15 that the markings on the container are equally spaced.

13. The cubic polynomial passes through the origin, so let its equation be T oy=p+ fFJ-'\'q o
'ar,rz;.v:l:a +q’I2 + rz. The curves |mrseclwhenpm“+q.r”+rx =;|:2 =1
pr* + (g = 1)z 4 rx = 0. Call the left side f(z). Since f(a) = f{b) =0

another form of [ is

f(2) = pr(z = a)(z = b) = prls*  (a + b}z + ab]
=p[1:‘3 —[E+b}I2+ﬂb\Il

Since the two areas are equal, we must have [’ f(x)dz = —_r:_f{z:]d:s =
[F{z)]; =[F(z)ly = F(a)=F({0)=F(a)=F({b) = F(0)=F(b), where F is an antiderivative of [
Now F(x) = [ f(x)dr = [ plz® = (a 4 b)z” + abr]dr = p[3x* = 3(a + b)z® + Zabz®] + C, s0
FO)=F() = C=p[i'=ta+bb*+Lat’] +C = 0=p[it* = L{a+b)t® + 1ab’] =
0 =3b—4{a+b) +6a [multiply by 12/(pb*),b#0] = 0=3b—4a—4b+6a = b=2a
Hence, b is twice the value of a.

15 We assume that F lies in the region of positive =. Since y = " is an odd AE
function, this assumption will not affect the result of the calculanon. Let
P = (a,a"). The slope of the tangent to the curve y = =" at P is 3a°, and so
the equation of the tangent isy — a® = 3a’(x —a) < y=3a’r=2a"

We solve this simultaneously with y = £* to find the other point of intersection: A

Pla,a’) &

=3z —2" & (r—a)'(r+20)=050= (—2a, —Sa.x} is
the ather point of intersection. The equation of the tangent at () is &~2a.~8a7)

y = (=8a") = 12a%[x = (=2a)] = y=12a%r 4 164 By symmetry,

this tangent will intersect the curve again at = = —2(—=2a) = 4a. The curve lies above the first tangent, and

below the second, so we are looking for a relationship between A = [*, [+* — (3a”z — 2a%)] dx and

B =[5 [(12a°z + 16a") = 2*] dr. We calculate A = [$2* = 3a”s" + 20%2]7 | = 24 = (=6a") = La*, and

diz
=2a

B = [6a’z? + 160’z — 22%]7% = 96a* — (=12a*) = 108a*. We see that B = 164 = 2 A This is because our
calculation of area B was essentially the same as that of area A, with a replaced by =2a, so if we replace a with =2a in our

expression for A, we get 21(=2a)* = 108a* = B.
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7 [0 TECHNIQUES OF INTEGRATION

7.1 Integration by Parts

Lletu=z,dv=e"dr = du=drv= %ez'. Then by Equation 2,
Jxe* de = %:seh - f%ej“ dr = Fze™ = %ej“ + .
Mote: A mnemonic device which is helpful for selecting « when using integration by parts is the LIATE principle of precedence for u:
Logarithmic
Inverse trigonomatric
Algabraic
Trigonometric
Exponential
If the integrand has several factors, then we try to choose among them a u which appears as high as possible on the list. Fcramn;ﬂ&hfre”' dr
the infegrand is xe™™ which is the product of an algebraic function () and an exponenial funcion {eh]. Since Algebraic appears before Exponential,
we choose u = x. Sometimes the integration tums out to be similar regardless of the selecion of u and dv, but it is advisable io refer to LIATE when in
doubt.

lletu=zx dv=cosbrdr = du—dr v= %sinﬁx. Then by Equation 2,
Jxcosbads = %zhin 5z — [ % sin dxrdr = %Ihin ar + a_l:. cos S + O
S letu=tde=e""dl = du=dl,v= —%e'm. Then by Equation 2,
J'EE'-:H'LH = _%k-—ﬁl - J‘ -%E-atd! - _%{u-ﬁl + %{J‘L‘-R:d’f = _%tg—at - %E-—ﬁl + {_‘_‘
7. First let u = = +2r, dv=cosxdr = du=(2x+4 2)dr,v=sinz Thenby Equation 2,
I'=[{z* +2z)eoscdr = (z° + 2x)sine = [(2z 4 2)sinrdz. Nextlet U = 2z 4+ 2,dV =sinrdr = dUf =2dr,
V==cosr, 50 [(2r+ 2)sinrdr = =(2r 4+ Qevsr = [ =2eosrde = =(2x 4 2) cosx + 2sinz. Thus,
!'='[:z2 + 2z)sinz + (2 + 2) cosx — 2sina + O

9 letu=om™ e dr=dr = du= Then by Equation 2,

-1
Vi
— dr = 2 eoa™?! - di = =1 i id,t t=1—1’2r
oo rdr=ToosT @ — —m = roos @ - NAE e
:IL‘UH—II—%'2!1I2+C:IEDH-1I—\-"1—II‘!+'|':-‘
4 1 1.
M Letw =Int, dv =1"di = du:;dt,u::!. Then by Equation 2,
5

ft"mm:ét*lnz—f !
]

5
13 Lﬂu:t,dv:c&czld! = du=dtl v==cott Then by Equation 2,

f!cﬁczid-t:—!cut!—f—culhﬂ,=—£cut..l+f‘i{:ﬁ!dﬁ:—tcull-{-—f%d: [:==in!'

sint = = cosf dt

1

:”‘-%d.',zgt"’hut-fél‘dtz !

—t* 4
ol

t Int —

ol e

=—=teott4In|z|+C = =teott+In|sint] +C

15 Flrst]ﬂu:{hlr}z,dv:-dz = du :2|n:5-idz,v:.I.Thenh}'EqLﬂtmnz,
f:f{lIlI}zdI:I“III:]j—ZII].III'%dI:I{].IlIIE—ZI].IIIdI.N-Eﬂ]ﬂf.-'-leII,d'i::dI =>

s
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36 O CHAPTERT TECHMIQUES OF INTEGRATION

dil = 1fede, V =.rmge‘lfln1:d:5 :Ilnz-f.r-{lf.r]d.r:zl.u.r—fd:::::lnr—: + (1. Thus,
I =z|'_]ru::l2 —2zlnz—z+ 1) = z[lnz]j = 2zlnx + 2z 4 O, where & = =207,

17. Firstlet u = sin36, dv = e df = du = 3cos30d0, v = %EH Then
I —fe sin 3046 = emmn?ﬂ— 5;'&291%39&3 MNextlet [ = cos 36, dV = e dfl = dJ = =3sin36d0,
V= 2e* wget [e* cos30df = fe* cos 36 + 3 [ e sin 30 dfl. Substituting in the previous formula gives
I= %EHHiDEﬂ‘ - %ezﬂcu&iw - %fe“ﬁin'!ﬂ‘dﬂ = IE'HHi.IIw - éemu.m?ﬂ - 2! ==
12

Tq'f =1 sin36 — %e” cos 36 + €. Hence, [ = e ?(2sin 38 = 3 cos 30) + C, where ' = =0

3
19. Firstlet u = =*, dv = o°dz = du =3:°ds, v =e¢*. Thenl; = f Pt = 2t = ﬂfzze*d:. Mext let u; = =2,
dvy =e®dz = du; =2zdz, vy = e*. Then [z = et = E_r:e*d:. Finally, let ua = =, dve = e®dz = dus =d=,
vz = e* Then [ ze®ds = ze® — [e*dz = ze* — &* 4+ C1. Substituting in the expression for f2, we get
Ia = 2% = A ze® = ¢® 4 (1) = z%e® = 22 4 Ze* — 2, Substituting the last expression for Is into I; gives
I ==° e —3{;221 —2ze® 42 =20 ) = et = 3z%" 4 Gze® —Be® + ', where (' = 6.

1 : 1
N letu=ze™ dv=—— _dr = du=(z-2"" 4" .1)dr=e"(2r4+)dr,v=—_——__
u = e L2 T2 u=(x-2e e } e 2z + 1) dx, v 201+ 22)
Then by Equation 2,
zel® cdr=— ret® +lfl‘-‘h{2r+”d1=_ xe™® +1f£2:dl_=_ ze?® +lezt+ﬂ'_
(1+2z) 2(1 + 2x) 1+ 2 2(1+2r) 2 2(1+2z) 4
2w
ﬂwanswermuldbewrmenasm+fﬁ‘.

B letu=zr dv=cosTrdr = du:dr,v:%ﬁinﬂ‘r. By (6],
L2 1 Y ety 1 1[ 1 b
f roosTrdr = | =rsinax —f =i Trds = e =] = = | == pcos Tz
a w a a T 2w £ o
1 1 1 1 =2
= b (0 =1} = — = — O ——
2x + #2{ )= Bz one
8. Letu =y, dv = sinhydy = du =dy, v = coshy. By (6],
2 2 p b
j;yshlllydyz [yu.m]ly] —f;cmhydy =2cosh2 =10 = [.Hinlly] =2cosh2 = sinh 2,
L1} o

M letu =In A, dv = %dﬂ = du= %dﬁ,v = —%. By (&),

o

*InR [ 1 ]‘ f" 1 [1]
di = |=—InR| = ——di==iln5=0=|=| ==fmm5=(t=1)=2=L1mms
R 1 Hz o H O {:1 ] il O

p B 1 1
. sin2rxr =2sinx L‘UHI,SDJ.;-I sinx cosrdr = %_ﬂ:r sin2rdr. letu =x, dv =sin2xdr = du=dr,
w
v= —%cm 2r. By (6), %fﬂra: sin 2xdr = %’[—%IE{JH 2.1:]; - %f: —-E cos 2rdr = —%:‘l‘ =04 %[% :.-sinEI]; =-1

Hletu=Mdv=e"MdM = du=dM,v=-—e"" By(a),

M _ - .- - - _M]5
f - .:m_f Me~Mgn = [—ﬂfe ”] f MM = =5~ 4 1-[.;- -'”]
1 1

=S~ 4 el = (=% = ¢~1) = 2e~) = ="

3 Letu=Injeosz), dv =sinzrdr = du= (=sinx)dr, v = —cosx. By (6),

TS I
] wfa

wfa
] - ﬂ"'r sinrdr = — %I.u%—[ll— [—{_'Lki.l-'ﬁ

_r;‘m sin lnl::t:ue-s :r.::l de = [ — s lnf_cm z] o

=—ilni+(3=1)=2n2-3
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SECTIONT.1 INTEGRATIONBYPARTS 0O 37

. In "
35 Letu = (Inz)?, dv = 2 dz = du—z—Id.zu——Bg,{a},

2 ) 25 R z 4 ) . 2 4
f;“{ln:}‘d;: — (lnx)* -zf —Inzdr = £(In2) -u—zf —Ilnzds.
1 5 1 1 5 1 5

LetU = e dV = ede = dii= ld'.r'lr’ z
sanoY =g = 35

2_];" :55 z QI-U a2 I:I 2 - “ .
The —lnrdr=|—1 - —dr=2m?2=-0=|—| =8 h?2- (3 - .

’ 1 8 - [25 II]; f: 25 B [125 LB n2- (% - o)
S0 .rl d{l-“m] dr = “[lnz {:u In? = 2LY = :!T{luzld &41 24

125 12:

. I_ﬂt:ﬁ,mmaItE = rand 2t df = dx. Thus, J'e\";d.:::fe'{ﬂ]d!. Mow use parts with u = t, dv = " dt, du = dt,

a.r‘-d.u:a'togeiﬂfte:dt:ﬂet —Efe'd.t:?te: -2t -I-{::Eﬁeﬁ—ﬂeﬁ-l-ﬂ'.

VT T T
3N letx= 32, s0 that dr = 28 df. Thus,f ﬂacus{ﬂﬂl dff :f ﬂdcm{ﬂz} . %{Eﬂcﬂ} = %f reosxdr, Now use
wimi w'mi wid

parts with u = =, dv = cos w dr, du = dr, v = sin = 10 get

w n
1 —_ . — .l . w
ng.ru.mIdz d([J:a-ul'u:] - ./:rm .HII.l:EdI) ==z [IH-II'.I.I-+- cus::] ot

|::'.ﬂ‘ml'.|..'ﬂ'+l.1.n-i:l'l' {?mnE+Lle—E{# ﬂ—l]—E{E.1+ﬂ}=—%_%

#. Lety = 1 4z, so that dy = dx. Thus, [ zIn(1 +—z]d.::=f{y — 1) In ydy. Now use parts with u = Iny, dv = (y — 1) dy,

du:idy,v:%yﬂ—ymgﬂ

Jly=1Dnydy=(3v" —y)Iny— [ (v =1)dy=july-2)Iny- 3" +y+C

2
=31+ z)z=1)n{l+z) - 3(1+zf +14z4C,

which can be written as 2(z” = 1) In(1 + z) = 327 + Jz + 3 + .

8 letu=xdr=e"Fdr = du:d.r,u:—%e-h.'ﬂ’ien 1

J.Ie-hd.rz— -.d-'_- J‘l -hda:— _ E—!:_%E-ﬂz_i__ﬂ_we

see from the graph that this is reasonable, since F has a minimum where f

changes from negative to positive. Also, F increases where [ is positive and

F decreases where [ 1s negative.
45 Letu = %Iﬂ,dr.r:qu,.-'l+.r”d.r = du=zxdrv :;-I[l-i'-::z]”ﬂ.
Then
[ VIF T dr= 2 [30 42| = 3 [2(1 + 2% de
4222 1425 g O

1
=5F
’]i 2{1+I,d}‘i-j.d - _{1_+_I,d}5_,f'2 3+

|continued)
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38 O CHAPTERT TECHMIQUES OF INTEGRATION

We see from the graph that this is reasonable, since F increases where [ is positive and F decreases where [ is negative.
Maote also that f 15 an odd function and F 15 an even function.

Another method: Use substitution with « = 1 4+ =% to get 2(1 4+ 2%)*/* = L(1 4+ =¥ 4 .

1 1 sin 2
47. (a) Take n = 2in Emmpleﬁmgetfsinzrdz = -z coszsinz + Efld.r: g - “"'4 =el
(b) fﬁi.ll" rdr = —%cm.rﬁilla X+ % _r.-.'inzrd.:s = —%cu&.‘ cein® r + %I = %Hillzr-i'- .
. om 1 . =l n=1 . =
49. (a) From Example 6, | sin” zdr = == cos = sin I+ sin rdzr. Using (),
n n
- 2
f’”:iinn.rdxz [_I:uei.rﬁm"' II] =/ + n=1 ’”:-;hln-z rdr
0 T o o
=1 x f2 _ =1 ] _
=({0-0)+ n_f sin"~? zdr = = f sin"~* rdz
n i n 0
(b) Using m = 3 1n part (a), we have ""I sin®zdr = 2 "'u sinrdr = [—% cmx]z‘m
Using n _Empart{a},mhavef T i rdr = - ;"u sin® xdr = 5 . :‘!_* = %

{c) The formula holds for n = 1 (that is, 2n 4 1 = 3) by (b). Assume it holds for some k& > 1. Then

L I T

wf2
sin®*H p de = BvE le 6,
L s T I.5.7. {ﬂk-{-—l] ], xa.mpe
w2 , w2 T ¢
Jr sin™*+* —EJH_EI it gy = 22 4..6 (2K)
A Zk+3 )y 243 3:5:Teeers (2k + 1)
o 2edeBeeeee (2R)[2(k + 1))
T 3.5, v {2k )20k + 1)+ 1]

so the formula holds for n = k 4+ 1. By induction, the formula holds for all n > 1.
dv=dr = du= n[lnr}"-ll[d.:sf:s}, v = x. By Equation 2,
= [ nz(ln .r]-"-l{d.r,-".r} =a(lnz)" =n _r{l.u .17]-“-1 dr.

=2z see” xdx — ft.an“'j xdr

. Letu = (Inx)",
J"I:].II z)" dr = o(lnz)"
53. _rI:.u.nh rdr= ft.ml”'j.rt.anz.rdxzftan"'jztsecj.r— l]d.r:_flml"
== ‘ft.a.u"'zrdr.

b sec? rdr, v = tanx. Then, by Equation 2,

Letu=tan" 2z, dv =sec’zdx = du= (n—2) tan™

F=tan""'z - (e —E}J-t.u.n"'-zr sec? rdx
1f =tan™'z — (rn—2)1
(n=1)= tan™=!x
f _ tan”.-l T
T on-=1
- I.a:l'.lﬂ_l £ =1
Returning to the original integral, [ tan® zdr = — - Jtan™=* zdz.
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SECTIONT.1 INTEGRATIONBYPARTS 0O 319
55 By repeated applications of the reduction formula in Exercise 51,
J(nz)de=x(ln ) =3 J(in 1) dr = z(lnx)* = ﬂ[m[ln =2 J(nz)* d.:s]
= r(lnz)’ = 3x(lnz)* 4 6[z(lnx)' =1 [(Inz)" dr]

:II[].llJ::I:! - I[Iru::ld +E§:5|.u:r.:—5fld:5_:5[|.u:5] 'it{l:.n.r:]-z-i-ﬁrlnr—ﬁ.r-i-f'

57. The curves i =::2I.ua:andy=4hurjntersectwhen.r”hm==llnr = ¥
Zlhr=4lnz=0 <« I:J:j—ﬂl.uz:ﬂ =
2___‘1:_4|.|'|.'C
x=1or2 [sincex >0].Forl <z <2,4lnz > " Inx. Thus,
' 1 =yt
are.u.=JT[4|.T.|:5—:Ezlllz:idrsz[[-i—zj}hn.r]dz.Lﬂu =lnz, y=x"lnx
dv=(4=a")dzr = du:%dr,v=4r—%zx.mn 0 ;’I : !

= (o) 2z~ 20 = [ [0 1) 2] do = @) (%) ~0- [ (4 2e) e

=¥n2=[tr=§r’] = Fm2= (=) =Fm2-3

59. The curves y = arcsin(ix) and y = 2 — =* intersect at y=2—zt 2 v = argsin{ 4
#=ar =175119and + = b == 1.17210. From the figure, the area 1
bounded by the curves is given by i . . s
A= f:[l[ﬂ — %) —aresin( ;z)]dr = [2.::— %za"]i —f:arcsin{%r:l dr. V V
Lﬂu:min{%:],dﬂ:dr = du:;-ldr v =1 —1

Then
1 .]" 1 41°% b
_'1_[21:——1:3] - [z:an:ﬁin(- )] —f —_— i
3 la 2 /e a2 11
]
= [2:5 —-%Iﬂ-— IEI{.‘HE.II{%I] =2,/1= %:52] = 3.99926
a

61. Volume = ‘ful 2rxcos(mx/2) de. Letu = x, dv = cos(mzf2)ds = du=dz v= é sin(7x/2).

1 1 1
V=2r EIHiD(E) —Zr-Ef sin(E)dIZZﬂ' E—ﬂ -4 —EE{JH(E}
T 2 7 Jo 2 T T 2 o

o

:4+%{n-1}:4-%.
63. Volume = [ 27(1 - x)e~*dr.letu=1—z,dv = e *dr = du=—dr,v=—e""
V=2r[(1=z)(=e)]", = 2n [° e"dr=2r[(z = 1)(e™") + *]° = 2n[ze~*]" =27(0+¢) =2me.
65 (a) Use shells about the y-axis:
v=[lamenza |2y %215

=2n{[fa* na]; - [ dwde} =2x{ (22 - 0) - [§2°]}} =2r(22- })
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320 O CHAPTERT TECHMIQUES OF INTEGRATION

(b) Use disks about the x-axis:

2
_ 2 u=(lnzx)? dv = dr
F-_j: :IT('.T.II} dx [du=2|nz-§-d_r, vr==x

=o{ =] - [ 2tnzae) bRt
_ ,{2{1“2}2 _ g([xln]j _J'fd.r)} = n{?{lﬂ}ﬂ — 4In2 +2[z]i’}

=7[2(In2)* =402 + 2] = 2x[(ln 2)* = 21n2 + 1]

67. S{Ijzfsau[iﬂﬂm = fS[.r}d.r:szsin[%ﬂEJdi] d.

Lﬂu:fxﬁin[%rriﬁjdiz.‘?[r],duzdr = du:sin{%ﬂ.rﬂ}d.r,u:a:.Th.us,
o

2

f.":]'[r]d:s: x5(x) —fm.-.'in {%:rrmz:l dr = z5(z) = fsijly (= dy) [d:: é:l
= z5(z) + %L‘u&-&y + € =z8(z) + %L‘Uﬁ {%:rrzz} +
89. Since v(t) > 0 for all t, the desired distance is s(t) = [, v(w)dw = [ we™" dw.
Firstletu =w?, dv = ¢~ dw = du=2wdw, v=—e"""_Thens(t) = [—I-L'EE-”]:.J -+ E‘j: we™"™ dw.
Mextletl = w, dV =™ dw = dI' =dw, V = =" Then
s(t) = —tle~ 4 2([—11::-_'-”]; + fr:: e~ du-) = —te=! +2(—~te-t + 04 [—E-U]L)

= =te~l 4 A —te™ — e~ 4 1) = =16~ = Be™! =26~ £ 2 =2 — &~ (t? 4 2 + 2) meters

™. For I = [, zf"(x)dz, letu =z, dv = f"(z)dr = du=dr,v=f"(z). Then
I=[zf'(@)]] = [} flz)dz =4f(4) =1 f'(1) = [f(4) = f(1)] =4-3-1.5=(T=2) =12-5-5=2
We used the fact that " is continuous to guarantee that I exists.
73. Using the formula for volumes of rotation and the figure, we see that
Volume = [ xb* dy — [ ma® dy — [* wlg(y)]* dy = 7b*d — ma”c — [* x[g(y)]* dy. Lety = f(z),
which gives dy = f*(x)dx and g(y) = =, so that V = nb’d — ma’c =« [ 2* [ (z) dr.
MNow integrate by parts with u = =%, and dv = f'(x)dx = du= 2zdz v = f(z), and
I 2 (@) dz = [ f(@)]! = [2 22 flx)dx = * 1(0) — a* f(a) = [2 22 f(x) dx, but f(a) =cand f(b) =d =

V =nab’d = mac == [bzd —a’c=- f: 2.1:_,"[.1:]-4.1:] = J': 2z f(x) de.
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SECTION7.2 TRIGONOMETRIC INTEGRALS O 32

7.2 Trigonometric Integrals

The symibols = and = indicate the usa of the substitiions {u = sin =, du = cos x dr} and {u = cos x, du = — sin x dr}, respectively.
1. fﬁinzr cos® rdr = J.aii.ll2 reost x coscdr = fﬁinzrl[l — sin? x) cosxdr

éfujil —uz}duzf{uj —u"}du: éua - %u"'+f:=31iﬁinaz— %ﬁil‘lsl-{-f:

3 fﬂ"'rz sin” @ cos™ 8df = f;‘” sin” @ cos® @ cos 6 di = f;"m sin” @ (1 = sin® #)° cos dff

= Ii:ll u'(1=u) du = f‘; u'(1=2u" 4+ u')du= _rnl{uT = 2u’ 4+ u'')du

1. 1, 1 1" /1 1 1 15-24410 1
== —— — = —-— - — ] — = —
[3“ 4 ot | T\ETET 120 120
i f&m"{?ﬁ} cos”(2t) dt = [ sin(2t) cos®(2t) sin(2t)dt = [[1 - cos® {21}]2 Luaz{ﬂt:]- sin(2t) dt
= [(1 =u*)*u® (=% du) [u = cos(2t), du = =2=in(2t) df]
=-z J'I[u" —2u" + N)u' du=—3 f{us = 2u® 4 u”)du

= —% %u? 1'.|: + 3 ux] +C= —ﬁ::m?{ﬂ] - %Luﬁ"’{Z!} - %Lwﬂl:ﬂ} +C

T [i eos®0db = [7* L(14 cos20)d6  [half-angle identity]

= 30+ $sin 2]} = 3[(§ +0) - (0+0)] = 3

9. [y cos*(2t)dt = [ [cos®(20)]*dt = [ [$(1+ cos(2-2t))]"dt  [half-angle identity]
=1 [T+ 2cos4t +cos”(48)]dt = } [7[1 4 2cos4t + £(1 + cosBt)] dt

= %f; {%+2cuti4£+ %EL‘IHS!] dt = 1 [3L+—5m4!+ th‘l] = %[{%n +D+|E|';l —D] = %#

1. J'nr"rj sin® r cos” rdr = f;"u i(4sin® z cos® x) dz = r"rj L(2sinz eosx)’dr =1 _fx"rj sin® 2rdx

= 3 B = cosde) de = § [72(1 = conr)dr = Rz = einda] 7 = 1(3) = &

13 f\.-'u.mﬂ:iinjﬂdﬂ: J Weos B sin® 8 sin 6 db) = [(cos8)Y%(1 = cos® #) sin 6 dif

= f ul"ul:l = u”) (=du) = fl:us"rj - ul‘r"!]du
= ;u”z - %ua‘” +C= %{cu&iﬁ"}”z - %{u.mﬂ}a"u +

15 jr{_'ul.z cmzzdrzfc?mz {l—ﬁind}d.I

=N

1=
_f w du—f(——u)du—ln|u| u ‘+C= lnlﬁinII—%HthI-}-{?

17. fﬁinj.r HiDEIdIZIHinzI{ZHC-LIII cuti:s]da:éfzuadu= tu'+C=gsin*z+C

19. [tsin® et = [t[5(1 =cos2t)] dt =23 [(t =tcos2t)dt = & [tdt = & [teos2tdt

u==¢ dv=cos2idf

=i(‘£z}—i{‘tamﬂ—flmnﬂrﬂ} du=dt, v=1sin2t

t %tami‘l-{-— [—%cu&ii‘f,]+f:=%£j—%lsi.n2t—;—tm2£+ﬂ'

i
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322 0O CHAPTERT TECHMIQUES OF INTEGRATION
Fy _rtBIIIEHIaIdI:_rIEIIIEHIIEEEinI:IH du [u = sec x, du = secx tan T dx]
:%uj'-l-ﬂ':%ﬁecﬂ.r-l-ﬂ'

3. [tan®rdr = [(sec’z = 1)dr =tanz =z + C

25, letu =tanzx. Then du :.-aec?md.r,m
ftah‘:ssec“.rd.r: ft.an"':.rziecqr {Eil:"czIdI}
— J-uqu + u?}zdu — f{uh +2u® + o) du
ttan’s 4 Ztan’z + }tan®z + O

= ft-ah“:c{l + tahg.r:lzl[secz.rd.r}

ﬁu-l- u+-u+f'

2T, flanax sec rdr =j'lm|2zmx la.ll.rd'.r:f{:sec?z— 1) secx tanxdr
‘r—secr+C

= [(u® = %u —u+ (= tsec

29. [ tan IEEtﬁId.I:IT.EIIIRIH:'Cl'IﬁECQIdI:_rlEIIaI[l+|,i'l.ll x)? sec? dr

du  |u = secz, du = sec r tan xdx|

_ a 2B u = tanmr,

_fu (14 w™) " du [du=m:=:d:]

:fua[u‘ +2u?+1) du:f{u7+2u"’+ua]du

_iu +5u +-u +ﬂ--la.u I+5lilll:5+ Ltan'z 4+

A fla.n rdr f[ﬁew. r—= 1]? t.anzd.r:fﬁec"ztanxdz—ﬁfsecz.rt.an.rdz+flan.rd.r

=f~.-e1.1.rsec:5 tanrd:s—th.an:sﬂQ.rd.r+fLan.rd.r
[or %.'&Eq:‘.r—seczr-l-ln [sec x| 4 ]

Lsect s —tan® x 4 In|sec x| + C

B letu =r.dv =secxr tanxdr = du =dr, v =secr. Then
J'I ﬁtﬂ:.rtanzd.r::ﬁﬁ:.r-fseczd.r:xﬁtt.r—hl [sec x 4 tanz| 4+ C

35 J""w:_ul rdr = _fxﬁ{{_m. r=1)dz= [—1:ut1' —I] e =(0=-3)- {—\.-"i— I=y3-2
x f2 5 - of A =f 2 . ch ;
cot” v ese” i = f cot® ¢ cse” o esc o eol ddd = xfa {nﬂ: 11?—1] cae” o cse o cob dded

a1 J:r..l'-ll
1
:f I:1'.|2 - 1}?1!2 {=du) [+ = e &, det = —csc 6 cot B do]

IV24+3V2) = (4 -3 +4)

f (u” = 2’ +u:]-du—[-u - u5+%ux]:@=(;-'ﬁ_

_120-168+470 o 15-42435 22 5 8
105 105 105 105

ese x (esex — ot x)

39. szc&c.rd.:'::f
cse T = colax

du = (= esex cot = 4 ese® £) de. Then I = [ dufu = In|ul

]

=8t ool x4 8T T

= dr. letu=ccr —colr =
st = colx

=In|emcr —cotx] +C.

41, [ sinBz cos S dr 2 I #[sin(Bz — 5z) + sin(B8z + 5z)]dr = 3 J(sin 3z + sin 13x) dx

=3{—teosdzr— Seoslidr) 4+ O =—Jeosdz — eoslizr+ O

WEIEC:HL.:—:‘.AII:#I::—vnl.m?dkcqﬂ.:-d.-hhﬂ.nuﬁumpthhrh_r#—HWM:—:;&WE—&M-A&ML
sckirmal comtomt ot 2z e o wsbusguent g st regues d.
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SECTION7.2 TRIGONOMETRIC INTEGRALS 0O 323

3. [T cos5t cos 10t dt = [T* Lcos(5¢ — 10t) + cos(5¢ + 10£)] dt
= L [*[eos(~5t) + cos 15t]dt = § [/ (cos 5t + cos 15t) dt

= 1[lsinst+ Leinls]]f=L(ioL)=L

45, fﬂ"'rs 14 cos2ede = J‘;.ﬂ'ﬁ v 91+ {2 [ —— ll'lda: = J-nrfﬁ V2eos® rdr = v‘ﬁf;‘m vieos? xdr

=u"§_lr‘m|cm.r|d:5=ﬁfﬂr‘mtu~jrdm [since cos = = 0 for 0 < x < /6]

—v"'_ hlll.lf] —\.-"-{3_{]]—5\.-"—
1 —tan®x 2 3 1
47. —zd.rz {cma r —sin I]d.::: Lquzd.r:EsmEI-{nf-‘
sect

49, f:stﬁni.rdrzf.r{ﬁecj:s—ljd.rzfrﬁecE:sdr—f.rdI
uw=mx, d':'=.|e1:2.rd:]

u=d.r, r=tanx

=zt,.u.u;l:—“rla.n.::d;v:—%;l:2 [
=rtanr = In|sec x| = fa2° 4 O

In Exercises 5154, let f () dencte the integrand and F*() its antiderivative (with (" = 0).

51. Let u = =°, so that du = 2z dr. Then

o) de = fin (k) = 3 301 = eom2) o *
:%{u—%sinﬂu] -I-f-':%u—%(%-ﬂziinu u.mu]+{: v f i

= %.1:"! - %5'"1{::2] cuei{:zz:l' +C

-
We see from the graph that this is reasonable, since F increases where [ is positive and F decreases where [ is negative.
Mote also that f 15 an odd function and F is an even function.

53. [ sin3z sinbrdr = [ f[cos(3xr = fix) = cos(3x + bz)] dx 1
= & [(cos3x = cos 9z) dr ! -
= ;sindz— Lsinlr + C -2 ?
Notice that f(z) = 0 whenever F has a horizontal tangent.

S5 fae = i_r:'ﬁinzz cos® rdr = ﬁ f:rHiI.IHIl::l - sin® x) cosxdr
= %J:fujil - uz}du [wh!r\eu =:i|1._'|.'] =0
5. A= J}r{ﬁinzr — gin® ) dx = fnr [%{1 — s 2r) —sinx (1= cos .r]] di

= J}r {% - %cmﬂr] de 4 jl-ll[l = uz:]d'u [du T

u = —sinrdr

= [$x = $sin2z|; 42 [j{u" = 1)du
= (tx=0) = (0=0) +2[1u* = u],

=pra(i=1) = pr -4

rwmlucmwh_*umguwm“h_pd.g-_a._w--u.u,mn.mu_.#—H,-qm_rh-n._ﬁ_ha.*_u.mp
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324 O CHAPTERT TECHMIQUES OF INTEGRATION

58, 125 It seems from the graph that _ﬁ;r cos? o dr = 0, since the area below the

a-axis and above the graph looks about equal to the area above the axis and
i 2 below the graph. By Example 1, the integral is [sinz — }sin®z] " = 0.
Mote that due to symmetry, the integral of any odd power of sin x or cosx

—1.73 berween limits which differ by 2nx (n any integer) is 0.
61. Using disks, V = [, wsin®zde =7 [T, $(1 —cos2z)de = w[fa = fsin2s]_ =7(3-0-F40) = =
63. Using washers,
1-'=f‘;"“ﬂ[{l—ﬁin.r:]-z—{l—u.mrlz]d.: v=1n
—cosx M

r‘“ [(1=2sinx + sin’ z) = (1 = 2cos x + cos” z)] dx

=% I‘H{Zu.mr = 2sin + sin® z = cos” ) dx

I‘H{Zu.mr 2zinr = cos 2r)dr = #[Zamm 4+ Zeos = £ sin EI] =/

:ﬂ[(\-"'-+v"'-—g}—{ﬂ+2—ﬂ}]=#{2v"'_—g]

685 = = fit) = f; sinwu cos” wude. Lety = coswu = dy = =—wsinwudu. Then
A= _i J-;m”! ylidy = —i[%ya]:mm = ﬁ{l — cos” wit).

67. Just note that the integrand is odd [ f(—x) = —f(z)].

Or: If . # n, calculate

=0

mo=1 m+4mn

" n
Jr sinmr cosnrcdr = %[sinl: e — n}:.l: + ﬁi.ll{:m + :n::l-:r.:l dr = % [—

EUH{I’J'I - :ri.}J: cm{m + n]I] .
- -

If m = n, then the first term in each set of brackets is zero.

9. f:r COs M cosnedr = f:' %[cml: m — n)x 4+ cos{m + n)z] de.

X 1| =i - i "
If m 3 m, this is equal to — [H'n{m n)z + sin(m + RII] =0.
-

2 =71 T 4= 11

& w
Ifm=mn,weget [T L[14 cos(m 4+ n)z]de = [1]7 + [%] =w+0=n.
-

7.3 Trigonometric Substitution

1. Let o = 2sind, where =72 < @ < /2. Then dx = 2cos 8 dif and

VI=2F = /4 = 4sin®¥ = Aeos?0 = 2 |cos 8] = 2eos . ¥

Fr 2eosf 1 o v
Thus, —_— ) —— il = —f &
s f.z”y,.“l -2 f‘tﬁll‘l 2 cos ) 1/ = JI—=
1 - 4=z ,
= -Icutﬂ-l-ﬂ -— 4 [see figure]
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SECTIONT3 TRIGONOMETRIC SUBSTITUTION O 325

3 Letx=2sect where 0 €8 < Zorm <6 < 2% Thendr = 2sec# tanf df and

VIT =4 =Adsec® 0 = 4= /A(sec’d = 1) ‘
=+v4tan®d = 2|tanf| = 2tand for the relevant values of @

f—_ddzzfthIﬂiﬁetﬁ t.anﬂdﬁ‘:Eft,anjﬂdﬂ
r D soc

Yat—d

[

:zf{_-ﬂ-ia- 1}d9=zl[lm.ﬁr-m+r:=z[E —— (%)] +C

=v"'ﬂ———ﬂmc"(%)+ﬁ'

5 Letxr =sect where) <8 < X ol'#f.ﬂ-\:‘, . Then dr = sec® tan 8 df

and va? = 1 = vsec? # = 1 = vtan® § = |tan#| = tan @ for the relevant
values of #, so

f“’; dr _f""“'ﬂ -ﬂtmuﬂdﬂ:ftan“ﬂcm“ﬂdﬂ !

=[5inzﬂcmﬂdﬂéfu2du=%u‘1+ﬂ'=%5inzﬂ+{?‘

1 JE=ay (z = 1)*2
3 (5

1
- )-I‘-(‘—ET-i‘-C

T.I_e't.r:ut.anﬂ,wherea}ﬂa.rki—,—:{ﬂ{ﬁ.ﬂmndx:u&wzﬂdﬁ,zzﬂ = #=0andr=a = ﬂ:%.

“ dx _ w4 n sec” B dif _ xﬁﬂ““-tzadg_ 1 fdft = ! L] rﬂ
£ {ﬂz+12]3,!2 _£ [a®(1 +lm|25]]3‘r2 _JI; algacd ug‘/n. Ol =3 [mn ]

(49~

a
9 Let xr = secf sodr = secf tanfdff, r =2 = ﬂ:%,aﬂd

=3 = #=sec™13 Then W=
-1

* dr _ <% socd tanfdf _ o cmﬂdﬂ
s (22 =103 [ tan®# [, sin®6

VB3 11¥8 g 3 J‘
- ﬁ;zF“‘['E]mfﬁ*E‘" 2*3

du = —Brdr

N [ ey To i de= [ u? (—Ldu) [ w=1 "‘2‘]
5

_ Lfz, 2] _ —
=i[3] =k0-0=4%

13. Let o = 3sect, where 0 < 6 < S orm <6 < 2%, Then

dr = 3sect tand 46 and -.,,-";l:5 =9 =73tan#, so

Copyeight 3046 Conpoge Lemmiog. AB ights Reverves. Moy st b copind, scomm o dmphicate, o whole o . o b et ightn, s shind oty contnt sy b e s the ek e o mptts
Esbirrea rovars b decmacd that as wepy By affect the ovorall bermirg cupencece. Uagage Lcameng rescrves the nght 0 remens sckdtamal oot 2t 2z hine o vebusguent gt s icton regues i




326 O CHAPTERT TECHMIQUES OF INTEGRATION

=z
f” L. Jf“'“"’ imﬂluuﬂdﬂ_ tan 6

27 sec? 8 sec?
=z [sin"fdf =3 [ 2(1 —cos20)dfl = 20 — Ssin20 + C = 36 — Lsint costl + C
1 _1(1 1/ =53 1
=5%"(3)

g =g (5) -t e

15. Letz = asinf, de =acosfdf, z =0 = f#=0andr=a = ﬂ:E.Then
f; Vel =Pdr= fﬂ"'uaE sin” @ (o cos ) acos 8 dff = a* fﬂ"rzﬁinjﬂcmzﬂ‘dﬁ'

w f2 4 xf2 , d )2
= ﬂ"f [%{2 sin u.rsﬂ]]j did = %f sin” 20 dfl = %f %{1 — cos 46) dff
(i a a

4 4

= S~ tananl = 5[(5-0) 0] = o

17. Letu = = = T, s0 du = 2z dr. Thenj-

1 1 .-—
-
19. Let x = tan®, where =3 < 8 < 3

7 Then dx = sec” O dff
and /T + £2 = sect, so

Vit o 20 rpan= [ 29 (14 tan?o)ds
T tanf tand

i
= [(esct + sect tan ) d

=In |¢:w|:19 — enl 9‘| + sl 4 O lb}' Exercise T.Z.]‘J]

1 1 1 1 =1
Y EE 1 +_~*;rr” +C=n —*~'*+I”|+ AT +C
I i i

2. Lﬂz:%ﬁhlﬂ,&ﬂdz:%cuaﬂdﬁ,::ﬂ = f#=0,andx =06 = &=2I Then

: x . w2 L
jr:] W f u.mﬂ (E' cmﬂdﬂ'} = T_J'l‘_s A sin” ¢ df
=12 TP 41 = cos 26) dff = 25 [0 — L sin26] "
w[(5-0)=0] =z~
E.f dr _f dx _f 2 see” f dff r+1=2tan#,
Vea+2z+5 ) fz+1)2+4  J JaanTo 44 dz = 2smc® 6 df

2
_fz“;‘ ‘9:& fsecﬁr;m:mmmm.ﬁrucl
=T

5
—In Ve +2.1:+a+.1:-;-1

-

or Inlx-".r2+21:+ 5+I+1|+—C,wtler2(::[f| =In2

[
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B [FAVIvIr-tde= [\ A= (2 + 224 de= [,/ = (z = 1) dz
= 2=in e
= [(1+ 2sin8)*v4cos? 8 2eosf dbf z—1=2sind, ] P=1

dx = 2 cos 8 d8

_I{1+4HIDE+4HII ﬂ]4£m & de fi

I

=4 [[(eos” 0+ 4sin @ cos” # 4 4sin” 8 cos” 0) df

=4[ (14 cos20)df + 4 [ 4sin@ cos” 6d + 4 [(2sind cos6)* db
=2 [(1 4 cos26) dfl + 16 [ sin@ cos” 0d6 + 4 [ sin” 20 d

=2(0 + §sin20) 4 16(—3 cos® 8) + 4 [ 3(1 — cos 48) dif

=20 4 5in20 — L cos® @ 4 2(0 — Lsindf) + O

=48 — Lsin 40 4 sin 20 — 2 cas® 0 4

= 46 — §(2sin 20 cos 20) + sin 260 — 3 cos®§ + C

=40 4 sin 20(1 — cos20) = Lcos® 0 4+ C

=48 4 (2sin# cos8)(2sin’ §) — Leos® 04 C

=40 4 4sin® 0 costl = Leos® 0+ C

=4:.-in"(IT_1) +4(I- 1) N r—— _ E{3+2I—12}”2

C
2 2 3 23 +

=4sin~" (ET'I) + &(: -1)IF2z—2f = %{H 2z = 2?2 4 C

27. 12+2z={z2+21+1}—1 :I::.I+1:I-2—1.Le‘t.z+1:lﬁecﬂ‘,
50 dr = secf tan # df and +/x° 4 2xr = tanf. Then

T ¥ 2rde = [ tanf (secd tandf) = [ tan® @ secddo #

=f|::ﬁeczﬂ— 1) ﬁecﬂ‘dﬂ:fﬁecxﬂdﬂ—fﬁecﬁ'dﬁ‘
= %HE'CQ tan# 4 %].II |a-set_'ﬂ+ la.nﬂ‘| —lnlsecﬂ-l-—tanﬂl-{-(:

:%H‘E’Cﬂlﬂnﬂ—%].Illﬁef_'ﬂ-i'-lﬂ.nﬂ'|+C:%|::I+l}'\-’Iz+EI—-&]nl:s+1+1,."12+2r|+1':.‘

2 letuw= Ij,du = 2rdr. Then

7 where u = sin #, du = cos 8 d#,
[eyT=ade = [ T=uF (Ldu) = L [cosf-cos0d e ]

=z [2(1+cos20)dil = 30+ 2sin20 4+ C = 30+ ;sinf eosf 4+ C

= tsin™ w4 Juyl=u® 4 O = Lsin™z) + f:.l:jv'l—.r" +

M. (a) Let = :a.t.u.nﬂ,“here—% < fThEh VI + af = asecd and

f fﬂ.‘:‘EL 8 it
-l,n':g +ﬂi ﬂﬁ-ELﬂ

=l||li.r+x-"?+u!} 4+ ¢ where C' =1 = Iln|al

L

-+

fﬁecﬂ‘{.l'.ﬁ':].nhﬁecﬂ-i- tant| + =hl|#

‘+{“l
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(b) Let & = asinh t, so that dr = a cosh t ot and /= + a® = acosht. Then

dx osh § df - .
= | =/ =t4C=sinh™' 24 C.
Wt 4 al a cosh i a

33. The average value of f{x) = /=T = 1/x on the interval [1, 7] is

E o s -sec0tan § df VWIZ — 1 =tan#, and o = sec—! T

f W IE 1 l:l-llﬂ‘ wheré = = sec#, dr =.I=|:3t:u13dﬂ,]
T=1

:éﬁlmlzﬂdﬂ' E-rﬂ l:a-set_‘!ﬂ—l:]dﬂ' [l.mﬂ' ﬂ']ﬂ

:é{tanu—u}: %[ 48 — sec™! 'i"]

35 Areaof APOQ =1 {r cosf)(rsinf) = :'z sinfl cosf. Area of region PR = J':L_md_ 414 = dr.
letx =reosu = dr= =rsinuduforf <« < £ Then we obtain
T = T dr = Jrsinu(—rsinu)du = - Jsin® wdu = —3r(u — sin w cosu) + C
= —-r cos™ zfr)+ e —aT 4+ O

S0 area of region PQR = L[=r® cos~(zfr) + 2 vT =22’

*ooos

[l] - {—:r 8+ ru.mﬂr:.-iulﬂ]] = -:rjﬂ‘— -r “sind cos @

|~.||-

and thus, (area of sector POR) = (area of A POCY) 4+ (area of region POR) =

37. Use disks about the x-axis:

=] 0 2 =3 1
‘.’: T — dIZS].]' _.d-]:
| (=) | @

letx =3tand, sodr = 3sec” 0df, =0 = @#=0and

:|| 3
=3 = ﬂ:%. Thus,

' Ja— 0o " cas? 0.0 ] 26) db
1t —31ﬂ£ mqm _'ifrf; Cins —Sﬂj; El::l-{-—l:ﬂh :]'

=P+ = E[(F+4) 0] =+ &

1. (a) lett =asint, di =acosfdd =0 = #=0andi=xr =

a
# = sin~"(x/a). Then {or X}
sin—1{z/a) ) —Lizfa) a
f!\.faj—!jdl:f ﬂcmﬁ‘{acﬂﬁﬂdﬁ‘}:uzf cos’ 0 dl T3
(] i i =

sln_l{:fn}

liu_it:fn] 4
== [ﬂ‘+ sin f cmﬁ']
2 o

_ ﬂz in—!{z/fa) _ ﬂ! -
_?j: {l+1w39]dﬁ'—?[ﬂ‘+ﬁhm2f}]n

2 a i

=£[(ﬁin-1(z)+E.M)_u]=§nzﬁ-m ‘(zfa) + e VET=
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SECTIONT.3 TRIGONOMETRIC SUBSTITUTION 0O 329

{b) The integral [ +/a® — t7 df represents the area under the curve y = +/a® — {7 between the vertical linest =0and t = z.
The figure shows that this area consists of a triangular region and a sector of the circle t* 4+ y* = a”. The triangular region

has base x and height ,/aZ — =2, so its area is x /a¥ — z%. The sector has area 1a“6 = la® sin™"(z/a).

#1. We use cylindrical shells and assume that R > r. &’ =" =(y=R)? = z=z,7-(y-R)?,
so gly) =2,/r* = (y — R)? and
1-':f:::2:rry-2..r‘:rz—{y—ﬂ}zdy:fzp4ﬂl[u+ﬂ:|\£r”—uzdu [where u = y — K]
=dx [T T Fdu+47R [ JT=F du “*m"="i""~=‘"=mm]

in the second inbegral
L ¥
= 4#[— %{Tj - }:!,.fz] o + 43'I'R_r:£:2 v eos” Bdfl = _‘T"{l] -0} + xR :ﬁ'z cos® f dff
= 2x R f:ij'l{l + cos20) dff = 27 Rt [ﬂ + %H-.II'.I. 25'] :l:"! = 2 R

Another method: Use washers instead of shells, so V' = 8= R f; v/ ¥ = y? dy as in Exercise 6.2.63{a), but evaluate the

integral using y = rsinf.

43. Let the equation of the large circle be z* + y* = R*. Then the equation of -
¥=ht =y

the small circle is * + (y = b)” = r2, where b = +'RZ = 2 is the distance
between the centers of the circles. The desired area i1s

;‘].:J.:F[{b-+\."r:r2—1:2]—-\,-"I.RH—IQJdI - . [—K X
=2 [ (b+ VT = VT )dz \j

=2 [ bdr+2 [T —zdr =2 [ R — 22 dx

The first integral is just 2br = 2r /2 — 2. The second integral represents the area of a quarter-circle of radius r, so its value
15 %m—j. To evaluate the other integral, note that
f Vo =xtdr = J'u.z cos® 8 df [ =asind, dr =acosfdl] = (%ﬂz)ffl + cos 26 dif

= %ﬂ.j {ﬂ + %siniﬁ} + = %uz{ﬁ‘+ sin® cosb) 4 C

= %arﬂiin(z) + i(f)a—-ﬂ +C= %EI{HhI(E) + % Vval—a? 4O

2 \a a

Thus, the desired area 15

A=2r VR =12 4 2{%3172'_] - [R2 arcsin(x/ ) + x /R* = I‘];

=% =12 4+ %'.!!I"r2 - [R2 aresin(r/R) 4+ r v R? = rzl =rv R =714 E:r2 - R arcsin(r/ H)
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330 O CHAPTERT TECHMIQUES OF INTEGRATION

7.4 Integration of Rational Functions by Partial Fractions

1. () 44z A + B
: |[1+2I}{3—.I]_l+21: 3=z
1=z 1=z A B O D
b —
{]I:“+I"' I*{:l+.r:|- +Ij+.r"+l+z
1 1 A B  Cc4 D
i = = — = —
@ 2 4xt 221422 = + z? 14 x2
a+1 (® =3 +22) + 3" = 20 + 1 3a? =2r 41
b = - =14+ —"— div
{]Iz—3I2+zI at =32 + 2z +I{:I‘!—3I+2} foe use long division]
3z° =2r+41 A B c
=1 —_ =1 i [ -
+J:I[I—l:]-{:r:—2] +.1:+I—I+I—2
5. (a) =z 447 + 164+ 64 [by long division]
= _— ; 53
=4 (x4+2){x=2)
A B
= 1 64—+ ——
=z 442 + 16 + +2+ — 9
) = _ Az+B  Cz+D  Ez+F

|[:.|:2—1’-|--.'ll'||[.r”+2:|2 =41 42 {1'2-1-2:]-2

=1

4
T.f r dI:f(I’ +x* +I+1+%)d1’ [I:ndnll.'han] —I +lI"'+ I +I+1|1|I—1|+L

Sr41 A B
9. = . Multiply both sid r (2 Ljjx = 1) to get & l=Alz=1)4+ B(2 1

Se4l=Ar—A4+2Bx+F = Hcr4+1=(A+2B)x4+(-A+ B).
The coefficients of = must be equal and the constant terms are also equal, so A 4+ 28 = 5 and

=A 4 B = 1. Adding these equations gives us 38 =6 < B = 2, and hence, A = 1. Thus,

Sr41 1
—_——dzr = —— dI—ll 2r 4 1] 4 21 - 1| 4.
2z + Dz =1) 2 f(21+1+1__1) n|2e 4+ 1|+ 2lnjz = 1] 4

Another method: Substituting 1 for = in the equation 5z 4+ 1 = Al = 1)+ B2z 4 1) gives6 =38 & H=2

Substituting —- for = gives -3 = “.T“l = A=1

2 2 A B
. - = . Multiply both sides by (22 + 1)(z + 1) to
iz +l (i DE+]) =+l r+l iply both sides by (2= + 1)}(x + 1) to gt

2= A(x + 1) + B(2z + 1). The coefficients of = must be equal and the constant terms are also equal, so A + 28 = 0 and
A4 B =2 Subtracting the second equation from the first gives B = =2, and hence, A = 4. Thus,

- "'_fl A 2 Ve [fmpeta-2mz 1] = @n3-2m2)—0=2m>
o 243z 4l = o \2x4l x4l = gn T 1T o 1. Il = ng_

Another method: Substituting —1 for = in the equation 2 = Az 4+ 1)+ B(2cx 4 1) gives2=-B & H=-12

Substituting —% forzgives2=34 & A=4
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SECTIOM 7.4  INTEGRATION OF RATIOMAL FUMCTIONS BY PARTIAL FRACTIONS O 33

ar ar a
13 | ———dr= | ————di= | =——der=aln|z =54+
f.:”—bz * f:s{r—b} j-I—b aln |z |+

a -

- 41 3r-5 -5 A B

15, 2 = T o434 — 7 Write = + . Multiplyin
= 3r 42 * {I—l}{r—z:l {I-l]l[a:—i} =1 T -2 plying

both sides by (x — 1){x — 2) gives 3z — 5 = Az — 2) 4+ Bz — 1). Substituting 2 for =

gives 1 = B. Substituting 1 for  gives =2 = =4 < A = 2. Thus,

P —dr 41 o 2 1 2 ¢
_ dr= T —— | dr = |4 Jx 4 2 p -1 1 -9
/:;z_am.m _1(I+ +;_1+3_z) - [5E+ +2Inje =1 +Infr 21|

_{D+ﬂ+[|'+lllﬂ:l—{3—3+2|n2+l||'1] Z=In2=In3,or 3 =Ink

4y =Ty =12 A B o g
1 —————=—+—5+ = 4y' =Ty —=12= Ay + 2)(y — 3) + By(y — 3) + Cy(y + 2). Settin
yy+2)y=3) v wy+2 y-3 (v +2)y—3) (v=3) (v+2) g
y=0gives —12 = —6A, s0 A =2 Settingy = —2gives 18 = 108,50 B = 2. Settingy =3 gives 3=15C,s0 C = 1.
Mow
2 gy =Ty =12 (2 9/5  1/5
—dy=f(-+—+ )dy—EI:-y-i— In |y 4 2 +1Iny—3
£¥{F+2}{y—3} L \y w42 y-3 21yl lv +2| v =31];
=2In2+ 24+ 3nl=2mnl=2mn3-31in2
— — 1 —9
_2|n2+‘:|—"‘l||2—%ln2——ln'§ An2-2ln3i=2(3n2-In3)=3IInZ
2 '
1 A B
19, —— txt = + Multiplying both sides by (z + 1)*(z + 2) gives

Er)iz+2) =+l EF+If Tz32
2 pr+l=Alr 4 1){r+2)+ Blx+2) + Oz + 1)°. Substituting =1 for r gives 1 = B. Substituting =2 for = gives

3 = (. Equating coefficients of =° gives 1 = A+ C' = A + 3,30 A = =2 Thus,

e o | L - 1 3 1 !
T T T - dr = |=21 1| = —— + 31 el
o @+1P(z+2) £ (I+1+{m+1.‘11+:+2) nlet 1= oy + 3z 2]

=(=Z2ln2=143n3) = (0=1432) =1 =52+ 3md, or I +In 3T

1 1 A B C D . .
AT T G IRG=TF i1 T @R i1 T o Mutuplying bothsides by (¢ 4 1*(t = 1)° gives

I=A(t+ 1)t =1+ B(t =1)* + C(t = 1){t + 1)* + D{t + 1)*. Substituting 1 fort gives 1 =4D & D=1
Substituting —1 for t gives 1 =48 & B =1 SubstimtingOfortgives l= A+ B—-C+D=A+1-C+ %50
1 = A — C. Equating coefficients of t* gives 0 = A + . Adding the last two equations gives 24 = 3 & A =% andso

u 1
(.-' —_— —;.TJ"ILIS,

[ &=/ [-'«lfl ttﬂnz‘tlfdl*t:ﬁP]‘“

1 1 1 L1
=mp+1- L cmp-1- L 4ol
4[“' |= g il 1] 4("

=1 1=

t41 2t
L‘+ )+C
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332 O CHAPTERT TECHMIQUES OF INTEGRATION

10 A Br4cC . . .
GoD@T9 i1 2%0 . Multiply baoth sides by (x — 1)(=* + 9) to get

10 = zl{;::2 +9) + (Bx + C)(x = 1) (+). Substituting 1 for = gives 10 =104 <+ A = 1. Substituting 0 for = gives

.

W0=94=C = ¢ =9(1)=10= =1. The coefficients of the =”-terms in (=) must be equal, so0 = A+ B =

B = =1. Thus,

[e=vmwmt = [ F5) «= /(- -mm) -

=ln|z =1 = $In(z" + 9) = Ftan™'(3) + C

In the second term we used the substitution & = =* + 9 and in the last term we used Formula 10,

4r dx 4x A Br+(C
= = = . Multiply both sides by
P’ +r+l 2z +1)+1Uze+1) (z+1{=2+1) =41 =22+1 P by

(z+1)(2* + Ntogetdr = A(z* + 1)+ (Bx+C){z+1) & 4dr=Ar"+ A+ Br*+Be+Cz+C &

= (A + B)z" + (B 4+ C)z + (A + ). Comparing coefficients gives us the following system of equations:
A+B=0 (1) B+C=4 (2) A+C=0 (3
Subtracting equation (1) from equation (2) gives us —A + € = 4, and adding that equation to equation (3) gives us
A0=4 & C=2andhence A =—=2and B =2 Thus,
2r4 2 =2 2 2
f:.—+r‘+:+1 f(z-l-—l .r'ﬂ+1)d:5_)((x+1+4—,'ﬂ+1+£+1)‘:'[‘r

==2Inl|e+ 1| +In(z? + 1) + 2tan~ x4+ C

3 ~
2 4 4r 4 3 ' +4r43 Ar+ B Czx+D a ;
7. _ = = . Multiply both sides by + 1)(z" + 4
e hd (P D{z*4d4) P41 g d - by (= N )
topetx® $dr 4+ 3= (Ar+ B)[z" 4 )+ (Cx+ D)(z* +1) =
44243 =A2* + B 4+ 4A2 4+ 4B+ C2* + Dx* + Cz+ D &
2 pdr+I3= (A4 )2 + (B 4+ D)x” + (44 + O)r + (45 4 D). Comparing coefficients gives us the following sysiem
of equations:
A+C=1 (1) B4+D=0 (2) 1A+ C =4 (3) 4B+ D=3 (4)
Subtracting equation (1) from equation (3) gives us A = 1 and hence, C' = 0. Subiracting equation (2) from equation (4) gives
us B = 1 and hence, I = —=1_ Thus,
' +4r43 z4+1 =1 T 1 1
—_— i = —_— e — )l = - dr
=+ 522 + 4 j[(:2+1+a.-2+4) jr(z2+1+:2+1 a:“+4)
—_ =1 1 =1 ¥
_—h|{f+l}+tan T Et..m (2)-}-(—
- _x+4 xr+1 {2:+2]u’:+ 3drx
o Pop a:d+2z+5 z? +2r+5 z+1)2+4
_ 1 9 2du where £ + 1 = 2u,
_E]nlz +2I+5|+3f1{u2+1] and dr = 2 du ]

1 3 1 ; 3 1
=Elnl:1:2+2.r+5}+Et.mi-lu+f:':§hll[.r’z+2.r+5}+Elaul-l(x-; )-H”.“-
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SECTIOM 7.4  INTEGRATION OF RATIOMAL FUMCTIOMNS BY PARTIAL FRACTIONS O 333

1 1 A Bx+C .
. = - = - 1=A(z* 1 B o - 1)
e | {I—l}{f+r+l} I—1+I‘!+I+1 = [I +=+ ]+{: =+ HI }

Take = = 1 to get A = +. Equating coefficients of = and then comparing the constant terms, we get0 = + + B, 1= =,

— 1 — 2
soB==5,0==5 =

1 i —2r-2 1 r+2
dr = 3 dr —3 3 =1 —.'l—— _
fIx-—l fI—l ¥ g4l "|I l x4+l
1 1,2 1 3/2)dx
=%|H|I_1|__f#_f¢;__‘[#
: 3] 2441 3J (=+1/2) +3/4

tlnjz—1) = fIn(z* + =+ 1) —i(ﬁ,_) (v",fl)+h

=%|n|::—l|—%ln{:52+.r+l}—:hl:.u.n-l(ﬁl:ﬂz+1])+ff
33.Lﬂu:x‘+drj+—3._5.Dl‘.ha‘[du=l:4:53+31::|-d1:=4{33+21}d1:,rzﬂ = uwu=3andzr=1 = u=3§
4
The/ _Z4 d.z:f 1( 2 du =l[|n|u|]';=—{|ns In3) =1
s+ 42 4+ 3 g w4 1 -+

52+ 7' +z+2 A Br4+C Dz+E
z(z2 4 1)2 T or 2 41 (x2 4+ 1)

r.u.| @

Multiply by =(z* + 1) to get

52t 4 Te x4+ 2=A(x* + 1) + (Br + C)z(z* 4+ 1) + (Dz 4+ E)z &

et 4+ T 4+ 2=A(z* + 22" + 1) + (Bx* + Cz)(z* + 1) + D’ + Ex &

5l 4T 4242 =Ar' +24:? + A4+ B 4+ CP + B2 + Cx+ Di* + Exr &

Sl 4 Tl 424 2 =(A4 B)e' + O 4+ (24 4+ B 4 D)= + (C + E)x + A Equating coefficients gives us ' =0,
A=2A4B=5 = B=3,C+E=1 = E=1and2A4+ B4+ D=7 = D=0 Thus,

a4+ Txi 4 x4 2 2 3z 1
—e (i = - dr = I. Now
f x(x? + 1)2 .[ tEatE oW

sec” B.dil T = tan#,
{zz + 1}J {l.u.iﬂ + 1) dr = sec” # df
— X
- ﬂw.ﬁr f{_m 6o = f{l+cﬂh29}dﬂ
=lﬂ+3ﬁ|n29+f.»=lﬂ+—ﬁmﬂ‘cuﬁﬂ+ﬂ :
lt. +_'l T
:-il.]'.l I
2 2z 41 1.-*:5‘+
Therefore, I = 21n 2| + 2In(z* + 1) + L tan~"z + 2{;—+1) +C.
' =3r+7 _ Azx+ B Cx+ D

. = r=3r+T=(ds 4+ B)(z" =4r+6)+Cx+ D =

(r2=dor4+6)2  z?=dr4+b (22 =dr+6)2
2 =3+ T=A + (=44 + B)r" + (6A=4B + )z + (6B + D). 50A=0,-44+B=1 = B=1,
GA=4B 4+ ==3 = C=16B4+D=7 = D=1 Ths,
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334 O CHAPTER7 TECHNIQUES OF INTEGRATION
=347 z41

I= | —— _dr= d

f{z T x4+ 6)° f(;ﬂ 4.:+E+|[.z”—at:+ﬂ}2) -

=2 3
- —_—————dr + —  —dr 4 ——dr
f{:-z]uz . ,[[1:2—4.:-4-13}‘ f{z‘—dr-{nﬁ}‘

=1, + I + I

=/mdz= v%lmn"(%) +

1 2r =4 1 1 1
L= | ———— ___dr=1 —du=1 == Oy = 4
: 2f{:2-4z+ﬁ}2 ”—‘f:ﬂ . J( u)+ 2 2{::2—4.::+E}+ 2

I:+=3f [{;—2}1: ﬁ]] j‘mﬁﬁ‘gdﬂ [:z_::{f::;j;]

a
_ﬂv@ = a-t.l'.ﬂ:ﬂf/cmjﬂdﬂz%if%{1+cnﬁ2ﬂ'}dﬁ

4 secd @

32 L O3WZ _fx=2Y\ 32 , .
= = |:Ei|‘+—hu|23}+f- —Ttan 1( 7 )+T{%-25mﬂcmﬂ}+ﬁx
Wat—dx+n
=3ﬁlml_|(z—2)+3ﬁ. r=2 . 2 e =1
8 V2 B V¥ —4z+6 Vr'—4r+6
_3y2  _fz-=2 3z —2) . 2
__E- tan (v‘ﬁ) 4{1’1—{:+ﬁ]+£3
So I=h4+l:41 [C=0C1 +Cs + Ca)
1 fx=2 -1 32 _fz-2 3Hx=12) .
=z (ﬁ fEnre T (ﬁ)ﬂtﬂ-uwn“‘

=(%§+ Er)*'“ (7)) g o= T (5F) s +C

29 dr _ AT o u=v'Jz_—T,z=u1+1
) Tz =1 - u(u? 4 1) " w=r—1, dr =%udu

1 - -
=2 | =——du=21lan a4 0 =2tan™ VI =140
us 41

; dr Zudu 2du 2du
#. Letu= * = rand 2udu = dr. Th = = = .
=T s0u ==z wdu = dr Enf.z”-l-—rv‘? fu"'+u3 fu"+u9 fujl:u-l-l]
2 _A,B C
u"!{u+1}_ u ut w41
gives (' = 2. Equating coefficients of u”, we get 0 = A + ', 50 A = =2, Thus,

Zdu -2 2 2
fm:f(T+F+ u+1)du——2|n|u|——+2|n|u+l|+f"——Zhlf—T+2h|{J+l}+(,.

= Aufu+ 1) 4+ Bu 4+ 1) + Cu”. Setting u = 0 gives B = 2. Setting u = -1

1-3.LET.u:ei'ri+1.mn12=uu—l,2::dz=3uzdu =
{u —1] dnr.!'l'.:
= f{u —u)

=3y =4 C=2 P+ 1) =i 1) 4O

[#=5-

Coprright W6 Cengage Learsimg. A0 gy Rienerved. Wy ot be coped, scanned, or deplacaied, m whok or in pert. Du o chociners sights, sorme thind party comte moy be spprened from the diock andier o hepierial.
Esbirrea rovars: b decmcd that asy wepproncd content doc st mateuly affet e overall kerming cxpencsce. Umgage | sameng rewrves the nght te renovs ackdial comiant o sy bne = vebeguon g o com reours o,
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45. If we were to substitute « = +/z, then the square root would disappear but a cube root would remain. On the other hand, the
substitution u = /= would eliminate the cube root but leave a square root. We can eliminate both roots by means of the
substitution u = /'x. (Note that 6 is the least common multiple of 2 and 3.)

Letuw= '5"';. Then £ = u®, sodx :ﬁ-u"'duandq.-"gzua, f-"';: w?. Thus,

| 7= ff;—d:ﬂ = fuﬂ:ﬁ—l}“”ﬁf%d“

:E[ (mj +ut+l+ ;1) du [by long division]
=

=6(3u® +-u”+u+ln|u-1|]+c?:2»f'§+33f‘;+s6’;+ﬁlnlff‘;-1|+c

d
ﬂ.LET.u:e“.ThEﬂI:Inu,d.::—u ==
1
e dr _ u? (dufu) _ u du du
e 4 3er 42 ) w43u+2 ) (utDu+d) u+l u+2
T
=2ln|u+2|—In|u+l|+ﬁ'=|n%+ﬁ'
: sec” t 1 1
49, Let u = tant, so that du = sec® tdt. Then 5 dt:f,—du:f—d
tan“f 4+ Jtant 4+ 2 u® 4 Ju 42 (w4 {u+2)
1 1 B
Now = — = 1=Afu+2)+ Blu+1)

{u+ 1){u+2) u+4+l w42
Settingu = =2 gives 1 = =B, 50 B = <1 Setting u = =1 gives 1 = A.

1 1 1
Th — = — du =1 1| =1 2+ C=In|tant 4 1| =In|tant 4+ 2|+ C.
Lﬂ’f{u+1]{u+2] e f(u+l u+2) w=In|u4 l|=In|u+2| 4 1[tant 4 1| =In|tant 4 2| 4
d 1 1 B
5. Let u = e, so that du = * dr and dz = . Then = i == =
i l-l‘-L I[l+u}u u{u-{-l} u w41

1 =A(u+ 1) 4+ Bu Setting u = =1 gives B = =1 Setting © = 0 gives 4 = 1. Thus,

fﬁ =f(i— IIj‘_1)'t.!:.:=].|||:.:|—].|||:.:-I-—1|+l.':'=].||e"r—].||ll,:e"-4-1:|--I--E':"=;|:—||'1I:£1+ 1)+ .

2r =1

5. letu= ||'1|:;|:2 —z+2:|,dr.l =dzr. Thendu = m

dr, v = x, and (by integration by parts)

r

[t =2+ D e =2l -2 49 - ff_—md“ﬂﬂir”-rﬂl-f(“ﬁ)“

g 1) dzr
= zrln{z? = ) = 2 = {—d.z - ==
xIn(x x4+ 2) T fm p—— + {I_3]2+_
1 s ._.-'qu v.h:'l:r.'l.'—é=-";!u,
¥ ¥ i -
=m|n{:z£—a:+2:|-—2.r—Ehll{zd—:+2}+§‘[m dI="‘;d“:

(x40 +3=1(x*+1)

=z - %}1“{12 —x+4+2)—2r4 VTtan~lu+ O
1 2r=1

= (x = 2)In(z* —zr+2) =2+ /Ttan =

+
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33 O CHAPTERT TECHMIQUES OF INTEGRATION

. 005 From the graph, we see that the integral will be negative, and we guess
L : |
H * : that the area is about the same as that of a rectangle with width 2 and

height 0.3, so we estimate the integral to be —(2 - 0.3) = —0.6. Now
1 B 1 __A B
12—21—3_{1—3}{.:-4-1}_:—3 41

—is 1=(A+B)x+A=-3B,s50A==Band A=3B=1 & A=1

)

and B = -- so the integral becomes

[ =t [ s mle ] =1 s
b T2=2r—3 4Jy t=3 4fy z+1 _al ¥ e i

=i(ln}-In3) =-3In3~=-055

dr dr du
ﬂ'f.r"—zx_f{r—l}”-l_fuj-l [put u =z =1]

r=23

r+1

I L2 | AP, L l==2
_Ehllu+1 + ' |by Equation 6] —Ellll " I-I'-'I':‘
59. (a) Ift _“”'(2) meni tan="¢. The figure gives

1 .
Lm(%) = ﬁ-ﬂﬂjﬁlﬂ(%) = ﬁ

(b)owsr = c{m(z . E) =2L‘uﬁ2(£) =1
2 2 1

—of L “_1_ 2 _,_ 1=t
Tl 12 Tl 42 Tl
2

1 4t2 dt

{c];—:zurct.u.nt = zx=2arctant = dr=

61. Let ¢ = tan(x,/2). Then, using the expressions in Exercise 59, we have

f 1 p _j' 1 2t _Zj’ dt _f dt
3sinz —dcosz 1( 2t ) 4(1_.-,”) 148 W2y =4(1=17) " ) 243 =2

142 142

t 2 1 11 "
=fm =f [Eﬁ - E!-{-_E] dt  [using partial fractions]

Iﬁ‘l Iﬂlml{:zfﬂ}—ll

1 1
In |2t =1| =In|t 2] == O==1 [
['l |-t +2[+C =2 I ‘J* 5 | tan(z/n) +2 | T
63. Let ¢ = tan (z/2). Then, by Exercise 59,
1=t Bt(l =)
=f2 w2 - 1 = e
hllli.z Emnrcmx 1.4..',2 1T+22 2 dt = (1 +41%) dt
a 2+:.1.m:.|: 2 teowz J_H L+t2 7 fy 2(1+2)+(1=1t2)
1+F

1- 7 dt =1
e+ 1)

[continued)
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SECTIOM 7.4  INTEGRATION OF RATIOMAL FUMCTIOMS BY PARTIAL FRACTIONS O 337

. 1 -t 1- A B C
If we now let u = £, then — = 5= = ;= + + 5 =
(2 + 32+ 1) {4+ 3)(e+1) w43 w4l (u4l)

l—u=Alu+ 1P + Blu+3){u+ 1)+ Clu+3). Setu==1toget2=2",50C =1 Setu=—=3toget4 =44, 50
A=1Setu=0togetl =143+ 3,508 =-=1 5%

&t 4 . 4 71
—|di = [4In{t* + 3) =4In(t* + 1) = ——
f [,-,2 1‘+1+{1“+1}‘] [ (7 +3) = aln(E 4+ 1) "'2+1]n

(dlnd =42 =2} = (43 -0=4)=8In2 — 4In2—4ln?+2_4lnf+2

x4 1 d + 1
Eﬁ.B}Ianngﬂ.mon,m_—1+3I_Iu.Naw
Jr+1 Jr+1 A B . 8 e
3.1:—:5"!::5{3—::} +m = 3r+1=A3=z)+ Br Setz=3toget 0 =3B.50 B=4 Setr =01t

get 1 = 3A s0 A= 3 Thus, the area is

* a1 2
,/: 3E—x2dr:£ ( 1+ + )ﬂ'-I—[-I+‘ln|J:|— l|||3—:s|]:

= (=24 im2-0)=(-140=21n2) = -1+ L2

P45 P45 P45 A B
flLt=| —— = dPp=| —"2 4P [r=11LNow ——— =4 =
ff"[{r— 1)P = 8] P(0.1F = 5) Ir ] POIP-S) P 01P=5

P4+ 8= A(0.1F = 5) + BP. Substiuting 0 for PP gives § = =48 = A = =1 Substituting 105 for P gives

_11/10

— — 1L —
11S=10BS = B=1 Thust= f( TIp—S

)df" = t==InFP+4 llln{ﬂ.lF—S}-I-ﬂ'.

When ¢t = 0, P = 10,000 and § = 900, s0 0 = — In 10,000 4 111n(1000 — 900) + ' =
=In10,000 = 1110100 [=In10~** = —41.45].

10,000 P = 9000
Therefore, t = —In P+ 111n (5P = 900) + 10 10,000 = 1110100 = t=ln—F— + 11l —-—

69. (a) In Maple, we define f(x), and then use convert (£, parfrac, =) ; to oblain
o) = 24,110/4879 _ 668/323 _ 9438/80,155 (22,008 + 45,935),/260,015
T Bx4?2 2r 4 1 3x=T 24245
In Mathematica, we use the command Apart, and in Derive, we use Expand.

l{h}fj{:}d::—‘-—“,;?; Lin|5c + 2] - 228 %h.|2z+1|—;ﬁ'%-§m|h-?|

1 22,098(x 4 7) + 37,886

* 260,015 (z+ %]2 +3

de +C

— 24,110 1] |5.1:+2|—£.5b l].lllZ:E-l"ll_ﬁl':ﬁ' 1]|1|'5a:— 7|

AHTH
+ ﬁﬁ,ﬁ[zz,m&- $ln(z® + = + 5) 4 37,886 - l;‘uuu."(?:m (x+ 1}])] +C
= £5 In|5z + 2| — B Inj2r + 1| — 25 Inj3z — 7]+ 288 In(«* + £+ 5)

+ s tan™! [y (2 4 1) + €
[continued)
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338 O CHAPTERT TECHMIQUES OF INTEGRATION

Using a CAS, we get
4822In(5r+2) 33In(2r+1) 31463z -T)
ARTO 323 B0,155
11,040 In{x* + x4+ 5)  3988+/10 «f {2 +1)
260,015 260,015

The main difference in this answer is that the absolute value signs and the constant of integration have been omitted. Also,
the fractions have been reduced and the denominators rationalized.

(1 =x)* _ I"{l-4I+EI2—1r3+I"'] _J:"‘—4.IT+6::“—=1.I:'+I"

= 2% — 4% 4 521 — 4z’ +4 =

. 57— = 3 = ; T
14 22 14z 14z 14z o
V(1 = x)? 1, 24 4 4 -t 1 2 4 T 73
— L dr= = = ——1 4 dz —41a =|lzc—-c+l-c 444 —|-0D=F—nm

j; el it i i (:' 3t -3t 4) 7T

T3. There are only finitely many values of = where {){x) = 0 (assuming that £} is not the zero polvnomial). At all other values of
x, Flz)/Q(z) = G(z)/Q(x), s0 F{z) = G(x). In other words, the values of F and (& agree at all except perhaps finitely
many values of . By continuity of F and &, the polvnomials F and & must agree at those values of = too.

More explicitly: if « is a value of = such that Q{a) = 0, then ¢} =) #£ 0 for all = sufficiently close to a. Thus,
Fla) = lim Fiz) [by continuity of )

= P—'-IL G{x) [whenever Q{x) # 0]

= {a) [by continuity of )
- 1 JI.. .'12 .ll,,,_
75 If o 3£ 0 and n is a positive integer, then f{z]=m=?+r_z+ —

r=a)togetl = 412" Hr=a) ¢ Aex™H(r=a) 4 oo+ Adu(r =a) + Br". Let x = a in the last equation to get
1=Bda" = B=1/a". 50

B _ 1 1 _ 1:II':I _— IH. _ IH. —_ uil.

T=a a"(x — a) - a™(x —a) - ran |z —a) - _a.“I”{I—a]-

fl=) =

_ {I _ ﬂ.]{.r“-l + Ir:.-:du + IrL-En:.! FR Iﬂu-! + IEIr:u—l':l

anrh {I - a:l-

gh=1 Irl.-il_:III p=a2 a2 a"=!

== ( o T
ann g o At A

1 1 1 1 1

_-aﬁI - an=1gz2 - an—2g% ndgn=1 - arn

1 1 1 1 1
Th = ——— - - — — - — %
us, () Tz —a) ar  a"lz® ar"  a"(x—a)

7.5 Strategy for Integration

. letu=1—=sinr Thendu = —cosrdr =

: 1
fida::f—{—du}:—l|||u|+f:=—|n|l—ﬁi||.r|+-f.":—|n{l—5inz]+f."
]

1l—=sinx
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SECTION 7.5 STRATEGY FOR INTEGRATION 0O 339

1 2 4
lletu=Iny dv=ydy = du=—dyv= iya"u. Then
o

a 4 4
_[2,0r 2 an, 2 4 4] 16 4 4y 32 28
Inyd lny| =] =y *dy==-8ln1—0-|= = =22 =(=-8—= )| =Zm2-=
f"”’_"y” 'y]lﬁsy v=3om [uy =FChA-(g-8-5)=3Fh
5 Letu=1t" Thendu= 2tdf =
t 1 1 11 af u 1 s
—_—t = —_ | =d = ———= lar — C  Formuba 17] = —=tan™ | —= o
f.t"+2 fu‘+2(2 “) 22 (v’i)J' Loy Focmuta 17 2v2 (v’i *
1 _arctany w4
T.Lﬂu:arctully.mnduzd—y, = f E—,dy: e"du:[e“]"'“ = o T
14 g2 i 1 4 g2 R = fd
42 42 A B
= = . Multiply by 4 =1} 10 get 2=A(z=1 B 4).
i GEDeoT) = rrd ot MRy by ()= = ) o getz + 2= Alx=1) + Bx +4)
Substituting 1 for = gives 3 =58 & B:%.Suhsututmg_—-tfar:gwes =2==54 & A=2 Thus,
1 r42 4 ¢ af 3;5 3
————dr= di = ].| 4 —1 =1
y 2 +3xr—4 , (z+4+.r—l vz + 4]+ glnje I
=(2n8+ 2n3) = (3 In6+0) = §1ln2]+“ln3--{ln2+ln1}
:%|n2+ In'inl' 3 ln 48
M. Letx = sect, where 0 < # < Sorm < 8 < 235, Then dr = sec tan#d6 and
VI =1 = vsec? 8 = 1 = Vian? @ = |tan 8] = tan# for the relevant values of 8, so
soc @ tanf a 1
.[1:31.-"'_ ﬂxﬂ'lmﬂ'dﬂ_‘[tm ﬂdﬂ'_fg{l+cut.2ﬂ'}dﬂ' T
=1
=104 1sin20 4+ C = 10 + Lsind cosf 4 C .
i
1 ., 1yF-11 1 VT =1
= 2 o Sy R L tC=Cseclz+ X4 !
g Ty ptUEgse st
13. fﬁin"' t eos® tdi = _r.sind' t eos®t sintdt = f{sinz L]jcm‘a! sin b di
=_rl:l—cutizt]j:.uﬁ"tﬁintdt=f{l—u2]ju"' (=du) [u=cost,du= —sintdt]
:f{—u‘-{-—ﬂus—uﬂldu:—%u"'+%u7 +L=——cue. t4 2 Z cos !——tm’l-{-—f‘

18 letuw =z, dv = secr tanxdr = du =dr, v = secz. Then

fIﬁEC.rT.Enxd.r:Iﬁec.r-fﬁeczd.r::ﬁec.r—hl [secx 4+ tan x| 4+ C.

17 [ teos®tdi= [ t[3(1 +cos2t)|dt = § [T tdt + & [T teos2idt
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340 O CHAPTERT TECHMIQUES OF INTEGRATION

19. Let w = &*. Then J.E'H":: dr = fe*:e"d.r :fe"du ="+ C= e + .

2. Lett = v/x,sothat t* = rand 2t dt = dx. Then [ arctan vz dr = [arctant (2tdt) = I. Now use parts with

v=arctant, dv =2tdf = du= ;,r:l'-.'i,r.I =%, Thus,
141=

2
I:Lzarclunt—fli—wrﬂzljarclmll—f(1 l+H)d¢-£2¢nlull—t+ar{_tﬂn!+L

:.Iarclanx-"';—v';+a.rct.u.uv";+f-' [Dr {I-{-l}ar&:lunv";—v";-{-f-']

2 letu=14+vVr Thenz = (u—1)% dr = 2u—1)du =

B 4 : [ i : g
fo (14VE) de= [ 2u-1)du=2 [0’ - u’)du=[fu'® 2. fu’]] = 2GM _ M _ 22 dn
a5 14126, [Ou+y-3, [, 3 d:—[4¢-|:-|=1t+1|]1—[4-|n4}-[u-n]—4—|n4
s 143t 3t+1 s 3H+1 - : o o

1 1  du 1
27. T_ET.u=l-I-E“,Snﬂ]ﬂtdu:e"d.:=I:u—1]dz.Thenf1+Eld::=f;-u_l =fu{u_l}du=!'. MNow

1 _z1+ B
u{u—l}_u uw—1

= 1l=Alu=1)4 Bu Setu=1togetl = F Setu=0tpgetl ==A, 504 =-=1

'l'J‘lLB,f:f(_—l+ ! l)du:—].|||u|+l|||u—1|+f:'=—|n{l+e"}+].||e"+f:'=.z—].||{l+EI:|+'I‘:-'.
i -

T

Another method: Multiply numerator and denominator by e~ and let u = ¢™* 4 1. This gives the answer in the

form = In(e™" + 1) 4+ C.

2. Use integration by paris withu = In(z 4+ 2 = 1), dv = dzr =

du =

;(l-}- i )dz: ! ( I_1+I)d1=;rir,u=.r.ﬂlen
T4+ E =1 VIt =1 T44/rZ=1 VvIi=1

<=1
fln(:s+ﬁ)d.r=rln(:s+g'{.ﬁ—— ff,_dr—rln(.r+f{—)—m+{-'.

. Asin Example 3,

f”' f 1+I 1+:Eu'a: lida::fd—'r+ i:ﬁin-'z—\fl—rj+ﬂ'.
v1l=ux 1+$ 3] == W1l =x= 1 =1x=

Ancther methed: Substitute u = /(1 4 =)/(1 = z).
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SECTION 7.5 STRATEGY FOR INTEGRATION OO 341

B3-2r—a=—(P +24+1)+4=4=(x+1)* Letz 4 1 =2sinb,
where =% < @ < T Then dr = 2 cos f dff and

I

x+1
jvﬂ—ﬂz—zzd;r:_rq.“i—{r-l-l]idz:fﬁ4—4ﬁin232cmﬁdﬁ' -
:4_rcwzﬂdﬂ‘:2_ﬂl+cmi2ﬂ'}dﬂ' \.'m
= fzin 4 O =20 4 2sinfleosd 4 O =y3=2u—a
— 25in=1 41 +2_I+l_v3—2:5—ri+f_,
- 2 2 2 '
= Zsin™" ITH) I+l\-"1 2r=—a?4+C
wf2 2
35 The integrand is an odd function, so ——dr =0 [by 557(b)].

—nf2 14 cos®x

= C
'

; ) 1
37. Let u = tan . Then du = sec” 8dfl = f;"ﬂ tan® Hzﬂ'{ﬂ:‘f; ut du = [%u"'] =
i

secfl tan # 1 1
heczﬂ—ﬁecﬂdg_fuz—udu_fu{u—l}du_f- Moy
1 A

B
m——-{- — = 1=A(u=1)+ Bu. Setu=1togetl = B Setu=0toget 1 = =4, 30 1 = =1

39. Let u = sec#, so that du = sec # tan & dfi. Then

Thus,

)du ==lnjul4+nju=14+C =In|secd = 1| =ln|secd| + C [or ln|l =cosd| 4+ ).

. Letu =0, dv=tan” 0df = (sec®@ = 1)df = du=dfandv=tantl=4. So
fﬂt.u.njﬂdﬁ:ﬂ{tan{;—ﬂ} —fl[tauﬂ—ﬂ}dﬁ':ﬂlanﬂ—ﬂj — In |secd| -I-%ﬂz-{-f:

=ftanf = %ﬂz - lnlsecﬂl +

1
43. Let u = /T so that du = —— dr. Then

PN

VE u? 1 {1
Sudu)=2 [ —% _agu=2f -1 (la
T+o ¢ T (udu) = T+ )2 T+ \3

=stan~ 't 4+ C = Ftan™"' o* + €' = Ftan~"'(z¥*) 4+ C

t=u®*
dt = Gu? du

Another method: Let u = z¥/* sothat u* = 2* and du = 22"/*ds = Virde = £ du. Then

‘u'"; E 2 2
MT dr= | —2 _du==tan™! =2 a2 4
142 fl-l-—u‘ =3 i 3 =)+

45 Lett =z Thendt =3z"dr = I = [z " dx = % [te™" dt. Now integrate by parts with u = ¢, dv = e™" dt:
T=—tte=t 4 1fe™tdt = —tte= — Le=t 4 O = =L~ (PP + 1)+ C.
47. letu=r — 1, sothat du = dr. Then

_rzx-[:a: =1)"de= fl:u + ljju-"'du = f{:ux +3u’ +3u+ Nu~du = f{u'l +3u~? 43t ¢ u~") du

=lhnful=3u""' = du = a4 C=lnle =1 =3z =1)"" = 3z- 1) = Lz =1)"*+ C
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342 O CHAPTERT TECHMIQUES OF INTEGRATION

0 letu=vizr+1 = w=4dr4+1 = Zudue=4dr = d.r:%udu.ﬁ:}

1 sudu du u—1
—_—r = z =12 =21 + ' Formula 19
[ [ oo = w2 nfi|e w :

=In

ViIz+1-1 +C
VIzFL41]

8. Let 2r = tanfd = I:%lmnﬂ,dr:%secjﬂ'dﬁ,vhz-i- =sec fl, so

dr %—seczﬂdﬂ
= = dﬁ' 8 dfl
.[Iv"'{rj+l %T.anﬂ sec i l.un? f{'ﬂ

= =In |r|:ei|:ﬂ'+u.rt,ﬂ| + [ar Inlcﬁcﬂ—u.rlﬂ'| -I-f:']

‘ ‘+L |:nr h.‘—“EH—il+C]
2 2r 2r

. f::j sinh(maz)ds = izj cosh(mz) — E[IEUHII{I’M}JI
m m

u =z, dv = sinh{mzx) dz,
du = 2rdr v = L cosh{mz)

UF'=x dV = cosh{mzx) dx,
T

N 2 s .
= —z” cosh{mz) ;(Iraulll{mm:l ;Imn]l{mx] dz) [db' —de V= sinh(ma)

1

g 2 2
= —x” cosk - —esinh{mze — cosh(mze o
e |I[rn:r.:] - Tsin |{r :]-+ -~ [t f_r :]--I-

Tt lz
55, Let u = /=, so that © = v and dx = 2u du. Then Zudu 2 _du=1.
m-l-—:.l:v'"_ u 4 uf-u w(l 4 u)
2 A B i i
Now ————=—4—— = 2=A(l4u)4 Bu Setu==1toget2==F, 505 = =2 Setu =0toget2 = A

ufl4¢u) u l4u

2 2
Thu.:z.,f:f(——T du=21..|u|-21..|1+u|+t:=21nv’z-2|n(1+»f:)+(:.
T u

5. letu= & +c Thenr=u"=¢ =
_fIﬂ'I+r:d.I:f{ux —c]u-EujdHZEII:uE —-:'uﬂjl-du: %uT—%Eu" +C = :’l::.|:+¢_]7"r1 ﬁ'r:{z-l'-r::]-""'m+(:

1 1 _ 1 __A , B _Cz+D
Tat =16 (2 =4) (22 +4)  (z=2)z+2)(=2+4) -2 z+2 244

. Multiply by

[z =20z +2)(x" +4) toget 1 = Az + 2)(x* +4) 4 Bz =2)(z* + 4) + (Cz + D)z = 2)(x + 2). Substituting 2 for =
gives1 =324 & A= % Substituting —2 for = gives 1 = =328 < B = —% Equating coefficients of = gives
0=A+B+C =4 -5 +C,s0C =0. Equating constant terms gives 1 =84 — 88 —4D = 1 + + — 4D, 50

%:—413 =3 D:—i.Thu;

/32 1/32  1/8 1 1 11, gz
= - - dr=—Inler—2 - =1 9= ==t (-) c
fr’-lﬁ f(;-z i3 =) E=ghk-A-ghlrd2 =g stan(5)+

ﬁ‘ - LI.aul-'(f) +

= =—In

3z 42 1 2
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SECTION 7.5 STRATEGY FOR INTEGRATION 0O 343

1 =cosf 1= cosd 1 =cost 1 oo i
1. fl-l-—cue.ﬂ‘ f(l+cuaﬂ l—cmﬂ)dg_fl—cmzﬂdng sin® @ dg:f(ﬁh#ﬂ_sinzﬂ)dﬂ

= [(esc” f = cot @ csef) dfl = =cot 6 4 csc 4 C

Another method: Use the substitutions in Exercise 7.4.59.
2/(1 4 %) dt 24t ]
= — . — di=t4+("=ta - e
f1+mhﬂ f1+ 1= /(1+ %) T+ 8)+ (-1 f * "zt

63. Let y = /= so that dy =

1_dr = dr = 2 vz dy = 2y dy. Then
24z

f‘u"";E"'Ed.r = fy;_-y{z;;dy} — fEUEEde [d“ =337, de = e:d‘y,]

u = dydy v=-re¢

ot » U=dy, dVV=e"dy,
= 2y’e f4ycdﬁr [dL‘:-tn'p Ve

= 2yet = [dye“— fik_'*' dy} =2y et = dye? + 4e¥ 4 (7
=2y —2y+ 2!+ C :2($—2£+2)e‘5+c

65. Let u = cos” r, so that du = 2 cos r (= sinx) dx. Then

sin 2z _ 2sinx oos T _ 1 _ =1 _ o . | -
fmdx—fmd.r—f“__uz{—du}——lml w4+ = =tan {Eﬂh I:]'+f.-.

dr _ 1 x4 T, /L _
b e A e e S R (SO

=1 [{I +1)M2 -r‘fﬂ] +C

HLﬂI:lmlﬂ,SﬂIhﬂId;:s&czﬂdﬂ,zzﬁ = 9:%,1“'1:1.::1 = ﬂ:f.ThEh

V3 o] wf3 ) 2 i3 i el .
j" v’l-{;—.r dI:f :.eczﬁ soc® .df — :.Etﬂ{la.llzﬂ-l-l:]{ﬂ f (H&ﬂ'l:!l a2 :.-set.f)
i & =ja tan®d -y tan* @ tan® tan®

w3 afa
=J]r {ﬂﬂ+cﬁcﬁ‘cﬂtﬂ]dﬁ=[hl|ﬁecﬂ+t.mnﬁ‘|—cﬁcﬁ‘]
4

wid
:(InlE-}-\ﬁl—%) —{Inl'l..l"ﬁ-{'-ll—v@j :\E—%+|n{2+\ﬁ}—ln{l +‘u'"§]

T. Let u = e, Then x = lnu, dr = dufu =

u 1
= = du = l= —— |du=u—=In|l O =" =In(l a C.
fl-l‘-i" fl-l-—uu T+u f( l+1.1)lll u=In|1+ul + n(l+e*) +
. 1 .
T3 Let # = arcsin r, so that df = ———— dx and x = sin#. Then
VI =x=
I 4 arcsin.r B 3 .
—_—dr= [ (sinf 4+ 0 did = —cost + 30 +C
ey de= [no+o z
=1 =z% 4 L{arcsin P +C [
=
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344 O CHAPTERT TECHMIQUES OF INTEGRATION

78 dr _ e u=Inz -1,
fIan:—I JfI{].III-—l]'_f u du = (1/x}dx

=lnju|+C=ln|lnz=1|+C

T Lety =1+ e, sothat y° = 1 4 %, Iydy = e® di, e® = 5° = l,arlt:lzv:zlr.lij,.l2 —1). Then

f ;:-_‘L }(Inl:y {Eydy}_gf[]_..{y+1}+h.{y-1]]dy
=2y+Din(y+1) -+ 1)+ (y =)y - 1) - (y-1)]+C  [by Example 7.1.2]
=2yln(y+ 1) +n(y+ 1) —y—l+yly—1)-ln(y-1) -y +1]+C
= 2fy(In(y + 1) + In(y = 1)) + In(y + 1) = Iny = 1) = 2] + C

—2[yh.{y?-1]+| 2y]+f‘—2[1,.-"'1+e' Infe*) + In f,_*liefl -2ﬁ£1+L=]+r'
VI+er +1 VIFeE+1

25/ TH e + 2l e =4 T e + C =2z =2) /T &= + 21 C

+ e 4 Ar=—1 + e 4 [z =2)/14 & +2In Y "

T letu=ux dv=sin’zeoscdr = du=drv= %HiIIJI. Then

in® x o = Login®z = [ Lsin® = Lloin®r— L [(1 = cos? £ s
fIsul resrder = grsin” I_q_hl]'.l rdr = grsin” r a_rl:l cos” ) sinzdr

1 u = oos T,
:i:s-.m T = fl:l'y }dy [du=—:.i.|:|.1:d:l.’]

_—Il'i].ll Yoy y—ﬁy +L_ Lo sin® I+—cm.r—5{_m x4

-'- -7 I -
E1.fmdrzf\/l i.ln.rll+hlna: f l :-u.llz

1 4sinx l+:.u|.r

_ cos” T dr = s dx [ u]
T f VTHsmz "7 ) Treme O

du [u=1+=-.n:.]

== \II._"E
=2,/ 24+ C=2TFsnz+

dH=Dﬂ!IdI

Another method: Let u = sinx so that du = cosxdr = +/1 — sin” rdr = /1 = uv® dz. Then

f\..-'l—amzd.: fﬁ.-" ( Nai 1)=,[~,-'rll+ du=2y14+u4+C=2+14+sinz+C.
J_—r T

83. The function y = 2ze™ does have an elementary antiderivative, so we’ll use this fact to help evaluate the integral.
I{EIE + .'|.1'I£'rﬂ dr = fﬂmzﬂlﬂ dr 4 fezz dx :_r m(ﬂze'i) dr 4+ _rezzd.z

3
u=x dvr=2re" dr,

:n’i—_rez2d.r+fe"ﬂdx 2 =ze* 4+C

du = dxr =
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SECTIONT.6 INTEGRATION USING TABLES AND COMPUTER ALGEBRA SYSTEMS 0O 345

7.6 Integration Using Tables and Computer Algebra Systems

Keep in mind that there are several ways to approach many of these exercises, and difierent methods can kead to difierent forms of the answer.

w f2 z T w2

~ g0 [#in(5=2)x =in(54 2)x a=5,
1. ] 2rdr=
fo C0% DT Ol T [ 25=2) + 2(5+2) . b

[ESCLII :.-unaz] ﬂ—(_l_l)_{]—_?_ﬂ—_i
L]

3 .rf"‘ti _3d-f=%f: “u:a_[;v.-'i}jdu [‘u='21'. d‘u=2d‘_r]

an u a 2 vﬁr
—I[E u —[1..-""-1} —%In

u 4 u"*—(y"i}z

4
2 }
2

:%[ﬂm—&lzlﬂ-}-m}] —%{1—%In3]=v’{ﬁ—%hl(4+ v"'ﬁ]—!}-i-%lllﬂ

i .rﬁr.l"bmt,m|2::d: = %Lrﬂ- arctan u du [u =2r, du= ng]
wfd

sa 1 . 1 2 1= ® 1 x
= E[Hmmllu 2|III:1-I'-I-E }]0 = 2{[431".[&1!4 2In(l+ T ] 'I]}
2
=%iu'clim%-%ln(l+ lﬁ)
Cos T u=sinr, a 1 u=23 1 sinr =3 .
T. dr = = ——In C==-In|———| 4+ C
fz«u- =9 fu —g ™ [h=mrd=] 2(3) +3‘+ 6 "|snz+3| T
1.-'91"‘+ yvul 44 —d u = 3,
JI,FQ 3 u du = 3dr

=3fm [ vf—+h{+»,f’4+_uﬂ]+r,

) ] g
=-:"“’,§;“}I +3In(3r + VITOE) + € = - Y2 +4 +3In(3x+ AT+ 4) + C
o

". rn cos® §df = [ cue."ﬂmnﬁ] +"'J.U cos® §d 2 E|'+ {[ ol ﬂ‘hmﬁ'] + 4 ro cm'dﬂdﬂ‘}
';%{ﬂ-{-%[%3+%5in29]:}=ﬁ-%-%=";—!'i

fmmnv”_d: fmt.uul[ﬂduj [u::i'\r"_]d:]

== Z[ua.n:t.u.ll u—2In(l+ uj:]] + O =2 /Farctan T = In(l 4+ =) + T

15, f ‘”T‘h;ﬂuy— f coth u (—du)

2 _Injsinh u| + C = —In|sinh(1/y)| + C

u=1fy,
du = —lfyjdy]
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M Llet:=6+dy—dy° =6= (4" =4y +1)+1=7T=(2y =1}, u=2y -l anda =T
mﬂzzuj—uz,duzﬂdy,a.rﬂ
Iy\£5+4y—4yzdy=fyvf;dy=f {u+1:]-\-"ﬁ.i—u —du_ _fu\.-"a —utdu+ L fv'ﬂ.i—u du

= % f Va2 = u? du — %f{:—Eu]v’a” = ufdu
WU s @ _yu 1 . w=a —u?,
= i’ = u® 4 — sin (—) - — [ 3w du

2 a E] d

w= —2udu

Ey—lvl,il T . a2y=1 1 2 4,
= B4dy—4dp? 4+ == B el Y
= + 4y 1/ +35m = 33 +

1 ey
- 56 +4y - T R Y &

This can be rewriiten as

1 1 n] T 2y =1
VEF Ay = 42 [g{iy =1) = =(6+4y = 4y*]] + %Hin'l =2 4cC

VT
1, 1 ) T . _1(21;—1)
==y = —y—-— fi 4 dy = dy? 4 = 5in +
(3 12Y "% B N
1 ] - r T . =1 Zu—l W
= —(8y" =2y—=1 G4 dy —4dy? 4+ —=s i
24{1; = 15),/6 4 4y y -I'-Shm ( Wi )-I‘-

18. Let v = sin x. Then du = cos rdrx, S0

a2
gin® r cosz In(sinz) dx = w' Inudu = + nu=—1|<4 L= g niu=— +
in® 1 o * Inwdu 2 lel 1] + C = 2u*(31 1)+ C

{2 +1
I .- 4 "
= tsin® x[3n(sinz) = 1] 4 C

. Letu = and a = 3. Then du = ¢ dir and

[ame=[amw 2

23. fﬁec:'rdz g%MIIMJI-}-%IHE{’q'IdIE%MIIHJI-}-%[%MIHI se 4 %j'uec:dz]

e +4/3
u-g‘,‘

1

O=—=I
+ Ev‘"_n

u 4

u =i

+C.

g%tﬂ.ﬂrﬁecaz-}-%lmlrﬁecz+%].ll|.~aec::+t.m|.r|+(:'

25 Letu = Inxand a = 2. Then du = daxfx and
4 1 = =
f@dﬁ::f-u,.-"uz+u2duzzlg\fﬂ.2+u2+ﬂé—ln(u+ u2+u2]+f.'-‘
T
= %{Inz} 44 (Inx)* +E||1[1n.1:+ 1.-'4+{||1z}5] +

cm'll:r'u:l 1 -1 u=zxr"3%
. derz—EfLm udu due = — 'r_gd-t

HE

= —%[u cos~lu=T= u”] +C= —%I'zcu&i-'{.r-j} + 1}1."1 -l g

29, Let u = *. Then ¢ = lnu, de = duju, so

f e"""-ld:s—f =Vl —l=cos~(Lfu)+ C=veX® =1 =cos™" (™) + .
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SECTIONT.6 INTEGRATION USING TABLES AND COMPUTER ALGEBRA SYSTEMS 0O 347

3 " dr _ u= =,
; 0 By - du= 5dz
vz ﬂrlz 7=
q=% ||u-+~..-" |+f‘—‘lnlr 4 /10 = |+f‘
33. Use disks about the x-axis:

V= fﬂ' wisin’ ) de == f; sin® rde B '.lr{ [—%Hillﬂz ELBI]; + %j'

A sin” Idz}

{D+1[5z—-hlnﬂ.1:] }_#[ {-rr ﬂ_}]

ﬂ=l+'r

1 a* 1 b Db
by — — Zal bu | = -
O [ (ot ““h+')+] Bt Ty " Grw

1 [bla+ bu)? + ba® = (a + bu}ﬂﬂb]

bﬂ-- I[a.+b'u:]2
_ir bu? _ u’

s (et bu) | (a4 bu)?

t— 1
(b) Lett =a+bu = di =bdu. Notethat u= —— = dt.
f wdu 1 I{L—u]-‘!dl 1 !2_M+u2‘”_lf -2 e\,
(a+bu)® & = b t? b t
b
b_lq(t—ﬂﬂ.ln|£|——)+f.»_bz a+bu—ﬂibu—2u|n|u+bu|) 0

37. Maple and Mathematica both give [sec” xdr = 3 tanz + § tanx sec” z, while Derive gives the second

sinx lsinz 1 1 2
term as Tom e S iomooar s Hlan.r sec” x. Using Formula 77, we get

jﬁecqzd.z = %T.EI.T.II sec 4 %J.HECEIdI: %lan.r.'&ecz.r+ %T.an:s-l-—ﬂ'.
39. Derive gives [ 27 /2% + ddr = Jz(z" +2) /2T +4 - 2ln (/T + 14 z). Maple gives
La(c® + 4 = Lz /ZT ¥ 412 arcsinh( fz). Applying the command convert (%, 1n) ; yields
%I{IE + 4]3” - %:sv':sz + 4= 2]11{%:-{-— % VE & 4} = %I{Iz + 4}1"’2[{:52 +4) = E] - EIn.[II.: + vz 4 4]!2]
= %I{I2+2}UI5 +4—El||1:\-".1:2+4+1:] 4+2n2
Mathematica gives $x(2 4 %) '3 4+ 22 = 2aresinh(z/2). Applying the TrigToExp and Simplify commands gives

L2+ 2*) Va4 —Blog(d(z+ VA+ 7)) = 2a(=® + 2) VET + 4= 2In(x + v+ 27) + 2In2, soall are
equivalent {without constant).
Mow use Formula 22 to get

a4
ij 2”+I2*“I=§{E”+Emz}f2”+m5-%ln(m+m]+@
=§{2}{2+EN4+F-zln{z+v’4+£?}+r:
=da(e® +2) VI F 1= 2M(VTT F A4+ 1) +C
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348 O CHAPTERT TECHMIQUES OF INTEGRATION

o dsl 3
41. Derive and Maple gwefcm" rdr = HI]’.II;_LM =+ z.m.zu.mr + ?I, while Mathematica gives
3r 1 dxr 1
- + - HII‘.I.l::EI} + 35 Ei-ll'.l.l::-'lI:' - I{Z sinx oosx) 4 —{2 #in 2r cos 2x)
dz 1 | | o
- + 5 sinz cos o 4 E[ﬂﬁmr cosx (2eos” = 1]]
_3= 1. el 3 1.
=3 +2hm.ru.mr+4.amz{_m T Shm.ru.m::,

s0 all are equivalent.
Using tables,

3 3

f:.u-s :l:da:——{_m r&inr 4 3 fu.n.-s rdr 2 —Lu&. rEinr 4= {Ea:+—hu|21:]+ﬁ

& ]

= teos’ Tsine + 2+ 7 I[Za.-sul_r cosz) + O = Feos" o sinx + -'.17+ -hIIII cosx 4+ O

43. Maple gives [tan® zdr = $tan' z = Ltan® x + } In(1 + tan® r), Mathematica gives
I tan® rdr = 3[—1 — 2 cos(2z)] sec” & — In(eos x), and Derive gives I tan® xdr = tan’ z — 3 tan” = — In(cosx).
These expressions are equivalent, and none includes absolute value bars or a constant of integration. Note that Mathematica's
and Derive's expressions suggest that the integral is undefined where eos = < 0, which is not the case. Using Formula 75,

IliI.T.I:'Id.I = ﬁt&n""lr—ftanr"z rdr = %tan"'r—ft,anﬂ.rdr. Using Formula 69,

J.l.il.T.laId.Iz %t.anzr-i- In |eos x| -I-f.'-',s-ﬂft.u.n"'.rdrz %tmﬁz—%tunj.r—ln [cos x| 4+ C.

ﬁ{a}Fl[.r}:fj{r}d::fIq,ll__d.r_—Tl | nlﬁlw

f has domain {z |z #0,1 =" >0} ={z |z #0, |z| <1} =(=1,0)U (0, 1). F has the same domain.

+C=—1

(b) Derive gives F{(z) = In(v'1 — % — 1) — In x and Mathematica gives F(z) =Inx —In(1 4+ v1 -7 ).
Both are correct if you take absolute values of the logarithm arguments, and both would then have the
same domain. Maple gives F(r) = —arctanh(1/4/1 = z*). This function has domain

{z]lel <l-1< VT2 <1} ={z|le| < L1YVI-2F <1} ={z||lz] <« LVI=-2T>1} =0,
the empty set! If we apply the command convert (%,1n) ; to Maple's answer, we get
1

1
-3 In 4+ =1In which has the same domain, 0.

(=) 3(-7=)

7.1  Approximate Integration

LiglAz=(b—a)fn=(4-0)/2=2

= i fzic1) Az = flzo) - 24 flza) -2=2[f(0) + f(2)] =2(0.5+2.5) =6

Ry = ilf{x.}ﬂ.r = flzy) 24 flza) -2 =2[f(2) + f(4)] =2(2.543.5) =12
Mz = E_,I"I:I.:Lﬁ.r H(EF) -2+ f(T2)-2=2[f(1) + f(3)] = 2(1.6 + 3.2) = 9.6
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SECTIONT.T APPROMIMATE INTEGRATION 0O 349

Ly is an underestimate, since the area under the small rectangles is less than
the area under the curve, and f2 15 an overestimate, since the area under the
large rectangles is greater than the area under the curve. It appears that Afs
is an overestimate, though it is fairly close to I. See the solution to

(b)

Exercise 47 for a proof of the fact that if f is concave down on [a, 8], then

the Midpoint Rule is an overestimate of f: flx)de.

(©) Tz = (& A2) [ (o) + 2/ (21) + F(xa)] = 3LF(0) + 2f(2) + F(4)] = 0.5+ 2(2.5) +35=19.
This approximation is an underestimate, since the graph is concave down. Thus, Th = 9 < . See the solution to
Exercise 47 for a general proof of this conclusion.

(d) For amy n, we will have Lo < Ty < I < My < Ha.

1 fiz) :l:us[.ril,ﬁ.zz I:D = %
(@) Tu = o [f(0) + 27 (%) + 27 (3) + 2f(3) + f(1)] = 0.805759

1
(b) My = 2[F(%) + F(2) + F(2) + f(%)] = 0.908907
The graph shows that f is concave down on [0, 1]. So T isan
underestimate and M, is an overestimate. 'We can conclude that
0 I

0.895750 < [ cos(z”) dz < 0.908007.

T b=a 2=0 1
f

Muw=3[f (&) + (&) +A(S)+--+ F ()] =0.506598

(b) S10 = g [£(0) + 4F (£) + 2/ (3) + 4S(3) + 2/(3) +--- + 41 (3) + f(2)] = 0.804779

2 [}
Arfmf:1=£ l;ﬂd::=[§m|1+zi’|]: [u=14 2" du=2zdx)
=iln5=4In1=4In5=~ 0804719

Erors: Ex = actal = My = I = Mg = —=0.001879
Es = actual = 510 = I = S1o = =0.000060

=1 1

T. f{:}:»,a‘r;—_l,ﬂ.r:? - =
(a) Two= s [F(1) + 2F(1.1) + 2f{1.2) + 2f(1.3) + 2f(1.4) + 2f(1.5)
+27(16) + 2f(L.7) + 2/ (1.8) + 2£(1.9) + £(2)]

= 1.506361
(b) Mo = =[f(1.05) + F(1.15) 4+ f(1.25) + £(1.35) 4 f{1.45) + f(1.55) + F{L.65) + f{1.75) 4 F(1.85) 4+ f(1.95)]

= 1.51R362
(€) Swo= g [f(1) + 4F(1.1) +2f(1.2) 4 4f(1.3) + 2f(1.4)
+4f(1.5) + 2f(1.6) + 4f(1.7) + 2f(1.8) + 4F(1.9) + f£(2)]
= 1.511519

wml&(‘n‘vh-:‘.u*whquﬂﬂuwnﬁummhhh#-ﬂwwqhq;-:-di—h:ht-dhﬂ]qtqﬂ.
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00 = phae =452 200
(a) Tyo = g5[f(0) + 2F(0.2) + 2f(0.4) + 2(0.6) + 2f(0.8) + 2f(1)
+2f(1.2) + 2f(1.4) + 2f(1.6) + 2 (1.8) + f(2)]
= 2660833
(b} Mo = $[f(0.1) + F(0.3) 4 f(0.5) + f{0.7) + f{0.9) + f{L.1) + f(1.3) + F(1.5) + f{1.7) + f{1.9)]

== 2664377

(€) Sio= 55[f(0) + 4f(0.2) + 2f(0.4) + 4/(0.6) + 2/(0.5)
FAF(1) 4 2F(1.2) + 4(1.4) + 2F(1.6) + 4f(L.8) + f(2)] = 2.663244

1. fiz) =.raﬁinx,.’_\z= % = %
(@) Ta = gy [£(0) + 27(3) +27(1) + 27(2) +2/(2) + 27 (3) + 2/(3) + 2/ (3) + f(4)] = ~T-276010

(b) Mo = 3 [F(2) + F(2) + F(2) + F(D) + F(2) + F(22) + F(22) + F(12)] = —4.818251

(c) Ss = 75 [(0) + 4f (2) +27(1) + 4£(2) +27(2) + 47 (£) + 2/(3) + 4/ () + f(4)] = —5.605350
13. f(y) = Feosy, Ay =22 =1

(a) Ta = gy [F(0) + 21 (%) +27(1) + 2(3) +2(2) + 27 (3) + 2/(3) + 2f (§) + f(4)] = =2.364034

(0) Mo =} [F(2)+ F(3) + £(3) + F(3) + £(3) + F(R) + £(%) + £(¥)] = -2.3106%

(c) Ss = iy [f(0) + 4 (%) + 2F(1) + 45(3) +2/(2) + 4f(8) + 2/(3) + 47 (3) + f(4)] = —2.346520

x? 1-0 1
B =M= =%

(a) Ty = mog {F(0) + 2[F (0.1 + f{0.2) + -+ + F(0.9)] + f(1)} = 0.243747

(b) Mo = 5 [F(0.05) + f(0.15) + --- + f(0.85) + f(0.95)] = 0.243748

(¢} Sio= 5 [f(0) + 4F(0.1) + 2f(0.2) + 4(0.3) + 2f(0.4) + 4/(0.5) + 2f(0.6)
+ 4f(0.7) + 2 (0.8) + 4£{0.9) + f(1)] = 0.243751
Nore: j:_.ll Flxz)dx = 0.24374775. This is a rare case where the Trapezoidal and Midpoint Rules give better approximations
than Simpson’s Rule.
1 flz) =ln(l4 "), Ar =250 =1
(a) Tu = g5 {S(0) 4 2[f(0.5) + f(1) + -++ 4 f(3) + F(3.5)] + f(4)} = 8.81427T8
(b) Mz = %[I{G.EE] <+ f{0.75) 4 =+« 4 f(3.25) + f(3.75)] = B.799212
(c) Sy = g [f(0) + 47(0.5) + 2f(1) + 4f(1.5) + 2f(2) + 4(2.5) + 2/(3) + 4/(3.5) + f(4)] ~ 8.804229

19. f(z) = cos(z?), Ar = =01

@ Ts = S {F(0) +2[(§) + F(3) + -+ S ()] + F1)} =~ 0.902553

Mo =) + £(E) + £(3) + -+ S(3)] = 0905620
(b) f(x) = cos(x?), f'(z) = =2zsin(z?), f"(z) = =2sin(x?) = 42* cos(z®). For 0 < = < 1, sin and cos are positive,
50 |fH{IH — ZHiI.I[:EE:]' + 4;2 EUE[IQ} <2-144-1-1= ﬁs\m_h,'in[IQ} <1 ﬂJ‘HicL‘H{IQJ =1 f{“a]l.r,

WEIEC‘:WL.:_‘.AII*:I::—V:&hh?-tkcq-ﬂ.:—:ﬂ.uhh:-ﬂ.nuh*nmpthhrh:_r#—Hpqwn-th::-ﬂﬁuh:h*-dhoﬂqtqu
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andx® < Lfor0< =< 1. Soforn =8 wetake K =6,a =0,and b = 1 in Theorem 3, to get
|[Er| < 6-1%/(12-8%) = o= = 0.0078125 and |Ex| < 55 = 0.00390625. [A better estimate is obtained by noting
from a graph of f" that | f"(z)] < 4for0 < = < 1]

K(b=a)* 6(1 —0)* N
- — < —_— =
(c) Take K = 6 [as in part (b)) in Theorem 3. |Ex| < = 0000l & T =10 =
1 1 :
gy = w2 ¥ > 100 & n?>5000 = n> Tl Take n = 71 for T. For Eu, againtake K =6 in
TE

Theorem 3toget |[Ex| <1077 & 4n® > 10" & n? >2500 <= n > 50 Take n = 50 for M.
2. f(zr) =sinz, Ar =50 = %
(@) Two = i [F(0) + 2 (&) +2f(35) +--- + 2f(25) + f(=)] = 1.983524
My = &[f(F)+ F(F)+1(5) +--- + [(5F)] = 2008248
Sio = w255 [f(0) +4f(5) + 27 (5) + 41 (35) + -+ - + 4f(35) + f(=)] = 2.000110
Since I = [ sinzdr = [—cosz|] =1 = (=1) =2, Er = I = Tio = 0.016476, Exs = I — Mo =~ —0.008248,
and Es = I — Si0 = —0.000110.

(b) flz) =sinz = |_."‘“:'[::}| < 1, sotake K = 1 for all error estimates.

K{b=a)® _l=x=07 _ =* |Er] _ =%

Er| < = = 0025839, |Ey] < Z7l = T~ go12010.

Erl = — 5 12(10)2 1200 IEul = 5~ = 5555 =
K(b=a)® 1{m=0)° =

Eo| < = = 0.000170.

IEs < —5pni 180(10)7 — 1,500,000 ‘

The actual error is about 645% of the error estimate in all three cases.

= 1 10%%*
ic) |[Er| < 0.00001 < (T < 3 = nfm = n > 508.3. Take n = 509 for T\
a2 -
|En| <000001 & zznﬂ < 1—;5 o nl> 102:» = n > 359.4 Taken = 360 for M,
™ 1 B
|.ES| < 0.00001 b= m’ = ﬁ =& > = n > 203

Take i = 22 for 5, (since rn must be even).

23. (a) Using a CAS, we differentiate f{x) = ™= twice, and find that I
F{x) = e™==(sin® £ — cos ). From the graph, we see that the maximum 0 M

value of | " x)| oceurs at the endpoints of the interval [0, 2=].

™ i

pE

Since f"(0) = —e, we canuse K = eor K = 2.8,

=3
(b) A CAS gives My, ~= 7.954926518. (In Maple, use Student [Calculusl] [RiemannSum] or

Student [Calculusl) [ApproximateInt].)

27 — 0)*
(c) Using Theorem 3 for the Midpoint Rule, with K = e, we get | Ea| < % 2= 0. 280045005,
2.8(2x —0)*
With K = 2.8, we get |[Em| < ﬁ = 0.289301916.
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352 O CHAPTERT TECHMIQUES OF INTEGRATION

(d) A CAS gives I == 7.054026521.

(&) The actual error is only about 3 x 10=", much less than the estimate in part {c).

(f) We use the CAS to differentiate twice more, and then graph 14

% x) = e *(sin’ £ — Gsin” x cosx 4 3 = Tsin’ = + cosz).
From the graph, we see that the maximum valueof|f“]'[r}| oceurs at the

endpoints of the interval [0, 2x]. Since f'(0) = 4e, we canuse K = 4e

i

or K = 10.9. —§

(g) A CAS gives Sy == T.953783422_ (In Maple, use Student [Caleulusl] [ApproximateInt].)

de(2x = 0)°

w == 0059153618,

ih) Using Theorem 4 with K = 4e, we get |Eg| <

10.9{ 2

= y®
IR0 . 109 == 0050200814,

With K = 109, we get |[Eg| <

(i) The actusal error is about 7.954926521 = 7.953789422 = 0.00114. This is quite a bit smaller than the estimate in part (h),

though the difference is not nearly as great as it was in the case of the Midpoint Rule.

o
(J) To ensure that | Eg| < 0.0001, we use Theorem 4: |Eg| < ;:;02]' - < 0.0001 =
T

5
de(2m <nt! =

150- 00001 —

n' > 5915362 & n > 49.3. Sowe must take n > 50 to ensure that | — §,.| < 0.0001.

(K = 10.9 leads to the same value of n.)
PR — f‘; re®dr = [{z - 1:]-91]; [pa.rEar Formula 96] =0-= {—l] =1, _f[z] = re®, Ar

n=>5  Ls = $[f(0) + f(0.2) + f{0.4) + f(0.6) + f{0.8)] = 0.742943
Ry = 1[f(0.2) + f(0.4) + f(0.6) + f(0.8) + f(1)] = 1.286599
Ty = g5 [f(0) + 2£(0.2) + 2£(0.4) + 2(0.6) + 2f(0.8) + f(1)] = 1.01477
M= £[£(0.1) + f(0.3) + f(0.5) + f(0.7) + f(0.9)] =~ 0.992621
Ep =1 =Lg =] =0.742043 = 0.257T057
Eg = 1=128650 = =0.286500

Ey = 1=1014771 = =0.014771
Enr == 1= 0992621 = 0.007379

n=10. Lo = %[f(0)+ f(0.1) + f(0.2) + -+ + f(D.9)] = 0.867782
Ry = % [(0.1) + F(0.2) + - -« + f{0.9) + f(1)] = 1.139610
Tio = oin {f(0) 4 2[f(0.1) + F(0.2) + --- + £(0.9)] + f(1)} = 1.003696
Mio= 25 [f(0.05) + F(0.15) + +-+ + f{0.85) + f(0.95)] = 0.998152

Ep =1 =Lwn==1-=03867782 = 0.132218
Ep = 1=1.139610 = =0.139610

Ey == 1= 100360 = <0.0036%

Eps = 1= 09958152 = 0.001548

=1fn
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n=20 Lao =[f(0)+ f(0.05) + f(0.10) 4 --- + f(0.95)] ~ 0.932967
Rz = L[f(0.05) + f(0.10) + --- + f(0.95) + f(1)] = 1.068851
Ty = o {f(0) + 2[f(0.05) + f(0.10) + --- + F(0.95)] + f(1)} = 1.000924
Mzo = £[f(0.025) + f(0.075) + £(0.125) + -~ - + f{0.975)] =~ 0.999538
Er =1 = Lao = 1 =0.932967 = 0.067033
Er = 1 — 1068881 = —0.068881
Er 7= 1 =1.000924 = =0.000924
Exs = 1 = 0.999538 = 0.000462

n Ly Ha Ts My n Egp Egp Er Euy
510742043 | 1.286599 | 1.014771 | 0.992621 5 0.25T05T | =0.286599 | =0.014771 | 0.OOT3TD
10 | 0867782 | 1.139610 | 1.003696 | 0.998152 10| 0.132218 | =0.139610 | =0.003696 | 0.001548
20 | 0932067 | LOGEERE] | 1.000924 | 0999538 20 | 0.067033 | =0.068881 | =0.000924 | 0.000462
Ohservations:

I. E;, and Eg are always opposite in sign, as are Ep and Ejyy.

2. As nis doubled, Ey. and Eg are decreased by about a factor of 2, and E'v and Eny are decreased by a factor of about 4.
3. The Midpoint approximation 15 about twice as accurate as the Trapezoidal approximation.

4. All the approximations become more accurate as the value of n increases.

5. The Midpoint and Trapezoidal approximations are much more accurate than the endpoint approximations.

ﬂ.]:fjr‘dr:[%zﬁlzz%—ﬂ—ﬂﬁl _f{:r::]—:p: A= 2=0 — &

£
n

n=6 To =g{f0)+2[f(})+7(3) +1(3)+1(3) +S(3)] + f(2)} =~ 6.695473
Mo = 3[f(3) +£(3) + S(2) + F(3) + £ (2) + S(4)] = 6.252572
Se == [10) +47(3) +2F(3) +45(3) + 21(3) + 47(2) + £(2)] = 6.403292
Er =1 ="T; = 6.4 = 6.695473 = =0.295473
Eas = 6.4 — 6.252572 = 0.147428
Es = 6.4 — 6.403292 = —0.003292

n=12 T =g {f(0)+2[f(z) + f(7) + F(3) +---+ f(F)] + f(2)} = 6.474023
Mg = 3 [f () + f(5) + F(&) +- -+ f(3)] = 6363008
Se = i [F0) + Af (&) 4+ 2F(3) +4F(2) +2f(2) +--- + 4F () + f(2)] = 6.400206
Ep =1 =Ty = 6.4 = 6474023 = —0.074023
Eas = 6.4 — 6.363008 = 0.036992

Eg == 6.4 = 6.400206 = =0.000206

n Te My Sa mn Er Exs Esg
6 | 6.695473 | 6.252572 | 6.403292 i | =0.205473 | 0.147428 | =0.003292
12 | 6.474023 | 6.363008 | 6400206 12 | =0.074023 | 0.036992 | =0.000206
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354 O CHAPTERT TECHMIQUES OF INTEGRATION

Observations:
1. Er and Exy are opposite in sign and decrease by a factor of about 4 as . 15 doubled.

2. The Simpsons approximation is much more accurate than the Midpoint and Trapezoidal approximations, and Eg seems to
decrease by a factor of about 16 as n is doubled.

B (a)Ar=(b—a)fn=(6=-0)/6=1
To = F[A(0) + 2f(1) + 27(2) + 27(3) + 2f(4) + 2f(5) + f(6)]
=24 2(1)+2(3) +2(5) + 2(4) + 2(3) + 4] = $(38) =19
(b} Me = 1[f{0.5) + f{L5) + F{2.5) + f(3.5) 4+ f{45) + f(5.5)] = 134+ 15446+ 474334 32=186

(c) Se = 3[f(0) + 4f(1) + 2f(2) + 4f(3) + 2f(4) + 4f(5) + f(B)]
2 2[2 4+ 4(1) 4 2(3) + 4(5) + 2(4) + 4(3) + 4] = 3(56) = 186

M. (a) [] flx) de = My = 2L[f(1.5) 4 f(2.5) + f(3.5) + f(45)] = 1(2.9 + 3.6 + 4.0+ 3.9) = 144

b)=2< Mr)<3 = |f(z)] <3 = K =3, since|f"(x)| < K. The error estimate for the Midpoint Rule is

Kib=a)* 3(5-1* 1
Ene| < = _— ==
|Ewl = =50 2442 " 2

33. We use Simpson’s Rule withn = 12and At = =0 — 2

S12 = 2[T(0) + AT(2) + 2T(4) + 4T(6) + 2T(8) + 4T(10) + 2T(12)
+ 4AT(14) + 2T(16) 4 4T(18) + 27(20) + 47(22) + T(24)]
= 2[66.6 + 4(65.4) + 2(64.4) + 4(61.7) + 2(67.3) + 4(72.1) + 2(74.9)
+4(T7.4) + 2(79.1) + 4(75.4) + 2(75.6) 4 4(71.4) + 67.5] = 3(2550.3) = 1700.2.

Thus, [ T(t) dt = S,z and Towe = grg [ T(t) dt = TO.84°F.

35. By the Net Change Theorem, the increase in velocity is equal to jf alt) dt. We use Simpson’s Rule with n = 6 and
At = (6 =0)/6 = 1 to estimate this integral:
[¥ a(t)dt = Sg = [a(0) + 4a(1) + 2a(2) + 4a(3) + 2a(4) + 4a(5) + a(6)]

m [0 4 4(0.5) 4 2(4.1) + 4(9.8) + 2(12.9) + 4(9.5) + 0] = $(113.2) = 37.73fi/s

37. By the Net Change Theorem, the energy used i equal to j:f P{t)dt. We use Simpson’s Rule with n = 12 and
At = 858 = £ o estimate this integral:
J¥ P(t) dt = 812 = H2[P(0) + 4P(0.5) + 2P(1) + 4P(1.5) + 2P(2) 4+ 4P(2.5) 4 2P(3)
+ 4P(3.5) + 2P(4) + 4P(4.3) + 2P(3) + 4P(5.5) + P(6)]

= [1814 + 4(1735) + 2(1686) + 4(1646) + 2(1637) + 4(1609) + 2(1604)
+ 4(1611) + 2(1621) + 4(1666) + 2(1745) + 4(1886) + 2052]

= 1(61,064) = 10,177.3 megawati-hours
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SECTIONT.T APPROXIMATE INTEGRATION O 355
39. (a) Let y = f(x) denote the curve. Using disks, V = j."_,m #[f(z))F dz = #_[_,m glz)de = wly.
Now use Simpson’s Rule to approximate [y
= Sy = 852(9(2) + 49(3) + 29(4) + 49(5) + 29(6) + 49(7) + 9(8)]

= 2[0% + 4(1.5)" 4+ 2(1.9)" + 4(2.2)* 4+ 2(3.0)* 4 4(3.8)" + 2(4.0)* + 4(3.1)* + 0]
= 3(181.78)

Thus, V' = 7 - $(181.78) == 190.4 or 190 cubic units.
(b} Using eyvlindrical shells, " = 2#:}'[:] dr = 2% _f zf(z)dx = 2=l1.
MNow use Simpson’s Rule to approximate [

~ Sy = SH2/(2) + 4. 3f(3) 4 2+ 4f(4) + 4-5f(5) + 2- 6/(6)
+4-Tf(T)+2-8f(8) + 4-9f(9) + 10f(10)]
= £[2(0) + 12(1.5) + B(1.9) + 20(2.2) 4 12(3.0) + 28(3.8) + 16(4.0) + 36(3.1) + 10(D)]
= £(395.2)

Thus, V' == 2= - £(395.2) == 827.7 or 828 cubic units.

#1. The curve isy = fz) = 1/(1 4 ™). Using disks, V" = nmrr[f{:s}]zda: =x ‘;ﬂ' glz)dx = wi. Now use Simpson’s
Rule to approximate Jy:

Iy = S0 = 8=004(0) + 49(1) + 29(2) + 49(3) + 29(4) + 49(5) + 29(6) + 49(7) + 29(8) + 49(9) + g(10)]
= B.80825

Thus, V' = wf, == 27.7 or 28 cubic units.

N%sin® k Ndsin@ . 10*)? sin® k
4. 1(6) = % where k = % N = 10000, d = 10~%, and A = 632.8 x 10~2, So I(8) = %
#(10%)(10=7) sind 10~% = (=10=%)
here k = . N =10and A = ————= =2 % 10~

where 6328x 109 o n 10 s

Mo = 2 x 10~7[I{=0.0000009) 4+ I{=0.0000007) + - -- 4 [{0.0000009)] ~ 59.4.
45 Consider the function [ whose graph is shown. The area fﬂz flx) da ¥

15 close to 2. The Trapezoidal Rule gives !

Te=222[f(0)+2f(1) + 2 =3[1+2-141] =2

The Midpoint Rule gives Mz = 252 [f(0.5) + f(1.5)] = 1[0+ 0] =0, T -

3 ] 1 7 X

so the Trapezoidal Rule is more accurate.

47. Since the Trapezoidal and Midpoint approximations on the interval [a, b] are the sums of the Trapezoidal and Midpoint
approximations on the subintervals [x;_,. x;], i = 1,2, ..., n, we can focus our attention on one such interval. The condition

f"(z) < 0fora < x < bmeans that the graph of [ is concave down as in Figure 5. In that figure, T}, is the area of the

trapezoid AQRD, f: flz)dx is the area of the region AQPRD, and M., is the area of the trapezoid ABC'D, so
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355 O CHAPTERT TECHMIQUES OF INTEGRATION

Th < j: flx)de < M. In general, the condition ' < 0 implies that the graph of f on [a, b] lies above the chord joining the
points (o, fa)) and (&, F{&)). Thus, _[: filz)dz = T,,. Since M, is the area under a tangent to the graph, and since [ <0

implies that the tangent lies above the graph, we also have M, > _[: Jlz) dz. Thus, Ty < J': Slx)de < M.

4. T = $ Az [f{zo) + 2f(z1) + - + 2f(zn=1) + fzn)] and
M, = Az [f(F1) + f(T2) + -+ + [(Tuci) + [(Ta)]. where T; = 3(x,_; + x,). Now
Ten = 5(3Az)[f(zo) + 2f(F1) + 2f (x1) + 2f(F2) + 2f (z2) + - -+ + 2f(Facs) + 2f (2nms) + 2f(Zn) + f(za)] s0
(T + Ma) = iTn + 3 Ma
= 18z{f(zo) + 2f(z1) + - - + 2f(Tazs) + flza)] + FAZ[2f(F2) + 2F(F2) + - -+ + 2f(Tna) + 2 (Z0)]
= Tin

7.8 Improper Integrals

]
1. (a) Since y = Ll has an infinite discontinuity at = = 1, f Ll dx 15 a Type 2 improper integral.
r= 1] T=
= 1
(b) Since f iT= dx has an infinite interval of integration, it is an improper integral of Tvpe 1.
il L&

{c) Smcef = " dx has an infinite interval of integration, it 15 an improper integral of Type 1.

s

(d) Since y = cot x has an infinite discontinuity at = = 0, fﬁ"” cot zdr is a Type 2 improper integral.

3. The area under the graph of y = 1/2* = 2= betweenr = land x = t is
A(t) = [fz~*de = [-3a™?]) = =bt=? = (=3) = § = 1/(2*) . Sothearea for 1 <z < 10is
A(10) = 0.5 = 0.005 = 0.495, the area for 1 < = < 100 is A(100) = 0.5 = 0.00005 = 0.49995, and the area for
1< = < 1000 is A{1000) = 0.5 = 0.0000005 = 0.4999995_ The total area under the curve for = > 1 is

lim A(t) = lim [ -1/(2)] =L

E—eo

A K T M

- 2
=k —_—t—= ] =042=2 Convergent
h“;(m ﬁ) ge

0 a
l — = l - . 1 I:I_ = 1 1 _—
T.f dr = lim j; dI_:—]."EL: [_zhlm_‘i‘ﬂ]t_:—1.'25_-,&[-?]“34"5'1"3-4!'] =

. 3-1x tmmte | 3z
Divergent
g, IE =0 dp= lim _r e=0P dp = lim [—%nﬂ:-:""]2 lim {——e =" 4 %e-m} =0+ %e-m = %e'm_ Convergent

P e (ST
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o IH i ¢ Ij ] 2 ; ) N - 5 .
'|1.L ﬁd.t:tlﬂ.iﬁ ﬁﬁ:ll_l-ﬂ; [Evl-i-.ra]ﬂ:lll.l-li{:ivl-l‘-t —§)=-::c. Dl'lrf-'fgem

13 [ re dr=[°_ze= de+ [ ze=" dr.

J-ﬂ .re'-zzd-lr': lim {__ [2_22]:' = lim { 1_5]( -E-ti) =-’} -1 =—%,ﬂﬂd

-—e =] B
-2 . —z2]t ) 2
J.nx re  dr= :]in;.:{_%] [e * ]n = t]._l-n; —%:I(e - l) = —% -(=1) =%.
Therefiore, [ ze=*" dr = -3+ 3=0. Convergent
15 jn sin” ada = |1rn ‘fD zl:l — cos 2a) doe = ].|r.|| [%[u— Ehllizl'.t]] = lul:L [3{!:— a_galnﬂi:l —{J] = oo.

Divergent

1?.]; gy :lﬂlif .r{z-l'-l uIEE.:f (——m) [partial fractions)

9t
= lim [lnla:|—lr1|a:+1|] = lim |Iln = lim | In t —II.|l =l]—lnl=1|12.
— 1 t=on r+l]], t==x t41 2 2
Convergent
e g = oo 2 2z Fi.ﬂlrglﬂliﬁﬂb‘_\.'ﬁ.rﬂ'\nﬂl
" ‘ru setds = :—I.IE.:.:I e u—!_l-].l-l:l.x [5..,& ; -%E L]f u=z,dv=e*q4: ]
= |1rn [{l] - l} {j!e"“ - ie""}] = —% =040 [by I"Hospital's Rule] = —%. Convergent
Inx {ln z)* ‘ by substitution with _ (lnt)*
21. f _dI_!l—l-;c [T u=lnzr,du=drfr - tl—l-r-l-::; 2 == DWE‘J’gE‘.I’I

2. _xm*‘::ﬂe;f-«u ==l15'x2[ - ( ]

1 t* 1
= lim [D— It.a.n'l (E)] =—E(%) = —%. Convergent

B
= VT dy = Ii ~VF gy = - = V&
5. ﬁ e ¥dy= lim f Yy = lim f e (2 dr) [d'-r=1f{2ﬁ]dy:|

Vi
— - - == u==2r dv=e"Fdr
_ll|m {[ 2re ]n L 2e d.r} [du:?d:, = —e—T

-k -V ~ VY _ e [(22VE _ 2 _ _
= lim (=2vfe="" 4 [<2e=])" ) = lim ??"??+2)_D'D+2_2'

b= o0
Convergent

v"—H. 24/1

] . 1
Note: i w =g =i 7 =0
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358 O CHAPTERT TECHMIQUES OF INTEGRATION

o 11 1
7. f = dr = lim f —dr = lim [In |.17|] = lim [— ln t] = oo, Divergent
n I x e i =t

=0 i

14

lim f (r+2)~Yds = lim [%I[a:+ 2}3""'] =— lim [lﬁR‘M - (t42)%4

4
F——" . o -

=3(8=0)=2.  Convergent

=3¢t
3. f dx f f dx Mf“ d'r_tl_i:u‘;:_ [_:‘T . =¢I_i.';.— [_%_%] = oo, Divergent

9 1 8
1 - -1f3
33. There is an infinite discontinuity at = = 1. f d.r:f{z-l] 1‘“d.r+f (r=1) Y
o vr=1 0 1

Herejnl[r - 1)y = tElllil_ f;[I —-1)"dr = |].II:I. [;{I - 1}2"%]l = lim [%I[.', -1 = %] ==z

—l= o t—1—

[ 3 =1t

i a9
and [(x=1)""*dz = Jim, [z =1)"2de = Jim, [g{x- 1}”*] = lim [ﬁ -3t- 1]”—’*] = 6. Thus,

9

1 3 1]
f dr = =— + 6= —. Convergent
P 2 2

r—1

t
[ et 0d0 = lim _[ftan?0d0= Jim [(sec'0-1)do = lim [tan6 — 6]

T t—sxf —{x )=
= lim (tan{=1)= oo since tant — ocoast — 7. Divergent
t— i)~
1

1 T 1 T 1.2 1. u=lInr, dv = rdr
ar. -ru T].IITd‘I'—tI_I-I.{I.I_.FL rlnrdr_tl_l-r.‘;h_ [Er ].IIT—:T L [du:{lfr}d'r, v= A2

— ¥ 1 1 52 1.2 — 1 — 1

= lim [(0-3) - (3"t 3°)| =-f-0=—}

Int u .. 1/t s 153 5
since lim t*Int = lim —— = li = ki === =10 Convergent
Jm Clnt = lm 7 = Jm o = i (et ‘ee

elf= ) C 1. 1 _ e w=1/r,
3. - dI:tI—I-IE.—]:,;E Fd.r:ﬁl:gn_f ue" [=du) du = —dx/z?

=1
s pans " 1
- I1m [I:u—l}e ]1# [annnﬂula%] _;l_l.ln“— [—Ze (I- ) ]

2 ) . 2 : s=1mn 2
=== Jm (s=1e* [=1p] =-"- lm ——==-"- lm —
= . 0= -E_ Convergent

[ e

41. Area= J‘l'x e~ For = tl_i-u; J' ~*dr = ].I:I'.Il [—e "']

= lim (=e~ 4 e~ ) =04e"t=1fe
"
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SECTION78 IMPROPERINTEGRALS 0O 359

o= 1 t 1
43 Area= x—d.z = lim f j—d:s
1 4 [ —— lz{I +1:|-
ST B U tial fracti
= !EI;. I . - Z+1 G [par iomns)
1 ! F '
. H z S H
; =t [kt = il 1] = i [t
o it 1 _ —if2 _ 1
_!Eg(lzlm—lnﬁ)_lnl—lnﬂ _ZIHZ
. . £
45, Area = nx"rj sec rdzr = lim f‘: sec’ rdr = lim [l:-an. z]
t—afmf2)— taim )= 0
= lim (tant=0)=0oc
t={xf2)—
Infinite area
%
sin®
47. (a) - glz) = -
t j'l glx) dx T
It appears that the integral 15 convergent
2 | 0447453 P & e
0577101
10 | 0621306
100 | 0.GES4TD

1000 | 0.672957
10,000 | 0.673407

. zin? 1 = ]
b) =l <sinz<l = 0<sin’z<] = ng““j:—fgg. sjm:eﬂ —5 dx is convergent

= gin®

|Equation 2 with p = 2 = 1], f - = dr is convergent by the Comparison Theorem.
1 T

ic) 1 Since [~ f(x) dx is finite and the area under g() is less than the area under f{x)

1
fivi== on any interval [1,t], [|™ g(x) dx must be finite; that is, the integral is convergent.

—i.1

1 =1 =
I&Fﬂrr}ﬂ,ﬂ;_“-::%zr—j_ j: I—jdrlscmergemm.-Equatmnz“.-nhpz2::-l,an{; Iaj_ldzlsmmergem
! &£ = L ! L = L
h}-r}mf_ompansnnTheorem.L zz+ldIliﬂmﬂ5TﬂnT,5D£ .r3+1dI:£ .r3_+-_1dz+j: Iz+1d'.zjsalsu

convergent,

41 41 T
ez VE o ®
by Equation 2 withp = 1 < 1. Thus, [[~ f(z)dz = [ f(z)dz + [J° f(x) dx also diverges.

1 = =1
8. Fore > 1, f(z) = = —,snf flx) dx diverges by comparison mmf — dx, which diverges
L ] a I
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360 O CHAPTERT TECHMIQUES OF INTEGRATION

2
1
BForl <z <1, —. MNow
I\.f"_ 2372
1 . 1 272 a1l @
I:f = dr = lim =% dr = lim [—21:-1'”] = lim (—Z-I'-—) = oo, 50 1 is divergent, and by
[ t—0+ t—irt £t VI :

ol

1,
mmpansnn,ﬁ T:}E is divergent.

+ lin

“‘fﬁ{ir}i ﬁﬁiz}*fﬁfii:}_:—wf e =—iﬂtﬁ'”"“
fﬁﬁi; =f 2u du “=‘f';~‘=“j~] =2fi,=2m."u+f.“-=man"ﬁ+c‘?,m

ull + u?) dr = 2udu 14 u2

dx = lim an™"! 1 an™!
L m_tl_m[zl VE]; + lim [2tan~'/F]|

= T [2(3) ~2tan~VE] + Jim [20a0=VI-2(3)] = -042(5) =7

t—0¥
Y dx
§.1fp=1 Tllenf — = lim — = lim [lnx], == Divergent
=0+ ' X [
Ld U dr
Ifp#1 Thenf — = Iir.n+ — [rote that the integral is not improper if p < 0]
] =il ¢ L

a~FH ]! 1 1
= lim = lim ]l = —
=t | =p+1), t—o+tl=p tp=1

1
Ifp=1thenp=1=0,s0 = oo as t — 0%, and the integral diverges.

Ifp<lthenp—1<0,s0 —

1 - 1
= —-{Jas!—c-li}“'a.ndf —[ll_i_r‘;gl{l—t' "}]=1—.

l=p -p

Thus, the integral converges if and only if p <2 1, and in that case its value is 1;
=-r
#. First suppose p = =1. Then

1y 1 .
f lnzrds = 4{ En'i;l: = lim f Ed;l:: lign [%I[lll.z:]-d]: = —% lim (In !::]2 = =00, 50 the
ot f, X P P

integral diverges. Now suppose p # =1. Then integration by parts gives

P+ o P4 P+
Flnzrdr = nr= [ ——ds=—Inr=——d4 Ifp<=1,1th 1<0
f 1rdr P+ 1 nr PF1 1 nr f_p+1]”+ p < Jhenp < 1 < (0, s0

1 1 +1 1
f rPIlnzrdr = lim ol Inz = z = =1 - = ! lim |+ (Int— 4 = oo
a t—ot [P+l p+11F], (p+1) p4+l) o+ p+1

Ifp> =1, thenp<+ 1 >0and

j:;.r"lu.zdxz =1 _( 1 )!E%Llut-lf{p-l-ljg -1.—( 1 )Ii.m 1/t

(p+1)* \p+1 t=(pti) (p+1)*  \p+1) o+ —(p+ 1=+
=1 1 =1
= + 5 lim t#*' =
(p+ 12 " (p+ 1)% emo p+1)2

Thus, the integral converges to = if p == =1 and diverges otherwise.

1
(p+ 1)
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61. (a) I = f:; zdxr = J.i_jx rdx 4 J.;: xdr, and f;c zdxr = tlir.u jﬂt rdi = :lim [%zzlz = t].i:u [%tz —[ll] =
— — —
s0 0 15 divergent.

(b) [{, xde=[}s]", =4 = $* =0,50 lim [L, xdz =0 Therefore, [ xdr# lim [ xdz.

= ) 11" ) 1
63. Volume = | - dr =7« lim ——.'ﬂ'll]'.ll == =xwlim[|[l==] =77« 0.
i T f - - x|, — t

{= = t W .
3. Wﬂf}i:f Fdr= lim GmM dr = lim Gm_l'uf(% - 1) = G';;'M

B t—se g 12 C——

. The initial kinetic energy provides the work,

t

GmM _ _ [3CM
R o R

67. We would expect a small percentage of bulbs to burn out in the first few hundred hours, most of the bulbs to burn out after

close to 700 hours, and a few overachievers to bum on and on.

(@ v {b) r(£) = F'(t) is the rate at which the fraction F(t) of burnt-out bulbs increases
14

as t increases. This could be interpreted as a fractional burnout rate.

ic) f;‘ rit)dt = lim F(z) = 1, since all of the bulbs will eventually burm out.

1
{im hours}

= eN(1=e=*) _ N - ke
69. ’!‘:f c—[ E ]e Mt = = lim f! [e At gl J'}t] dit
o i}

k k =

=N i | L mkempe| N L ! 1, 1
= S g by ey Y il R Ny
_eN /11 _eN fk4+A=AY _ N

TR NN E+A) T RN MERN )T MELA)

=1 i S | ) =1 7t . =1 =1 =1
T1.JT=£ .1:”—‘+1dI=¢I—1-I-f_~,'.:J{; .r"-‘_+ldz= lim [t.im I]ﬂ:tl_:l.l'g:{tﬂn t = tan u}l:ﬁ—t-an .

[ £l

<0001 = F—-tan™'a<000l = tan~'a>35—0001 = a>tan(F—0.001) = 1000.

ey e =gt T =
73. (a) F(s) = f Flt)e™ dt = f e~*'dt = lim [-E ] = lim {E +l).Thls comverzes to 1 gnly if 2 > 0.
fi] fi] k] =

=0 & o bt 1

Therefore Fi(s) = 1 with domain {s | = > 0}.
&

O == T 1 kLl
(b} F[E:l:f f{i]e'"rﬂ,:f efe™* dt = lim f et=2) dt — lim [—e‘“"}]
(1] i} fo=ean fy n=soe | ] -5 a
[l=s)n
. e 1
_rL]il-I;c(l—s -l—s)

This converges only if 1 — s << 0 = s > 1, in which case F(s) =

1

& -

T with domain {s | s = 1}.
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362 O CHAPTERT TECHMIQUES OF INTEGRATION

(c) Fs) = [;° f(t)e™ dt = Jim j}l te=* dt. Use integration by parts: letw =, dv=e"*dt = du=dt,

-t f
e B t _ 1 _ . =T 1
U:-—.mn F{a}: ]]_“1 el .!-—E st = I]_r_[. —
5 p—— 5 w2 o — ai a11

1 1 .
+l]+—) = = only if s > 0.
52

Therefore, F(s) = ld and the domain of F is {s | s > 0}.
L]

75 G(s) = [;° f'(t)e™*" dt. Integrate by parts withu = e~ dv = f'(t)dt = du=—se™" v= (1)
G(s) = lim [f(t)e™ ]y +s [" f(t)e™" dt = lim f(n)e™"" = f(0) + sF(s)
But0 < f(t) € Me®® = 0= f(t)e™* £ Me*e=*" and Jim. Mef2==} = 0 for s > a. S0 by the Squeeze Theorem,
lim f(t)e=' =0fors>a = G(s)=0= f(0) + sF(s) = sF(s) = (0) for s > a.

T7. We use integration by parts: let u = x, dv =ze~® dr = du =dz, v= —%e"?. S0

=0 - =) oo
f Ije-“?d.r = lim —lze"ﬂ + lf e'"‘! dr = lim |- - =+ if e"ﬂ dr = lf e‘; dx
i) f—on 2 0o 2 Jo t—oc 2et 2 fa 2 Ja

( The limit is 0 by I"Hospital’s Rule.)

79. For the first part of the integral, let r = 2tanéd =  dr = Zsec” ddb).

1 2sec” §
fﬁdr—fmdﬂ_fmﬂdﬂ_ln|mﬁ+m|ﬂ|.

Z2 + 4
meiheﬁgure,t.anﬁ:%,a.ruisecﬁ: T+bn 2
= 1 C e
I=f (———)dz:li.ln | = +4 | f‘].ll|z+2|
o \VIEf4 zx4+2 towae
[ VI A+t
= lim lnL-cln{Hz}-{lnl-r:lnz]]
E—rox | 2
[ M+L) ] t+TE 4
= lim |ln +In2% =ln(|i.||1 )+1nz‘?‘1
== (2{¢+z}if tae (L4 2)0
Now L = i i+ +4 u L. 14 t/vE 44 2
= um -
T {:+zf Ot Ctli.lu (t+2)°""
—

IfC <1, L =ocand I diverges.
IfC'=1,L=2and I convergesto In2 + In2" =1n 2.
If " =1, L =0and I diverges to —oo.

81. No, I = [[* f(x)dx must be divergent. Since lim f(x) = 1, there must exist an N such that if = > N, then f(x) = 1.
2 =30

Ths, I =1, + I, = fﬂ, () dx + fn Fiz) dz, where I, is an ordinary definite integral that has a finite value, and Is is

improper and diverges by comparison with the divergent integral fx Zdr.
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T Review
TRUE-FALSE QUIZ
1. False Since the numerator has a higher de eethanmedrmmmamrM— -+ BT _ + A + B
’ ’ ) & & P T R e 42 =2
A B C
3. False. Itca.nhepmmmeﬁ:urm—-i-—2+—.
E= =4

3 False.  This is an improper integral, since the denominator vamishes at x = 1.

4 i ! I 4 a

- ) t . ) . . " . . ,
L Iz—ldI:ll—l-I;l—L .fd—ld:E:!I—I-I]I.I— [5|n|.r -l|]0=:|_','?_gln|! —1|:-::c

50 the integral diverges.

7. False. See Exercise 61 in Section 7.8,
9. (a) True. See the end of Section 7.5.

(b) False. Examples include the functions f(z) = e, g(x) = sin(z?), and hiz) = sinx

1. False.  If f(x) = 1/x, then f is continuous and decreasing on [1, oc) with lim f(z) =0, but [, f(x) dx is divergent.

13. False.  Take f(z) = 1 forall z and g(z) = —1 forall =. Then [~ f(z)dx = oc [divergent)
and [[¥ g(x) dr = —oc  [divergent], but [[* [f(z) 4 g(z)]dr =0 [convergent).

EXERCISES

|

a 2
f {m+l] dr = f x* +2I+1d :f (I+2+l)d;=[%zj+21+]ﬂ|$|
1 & 1

=(2444+In2)=(3+240)=£f+In2

Sin = .
_ ) LR _ LB u = sin.T,
kS . _Eda:_f:_u-i.re d.]:—ff_ e [du:cns:d:]

—— +£!=£lihl +

di 1 2 1
% - = dt = ——— = —— | dt  [panal fracti =lnH+4+1ll=Injt4+1 o
f2£1+3l+1 f{2t+1]{t+1] f(z.',.}._'[ ;+1) [pania o] n|2t+1|=Injt+ 1] +

T. fﬁ'ﬂﬁinﬂﬁ‘curjj Qdﬂ:f;‘ml:l = cos” 8) cos” @ ﬁinﬂdﬁ‘:ff{l = u?)u? (=du) [ u = cos 6, ]

du = — =in & ddf

=f01[u2—u‘}du=[§u —-u"]ﬂ 1—%]—0:%

9, LET.T.::In!,du=d£ft.MH‘[&:I.”JI=fﬁinudu=—cmu-l-—lf:':—cml::lnt}-}-f:'.
1. Let & = sec#. Then

= =73 B
f Vol [T 100 g tan6ds = f tan’ 6 df = f (sec? 6 — 1) df = [tand — 8]/ = 3 - £
1 x i

, secB
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364 0O CHAPTERT TECHNIQUES OF INTEGRATION

13. Let w = &% Then w = x and 3w” dw = dx, s0 fe%ridz:zfeu-szdw = 31. To evaluate I, let u = w”,
dv=e"dw = du=2wdw v=e"s0l= J'wze"" dur = whe' = fﬂwe” dw. Nowlet [/ = w, dl = e dw =
dlf = dw, V =" Thus, = wie” = Z[T.r.re” - fe"' dr.r.-'] = w'e™ = 2we™ 4 2™ 4 "y, and hence
35 = 3w’ = 2w 4 2) + O = e V(2 ~ 2213 4 9) 4 O

r—1 r=—1 A B

15, = =4 -1=4A 2)+ Br. Setr==2toget =3 = =28, 50 B= 32 Setx=10
2 4 2 Hx+2) z+z+2 = x A(x +2) + Bz x 2 . 50 3 r
_1 a
toget =1 =24, SDA_—— mLﬂ,fﬁd.I:f(Tj‘{nIig)dz:—%lnlrl+%|IIII+2|+{:_'.

u=z, dv=coshzrdr

17. fIELki]!lIdI:Iﬁin]lI—jﬁinJlIdI ke

., ©vw=sinhzx

= rsinh r = coshx 4+ C

19 r+4l dr = O | _ J:+l u= 8z 41
) ot 645 {9:'¢+ﬁ:+1}+4 {1:+1}J+4 du= Gidx

=] +1 1.y _1. {u—l]-l-—'id
- w? + 4 3™ T3 3 e
1 1 2 11,4 2 1. _,f1
== du — du==--=1h 4= mtan™  zu ) +C
gfuud +gfu2+22 u=g- gl +4)+35-3 (2“)+

& In(92" + 6z + 5) + ttan™' [$(3x +1)] + C

=]

21‘ff:fi‘l.r:fJ{mz—:.:+4}—4:f\/{x_d;2_gz

[ 2sect tanfdf r—2=2snch,
f Ztand dr = 2sec# tan & dif

\{.1'—2|'\—2:
=fﬁetﬂ'dﬁ=|n|ﬁecﬂ'+tmlﬂ|+f-‘1 =t —dy
=2 ya? =4
=l||']:2 + = +

=l|||I—2 +VIi—4I| +C whereC =1 =In2

23. Let = = tan#, so that dr = sec” # df. Then

_ sec fdfl [ sect
I\,.-‘Ii_i_l_ tanf secd tan #
= [escfdf = In |eset) — cot ] + C
In _‘*Iz“_l%c:h.l_‘-ﬁl‘ll_‘hc '
T T x

32* =2 4 6r=4 Ar4+ B  Cz4+D
(e2 4 1)(x2 4+2) ~ a4l r? 42

= 32® =1 4 6z =4 =(Azx 4+ B)(z' 4+ 2) + (Cz + D)(z* +1).

Equating the coefficients gives A4+ C =3, B4+ D==1244C=6and 28B4 D= =4 =
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CHAPTERT REVIEW 0O 385

A=30C=08B==3 and =2 Now
3 — 2 4 G —4 =1 di 3 3 1 f =
—_—dr =3 | ——d 2] —==1 1) =3tan” 2tan” [ — .
f 012 f:'é+1 i frﬂ+2 71n(" +1) —3tan™ 2 + VItan (ﬁ)+

Fig f;ﬂ cos® r sin 2rdr = f;"r! cos® (Zsinx cosx) dr = f;ﬂ 2eos' rsinzrdr = [—f cos” I] ;;2 = f

@

29, The integrand is an odd function, so l+| |
=3

——dr=0 [by55.7(b)).
. Letu= e = L Thenu® = ¢* = 1 and 2udu = ¢* dx. Also, e* + 8 = u” + 9. Thus,
" eve T - f“z“duzzfau—zduzzfx(l-,i)du
a L-‘+E u? 49 o ul49 @ u? 49
:z[u-%mn-l(%)]:=2[{3-3m1.-11}—ﬂ]=2(3-3-§)=ﬁ-%’

33 Letx =2sinf = {4 —.'1:2]:\\"|l2 = {Zu.mﬂ}a,d.r = 2eosf df, 50

j e
—  dr= 4hm g —— Feusfdf = | tan” Gdff = {ﬁer_ [ 1] df! !
(4= Iz]‘-ﬂ Boost B
il
. T o1
=lm|ﬂ'—ﬂ'+{,:ﬁ—sm 1(5) +C N

1 dr dr
ﬁf;I+a:"’=2dI_f:.:I{l+::I]_,[‘,-"E:.:l+ﬁ du=!
=4/u+C=413 Jz4C

ar. f{cmi:s + sin :l:l'l2 cos2rdr = J' {L‘Uﬁz x 4+ Psinxcoss 4+ sin’ I] cos 2rdr = f{l + sin 2:5] cos 2 dr

2d
f - D=2 dy

:fcmi.rdr+ %fﬁinﬂi:sd.r = %H:‘LIIEI— -:'-'EUH4I+C-'

Oy f{{.u&. x 4 sin I:lz cos 2rdr = _ﬁcm T 4 sin z]j{cmz T = sin’ I}dI

— . 4 X — i — Ly P! 4 v
= : = 1
_ﬂcua I = s z] {:Lue. T = ®in .r]-d.r E{LL‘M‘:I -+ a-uru:] + 8

'
. d .
39, We'll integrate [ = f{lf—f—z}zd; by parts with u = xe and dv = ﬁ Then du = (z - 26 4 &** . 1) dx
XL I
11
andv=—=-
T T ™
1 xe®® 1 “{2;+ 1} 1 . ag (1 T
f=—=. - [|-= 1. C=e=(=- C
2 1+ 2z [[ 2 T 1+2r z+z z¢ tL=e (4 4.r+2)+

Copyeight 3046 Conpoge Lemmiog. AB ights Reverves. Moy st b copind, scomm o dmphicate, o whole o . o b et ightn, s shind oty contnt sy b e s the ek e o mptts
Esbirrea rovars b decmacd that as wepy By affect the ovorall bermirg cupencece. Uagage Lcameng rescrves the nght 0 remens sckdtamal oot 2t 2z hine o vebusguent gt s icton regues i




366 O CHAPTERT TECHNIQUES OF INTEGRATION
o 1 f a 1 t
4. de =1 de = li Lize 417" 2dr = lim |=———+
[ e =t [ e =t [ e 07 2= i [y

1 1 1
=—— lirm - - =—-(Il]'—l)=L
4= | (2 4 1) 9 A 9 36

_dr [ LL=lu't'] :fd—u:In|u|+ﬂ':|n|ln:|+ﬂ',sn
u

xrlnr |du=dxfz

= ¢ .
= lim j- dx = lim [In [l xl] = lim [In(lnt) — In{ln 2)] = =, so the integral is divergent.
g xlnxr t—=fy rlnx t—= 2 t—eoo

1 4] . 4
ﬁf Ed.r_ lim E-|:f.:|l.:= lim [2\““;'".17—4"3‘;]
t—ot+ Jy =+ t

= Ii 2-2ln4=-4-2) =2/t Int =41} = (4ln4 =8)= (0 =0) =4ln4 -5
Jim [(2-2n ) =(2vTInt —4yT)] = (4ln4=8) = (0 = 0) =4In

1 1
{*) Letu=Inz, dv = —=dr = du=—dzr, v=2% Then

vz x

In.r
= de =2 lnz =2 f‘f,__Zx-"{_lu.r—dv“'_+~:“‘

2lnt w 2 _
[+ |1.||1 {Zfrln!;l— l|1|| =y —IEI#F —%1-3.1’2 _tl_|-1‘;|_'_ {—-‘l u'"E'_] =

fr=1 ! 12 _ =12 3 2]
47, dr= li — . — — | ' '- I dr = i [2 2 - 1..!'1]
[ ae= i [ (G- ) te=tm [ Jde= g (52 t

— lim [(2—2) = (2642 — 92} = _4 _p=_
_tl_L_.§+[{z 2) - (3642 -2 )]_ i_p=

e

48. Let u = 2x 4+ 1. Then

e dlx o gdu du +,°‘=du
oAty dr+5 w4 T w44 Tf, uT44

=, Jim_[}an™ (fu)]] + § lim [fran™ ()], = 3o~ (=) + i[5 -0 =

e

51. We first make the substitution t = z + 1, so In(z” + 2r 4+ 2) = In[(z + 1)* + 1] = In{t* + 1). Then we use paris

with u = In(t* + 1), dv = dt;

1(2¢) di 3 12 dt 2 1
In(t* + 1)t =t In(t* + 1 =tln(t"+1)=2 | —=tIn(t"+1)=2 | [1 = —— | at
f"i +1) n(t" +1) - f:d+1 n(t"+1) f.-,2+1 n(t"+1) f =41

=tIn(t* + 1) =2t + 2arctant 4
= (r+ 1) In{z* 4+ 2r 4 2) = Zr 4 Zarctan(r + 1) 4 K, where K = (" =2

[contimed)
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CHAPTERT REVIEW 0O 387

[Adternatively, we could have integrated by parts immediately with
u = Infx? + 2x + 2).] Notice from the graph that f = 0 where F has a

horizontal tangent. Also, F is always increasing, and f > 0.

53. From the graph, it seems as though [’ cos® z sin® z dxr is equal to 0. 01

WA

=02

To evaluate the integral, we write the integral as

I =f§'cwzr{l —cos" ) sinzdrand letu = cosz =

"'__‘l

du = —sinxdr Thus [ = fll w?(1 = u?)(=du) =

5. [VIF—fx—3de= [ Bz =1 —ddz |27 """ = [VaT=27(} du)

2dx

E;(EVHE—Z‘!——Inlu-}-Vu - il)-{-(—' —u\.-"u - —|n|u+v'u - |-I-l':

=12-1)/IT Tz —3-ln|22— 1+ VIF — Tz = 3| + C

57. Let u = sin x, so that du = cos rdx. Then
COS T + sin“ rds = + u u— + u -I-—r.Lu+- 4+ ut ) 40
4 d. 3/ 2 2 d \.-'21 2 | VI 2 (N
=%5ir1:51,.-'4+ﬁin"!I-I-Eln(ﬁi.ll.r-i- \.-"4+si.||2zr+f:

L N e ST ) B N e w2 -t 1
34, (a) du " a u sin (ﬂ)-}-ﬂ]— a u- 4 '—F—u ﬁ—ufﬂ. a
= (a.j - uE]-I‘m [uid [ﬂ.j - 1'.:2] 1= l] = _ﬂi: u

(b) Let u = asinf = du=acosddd, a’ = u’ =a2{l — sin® ﬂ‘} = a® cos” 6.

] 4 -
f"—u“.ﬁ: @ cos Edﬂ fl sin "dﬂ:f{m*e-l}daz-mw-uc
i1 I

T s e
=—ﬂ+u2— ﬁhl-'(E) +

- t
61. Forn > 0, [[* 2" dz = lim [#"*!/(n +1)]; = co. Forn <0, 2" dz = [ =" dz + [ «" dz. Both integrals are

improper. By {7.8.2), the second integral diverges if =1 < n < 0. By Exercise 7.8.57, the first integral diverges if n < =1.

Thus, [ =" dz is divergent for all values of n.

ﬁlf{I}=ﬁ,.ﬁm=?=%—%
(@) Two = 55{f(2) + 2[f(2.2) + f(24) +--- + [(3.8)] + f(4)} = 1925414
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368 O CHAPTERT TECHNIQUES OF INTEGRATION

(b) Mo = £[f(2.1) + f(2.3) + f(2.5) + -+ + f(3.9)] =~ 1920015
(c) S10 = 5 10(2) +4F(2.2) 4 2f(2.4) + - - + 2f(3.6) + 4f(3.8) + f(4)] = L.922470

F'(z) = 24z 2 L Note that each term of

¥lnz)® z¥lnzx)®  zi(lnz)?

8 /@)=p = S@=-n

K(b=a)* 2022(4=2)"

() decreases on [2,4], so we'll take K = f"(2) = 2022, |Er| < oz 1201007 0.01348 and
K(b—a)® _ 2022(8) _ 1 , - 107(2.022)(8) _
|.E_l._r| o W_l]ﬂl]ﬁ T4, |ET| *_:G_DDD!]II Wil— = n ET = 'I'J.:_"ﬂﬁr.z.

2 10%(2.022)(8)

4 = n > 259.6. Take n = 260 for M.

Take n = 368 for T.  |En| <0.00001 =

6. At = (2 =0)/10 =%
Distance traveled = [ vdt = Sig
= 540 + 4(42) + 2(45) + 4(49) + 2(52) + 4(54) + 2(56) + 4(57) + 2(57) + 4(55) + 56]
= $3-(1544) = 8.57 mi

69. (a) f(x) = sin(sinx). A CAS gives 4

FUYx) = sin(sin z)[cos® £ 4 Teos”? = = 3]

+ cos(sin x) [Ei cos” rsin + sin z] 0 ir

From the graph, we see that

ft-'}{r:]| < 3.8 for x € [0, =].

—4

(b} We use Simpson’s Rule with f(x) = sin(sinz) and Ax = &
[y Fa)de =~ g [(0) + 41 (F) + 2/ () + - + 47 (%) + f(=)] = 1.786721

From part (a), we know that |f{‘”{:s'_l| < 3.8 on [0, 7], so we use Theorem 7.7.4 with K = 3.8, and estimate the error

3.8(x = 0)°
Es|< 2o\ =20 0.000645.
aslEs| < S5m0y

3.5 < 0.00001,

{c) If we want the error to be less than 0.00001, we must have |Es| = o =

- 3.8x"
= T=0{0.00001)

4

S0 71 = 646,041.6 = =n > 28.35. Since n must be even for Simpson’s Rule, we must kave n = 30

o ensure the desired accuracy.

=
N (@) 2180 -, 1 o rin [1.5a). f —d:nsdu-ergemh-{?ﬁllmmp_ % < 1. Therefore, T
1 T

vz v"'_
divergent by the Comparison Theorem.
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CHAPTERT REVIEW 0O 389

1 1 =1
) — tm x in [1, =a). — dx is corvergent by (7.8.2) with p = 2 > 1. Therefore,
W1 +a:'* = . ,
1
m— 15 comvergent by the Comparison Theorem.
1 41 ‘{'-I’Iu

T3 For z in [D._ g—],ﬂ < t.'U.HIIECUHI. For x in [%_..‘ﬂ'], cosz < 0 ‘Ecmz.r. Thus,
area = fﬂ"'u[cua £ = cos” £)dz + f:ﬂ{cmz T —cosx) dr
= [Eii]’.lI— Fr—- %:iir.li.::];"|l2 + [%m-{-—%sinﬁz—sinz]:# = [{1 -Z) = ] + [% -(% —1]] =2
75 Using the formula for disks, the volume is
V=[P f@)] de = [ (cos® )P de = = [ [2(1 + cos 22)]° d

= I [M(1 4 cos® 22 + 2cos2z) dr = £ [T [1 4+ 3(1 + cos dz) + 2eos 22] dr
=§[ + 3(ysinar) +2(§sin20) |77 = £[(F + §-040) = 0] = 3+

7. By the Fundamental Theorem of Calculus,

fnﬂ Fiz)ds = |].II:I. fﬁ (x)dz = llm [f{!:l— {ﬂ}l:tlgﬁuc F(t) = f(0) =0 = f(0) = =f(0).
T letu=1/r = z=1u = dr==(1/u’)du
= Inzx . " In (1/u) du’y =lnu _fﬁ lon e _ = Inu
L T=2=] Thye 'F)_Luul[ du) Tr = 'j; Tra "

Therefore, —_T e = —T dr =0
w1+ z? s 1+zxf
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[1 PROBLEMS PLUS

1. ¥ 150

tad

L]

Y
By symmetry, the problem can be reduced to finding the line = = ¢ such that the shaded area is one-third of the area of the
quarter-circle. An equation of the semicircle is y = /49 = =7, so we require that [ 49 = 27 dxr = 3. ix(7)* &
[fzvB—2"4+ & hln"{.rf'r"}]: =Lr (byFormula3d0] = ey - +Lsin~'(c/T) =8

This equation would be difficult to solve exactly, so we plot the lefi-hand side as a function of e, and find that the equation

holds for ¢ == 1.85. S0 the cuts should be made at distances of about 1.85 inches from the center of the pizza.

3. The given integral represents the difference of the shaded areas, which appears to ¥
be 0. It can be calculated by integrating with respect to either = or y, so we find =

in terms of y for eachcurve: y = V1 == = r= /1 =y" and

=41 = r=31=y"s0
J;l(%"'{l-ll'?-‘:-"'I]-—yﬂ)dy:j?{\-"fl—.r“—vil—z?}dI.Butﬂjjs 0 Cox

equation is of the form = = —z. So [[({T—=2" = {T=2")dz =0

5 The area A of the remaining part of the circle is given by

v
'l b b a
.-'1:41:4"[ (\.-"’az—Iz——v"ruj—:r:"’)d:r::4(l——)f Vva® = dr
fi] i i o I
2 a (0,
£ iI:cl —b) [%y’ai -+ a?sin'l E] i, 0
@ al, - -
=—{.I!-— +—E- - =—u—b {.I!:I'l‘ =H'ﬂ-{.|!-—b, a
b l] 73
o
cHy=g ?+ =1

which is the area of an ellipse with semiaxes a and a — b,

Alrernate solution: Subtracting the area of the ellipse from the area of the circle gives us ma” = rab = ma (a = b),

as caleulated above. (The formula for the area of an ellipse was derived in Example 2 in Section 7.3.)
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372 0O CHAPTERT PROBLEMSPLUS
T. Recall that cos A cos B = %[{.‘m{_«i + B:]- + cuei{:zl - B]] S0

flz)= J;; costeos(r — 1) dt = %J;; [cos(t 4+ 2 = 1) + cos(t — x4+ 1)]dt = %f; [eos 2 4 cos(28 — )] ot
= % [.lcuei T4 % sin(21 —.r:l-] "= FeosE 4 %ﬁin[ﬂ:rr o %rﬁnl{—z]
=Feosr+ 3 mnf_—:r.:] - = mn[—z] 2 cosx

The minimum of cos  on this domain is =1, so the minimum value of f(z) is f(x) = =1,

8. In accordance with the hint, we let I, = j}ll{l — =%)* dx, and we find an expression for Ji4. in terms of I, We integrate

Desibypanswithu = (1 =2 )**" = du=(k+1)(1=2")"(=2z).dv =dr = v =z, and then split the

remaining integral into identifiable quantities:

Tpyr = 2(1 -I'f“]'“f1|;1 +20k 4+ 1) [ 2 (1= 2" dr = (2k 4+ 2) [ (1 = 2*)*[1 = (1 = 2¥)]dx
= {:Zk + 2]{]& - fk+]]'

2k 4+ 2

Sof 1424+ =02k4+2V, = I
ka1 +( = M k1= o

——— I Now to complete the proof, we use induction:

2
h=1= 2“[1{:} , 80 the formula holds for n = 0. Now suppose it holds for n = k. Then

ey k42, 2k42 [2”*{&!]2] Ok + 12K 2k +1)  2(k 4 1)2*%(KY°
+1 =

%43 k43 |(Zk+1)|  (Zk+3)2E+ 1) 2k+2  (2k+3)(2k+ 1)

(Y)W sl (X3 VL
TR 43R+ 26+ 1) T [2E+1)+1]

So by induction, the formula holds for all integers i > 0.

M. 0 < a-< b Now

L
ut-l-l ] bl-l-l - gl

L[br-lua[l—z}]'da::[mdu [u = bz + a1 —x)] =[|[.L+l]|[b— nz{!+1}{b_ﬂ}'

P - gt 17t 1 B -
Nowlety = li — .Thenlny =1 I.u_ This limit f the fi 0/,
ow let o Hl[{!+l}[b-u}] niny |I.u[ TTO0= }] is limit is of the form 0/
so we can apply I'Hospital’s Rule to get
~ [#*' b =a'*'ina 1 blnb—alna blnb alna pb/(b=a)
lny = lim - = -1= - —lne =In —m—r.
£l B4l — gt4? t+1 b—a b=—a b=-a e/ (b=a)

1f(b=a)
Therefore, y = e~ (ﬂ) ) .
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CHAPTERT PROBLEMSPLUS O 373

il

28 3 %" 3 x
13. wrmf:fmdzz‘[; .md;_Inlegrateh}'pﬁ!ﬁwjmuzr,dvzmdx.mn

5 1 x 1 =4
du:ﬂz‘dm,v:-m = I:—m+§ T2 ——— dx. Substitute { = x* in this latter integral.
2 S
flixﬁ —1 lf’p =% te '1.',+c‘“— tan=*(z*) + C. Therefore I = — ﬁ{lirﬁ}+1m-1{z*}+r-

Returning to the improper integral,

B ?.'

jj(lff)zdx_’lﬂ _‘l“f—xs}zﬁ:!@; [- st Stani(z 1]

-1
6(1+1)

!:!

1
=1l _— = tan~
:-'f'e:e( I+ 6 )+

15. An equation of the circle with center (0, ¢) and radius 1 is =° + (y = ¢)° = 1%, 50

an equation of the lower semicircle is y = ¢ = /T = £2. At the points of tangency,

the slopes of the line and semicircle must be equal. For = 2 0, we must have

=2 = ;:E = =24]1=-x = 12:4{:1—:52} =

l==x

X .
frl=4 = 2'=% = zr=3/Sadsoy=2(}y5)=4/E

Theslupeuftheperpendlcularljmsegmemjs—- sn-a.nequanmufmehmsewmmy—-v’_—-a_;{::—-v"-] =

y=—3x+3V5+ 35 & y=-%1:r+ 5 s0e=+/5andan equation of the lower semicircle isy = 5 — /T — z=.

Thus, the shaded area 15

(2/5)5 r (2/5)WE
2[ [(\,-"E—!..-'l—zz)—ﬂz d;iz v@r—%vl—zz—%:ﬁn'lz—rj
{i] L [}
[ W5 1 1 ,( 2) 4]
=22t = =i T | — | = =] =2(0
L 5 5 2 +'5 5 (©)
[ 1 . .4 2 Lo f 2
=2|1 = =sin —_ =2 —sin —_
-3 (%) ()
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8 [1 FURTHER APPLICATIONS OF INTEGRATION

81 Arc Length

Ly=2:-5 = L= T+(dyfdz)de= [ T+ (2P de=+v5[3-(-1)]=4+5

The arc length can be calculated using the distance formula, since the curve is a line segment, so

L = [distance from (=1, =T) 10 (3,1)] = /B=(—1)E+ 1 = (-7 = vE =45
I y=sinz = dyfd.z =cosxr =+ 14 I{dyr"dr}l =1l4eosz S0l = _r‘: 1 4 cos’r dr == 38202,

Sy=z=—lnzr = dyfde=1=1z = 1+ (dyfdz)’ =14(1=1/z)". SoL= [ /T4 (1= 1/z) dr = 3.4467.

2

Lzr=,/y—y = d.rfdy:lf(ﬂv-"i]—l =2 l+{dzfdy]2=l+( =1].

o ]. 2
SDL:f l+(——l) dy == 3.6095.
1\/ 21_.-"'5

9. y=14+6"" = dyfde =97 = 14 (dy/dz)’ =1+81x

1 2 . _ W T gl B2 .
SDL:L \.-'l-l'-ﬂlzd.r:f H]”{ﬁd“} [du—'|+”1r.] =:_1'§[HJH] =ﬁ(82-.32—l}.

i u = 8ldx

1
2.9

]

1
1. p ;,r_?-{-n = Y =i =—

" 1 1 1 1 P B S
1+{yl‘=1+(1‘-5+IEI4J=I‘+—+ =(r‘+—.).au

2 2
L:f l+{yr}2d1=f
1 1

X 1, 1]° /8 1 1 1

—3 = |—x5" = — = —_——-— — - —_———

- 3 1z|, A3 "8 374

Bor=350-3) =5 -y = doifdy=g'" - 57" =

1'2+

e

2

L4 (defdy)’ =14+ du—d+ 407 = Ju+ 417 = (32 + 2072) . S0

q ’ . e a4 . .
L :j‘i‘{%yﬂu %y-lﬂ)dy :%[éy'{‘“ +2y1‘“][ =i[(3-2742-3) = (3-142.1)]

—ii-3) =38 =2

d gsecr t dyy? . .
15 y = In(secr) = —y:wztanz = 1+(_y) :l+lH.IIJI:PiE{JI1S|3
dr SeC T s
w4
L :j;"'fd'\..-'rsecz:r:d.rz nr"rd |sec x| dz = nr"r"ﬁeczd.r: [].Ill::l‘iEEI-l'-lHJII}]U

= In(v2 + 1) —In(1+0)= In[v"i+ 1)
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37 O CHAPTERE FURTHER APPLICATIONS OF INTEGRATION

1, 1 1 1 1, 1 1 1, 1 1 1 1%
My=-z-=1 = r-—— 14w =14(=2"-z4+—|=-P4+=+—=zz+— .
y=3% —zhe = y=z2-2 = 1+0) +(4I st=) s 1"ttt ==t

So
2 @ 2 1
L=[ /14y )Pde= =1+ —| dr = x4 — | dz
' B L \N2T T3
—1’+11.||2— 14 2 In2 —40) =3 4 tin2
= 4J.' 2 1| I— 2II 4 —4 EI'.I.
By=h(l=-z) = = ! (=2z) =
Y= I'II__'l—:.l:j
La (B o _l-2aatadar 142040 (4t
dx (1=z2)2 ™ (1 =ux2)2 T (l=xt)E T (1=
dyy' 142\ 142t 2 o 1 1
\/l+(E) = =2 —l_ﬂ——l-l'-l_lIz [ diwcisicans] _-1+T+1—I | peamial fractions].
1 1 1
HﬂL:]; (—.'l+1_4_—I+E)m‘.!'.r—|:—.I+|1||.'l+1:|—|n|l—J:|]1"u %+|n%—]_||%]_1]:|nﬂ_%_

ﬁ.y:%zz = dyj'd::::s == 1+{dyfd:s]j:1+rj. S0

T = tanf

L:f:lmd.rzz_ﬁ;vmdr [ symmetry | gi[ﬁv’H—f+§I:.{x+m}]; [a:_mbamuz]
=2[(}VZ+im(14+yI)) = (04 in1)] = 2+ In(1 +yT)

3. "" 1 From the figure, the length of the curve is slightly larger than the hypotenuse

of the tnangle formed by the points (1,2), {1, 12), and (2, 12). This length
1 is about /107 + 17 = 10, 50 we might estimate the length to be 10.
p=x+2* = y=2r+3 = 14+ =1+(2c+3%

0 ' So L= [ /14 (2z + 322)% dx = 10.0556.

B y=zxsinr = dyfdr=zeosz+ (sinz)(l) = 1+ {dyfd:s]j =14 (zeosx+ :.-sin:s]j. Let

f{z}:\,fl+{dyfdx:l2=‘fl+{zcm.z +ﬁi.||.r:l-2.TJ"-E'nL J' _f{z d‘s Since i = 10, ﬂkz—%—‘j:%. MNow

L Sw=H2[1(0) + 4/ (F) + 2 () + 4 () +2/(£) + 4 (¥) + (%)
+ 41 (%) +2/ (%) +4f (%) + f(27)]
Az 15498085

The value of the integral produced by a calculator is 15.374568 (to six decimal places).
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SECTION81 ARCLENGTH 0O 3m7

H.y:].ll{l-{-.ra} = dyfdr:ﬁ-ﬂrz = L:J?f{.r}da:,n‘h&r&f{z}:\!l+ﬂx”f{l+zi}2.

Since n = 10, Ag=2=0 —

5 Now

(=1

L == Sy = H2[£(0) 4 4(0.5) + 2F(1) + 4f(1.5) + 2f(2) + 4(2.5) + 2f(3)
+ 4(3.5) + 2f(4) + 47(4.5) + f(5)]
= 7.094570

The value of the integral produced by a caleulator is T.118819 (to six decimal places).

2 ja)let fir)=y=r T =zwithD < x <4

(b) The polvzon with one side 15 just the line segment joiming the 3

points (0, f{0)) = (0,0) and (4, f(4)) = (4,0), and its

length [, = 4.

The polygon with two sides joins the points {0, 0],

(2, f(2)) = (2,2 ¥'Z) and (4.0). Its length

]

Ly= \/{z-n}u (2¥2-0) + \/{4-2}2+ (0-2¥2) =2VT+ 2° = 6.43

Similarly, the inscribed polygon with four sides joins the points (0,0), (1, ¥/3), (2,2 ¥/2), (3.3), and (4. 0),

s0 its length

Li= 14 (¥3) + /14 2¥2- ¥3) +\/1+ (3-232) + VIF O~ T:50

ic) Using the arc length formula with % = z[i{-l - :s}‘”"zl[—lf]] +§1—x= ﬁ the length of the curve is

3(4 = x)2*
b= [ () we= [+ [ e

(d) According to a calculator, the length of the curve is L == 7.7988. The actual value is larger than any of the approximations

in part {b). This is always true, since any approximating straight line between two poinis on the curve 1s shorter than the

length of the curve between the two points.

Copyeight 3046 Conpoge Lemmiog. AB ights Reverves. Moy st b copind, scomm o dmphicate, o whole o . o b et ightn, s shind oty contnt sy b e s the ek e o mptts
Esbirrea rovars b decmacd that as wepy By affect the ovorall bermirg cupencece. Uagage Lcameng rescrves the nght 0 remens sckdtamal oot 2t 2z hine o vebusguent gt s icton regues i




378 O CHAPTERE FURTHER APPLICATIONS OF INTEGRATION

Hy=e = dyfde=¢" = 14 (dyfdz)’ = 1+&* =
- [ [ () i)
5 [m_m‘um ]*’z(m_|1.1+¢i4r—a)_(ﬁ_m1+lﬁ)
u [ =
=v"1+_£—'-|n{1+m}+zl-ﬁ+h.{1+v’§}:-.ﬁ_733651

An equivalent answer from a CAS is

=+/2 4 arctanh(/2/2) + v/€® 4 1 = arctanh(1/v/e* 4 1).

[P =1=2Y = y=(1=22P o

j_i =31 2;1}|;z{ 2 -1;1) =YL= Y o

2
(:—:) = z-z"ml:l - J:j"m'] == _ 1. Thus

1
L=afi T+ @ =T dz =4y« dr =4 lim [gfﬂ] =6.
t— i

3/ y=2:Y% = o =327 = 14 (y')? =14 92 The are lensth function with starting point Fa(1, 2) is

s(z) = [* VTF0ldt = [H{Hﬂt]“*“] [[1-!-—9:5 "‘“-mu’_]

B 1 T l=x
My=sin—trt T=2 = y' = =
1u"r1—-1'd 31 =22 W1 =a
1+{,]2_1+{1—I}2_1—I2+1—2I+I2_2—21_ 2(1 —x) _ 2
vi= 1=z — l = _l—Ij_{1+I}{1—I]_1+I

—

Vit = v'% Thus, the arc length function with starting point (0, 1) is given by
s(x) = f 1+ (L)) dt = f .”.—d.-, VZ[2vTHE), =2v2(VI+z =-1).

B flz) =t e = fz) =i =™ =
I+ [f' (@) =1+ (3" —e™) =1+ e —f+e™ = fe¥ + F+ 7 = (§* + ™) = [f(2)]". Thearc
length of the curve y = f(x) on the interval [a, b] is L = [* /T+ [ (@)Fdr = [ /@) dr = [* f(z) dz, which is
the area under the curve y = f(z) on the interval [a, b].

#1. The prey hits the ground wheny =0 = lﬂﬂ-—z =0 & r=45-180 = z=+/3100

since x must be positive. i’ = —%I = 14 {y’}” =1+ ﬁ!:s"!, s0 the distance traveled by the prey is

o T o . u= g,
=j: 1+EI d.r_f; \.-"l+u2{Tdu:| [du::&d.r]

L8 Luvi+u?+ tnfu+ vVItu?)] = L2VIT+ Lin(4+V1T)] =45 V1T + Lin(4+v1T) =209.1m
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SECTION 8.2 AREA OF A SURFACE OF REVOLUTION O 379

43. The sine wave has amplitude 1 and period 14, since it goes through two periods in a distance of 28 in., so its equation is

y = 1sin($£z) = sin(Zz). The width w of the flat metal sheet needed to make the panel is the arc length of the sine curve

from = = 0 to x = 28. We set up the integral to evaluate w using the arc length formula with %E = Zeos(Lx):

L=[y14[Eeos(Z2)] de =2 [}* /1 + [£ cos(£x)]" dr. This integral would be very difficult to evaluate exactly,

50 we use a CAS, and find that L = 29.36 inches.

$.y=[7VE-Tdt = dyfde=a"=1 [byFICI] = 1+ (dy/dz)’=1+(yF=-1)"=+" =

]

= [ VT dr = [* 2 da =§[I='f”] =2(32-1)=2 =124

8.2 Area of a Surface of Revolution

1@ (My=tanz = dyfdr=sec’s = ds=,/1+ (dyfde)’dr =1+ sectzdr. By(7), an integral for the
area of the surface obtained by rotating the curve about the z-axis is S = [ 2ryds = [[/* 27 tanz+/T+ sect 2 dr.
(1) By (8), an integral for the area of the surface obtained by rotating the curve about the y-axis is
S = [2rzds = [ 2221+ sec 2 d.

{b) (i) 10.5017 (i) 7.9353

3@ (Jy=e* = dyfde=e= (=20) = ds=/1+ (dyjds)’ de=/1+42e—>* dr,
By (7), S = [2nyds = [' 2xe=" /T4 dx?e=2 du.
(i) By (8), 5§ = fﬂ:rl.‘z:ds = jgl 2y 4 drle=222 dr | svenemetric about the pasis]

(b) (i) 11.0753  (ii) 3.9603

5 () (De=y+y® = defdy=1+3" = ds= /T3 (de/dyPdy=/T+(1+34") dy.
B'}"{?],S=fﬂrryds=f‘;2ny..-"l+i1+3yzjidy_
(ii) By (8), 5 = [2rzds = [ 2x(y+v*)/T+ (1 + 357 ) dy.

{b) (i) 85302 (i) 13.5134

Ly=x" = g =3r %0
S:J-ﬂjﬂ;ﬂ‘y 1+{y}zdz—ﬂﬂf0Iﬂvl+g‘ d.]:—'z' ldaq..-'i_du [u=1+9.r",du=3-ﬁzid:]

=z [3: W] = E(145VIE-)
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380 O CHAPTERE FURTHER APPLICATIONS OF INTEGRATION

9.;;2::-{-1 = y=+vr+l (fwl<€s<3andl £y <2) = ¢y =1/(2vVz+1). So

a 1 a
5:[ 27y 1+{y"]2d1::21'|'f V4l l+;da::2#f e+l ddr
o o Az + 1) o
3 17/4
p— o _— 'u=_-|.-+§_
_z#j; 1|.-"I+;dz_2#£ Vi du [du:d_r 3

Jd
9 [ 1732 eV
- 2,[ w] =273 ( — - DT) = %{1?\317 - 54/5).

M.y ZEM(%E] = y = —%rﬁn(%.ﬂ. S0

1+ %Hillz {%Il dx

S:f my l+{y']2dI=21'l'f cm{%r}
o o

1
_ 19 u=.'|i:|1|:-é.r]-,
_Z#JC 1+ qu® (2du) [du:{;m:[%:}d:]
1 1
:2#[ 4+u2duzzlﬂﬂ[§\,f4+uz+ﬂln(u+ 4+u2)]u
i)

=27[(3v5+2In(1 +v5)) = (04 2In2)] = x5+ 4:I'r|n(1 +2"‘G)
13 == %I{y‘! + E}sz = drfdy= %{yi + Ejlﬂfﬂy} =y v"m = 14 (defdy)* =1 +—y2{y2 +2)=(y* +1)~

S-ﬂ."in':i#ffy{y”-{ul]dy:ﬂrr[‘y +_:;,r] 4+2————]_£i"

12

S:LIAZ#IWJ.IZETEﬁuI 14 trde=2x A I%v"'ﬁl-l-_zd.:
16
#f (1 = 1)/ s [;;::"-
16

&
(u** = 4u**) du = n[gu"'f“ - gu’*’”] =n[(£-1024=%.64) = (.32 % .58)]

4

IJ
&

-"Ih B

02 = _ . a-ﬁ} — n{a'i'ﬂ- i.dnll‘.'ll — ?.'712.-

(3

1.z = /a2 =y? = drfdy = i(a® =)~ =2y) = =g/ /2l =y =

2 2

dz'\* Y’ a’ =y y a
1 u— =1 — —] —
+(d‘y) +u"‘—y" a”—y2+a2—y2 ﬂz_yj

ady = ﬂﬂa[y];“ = E:I'ra{% - ) = ma”.

af2
5= f 2w+ Sa? —yﬂyfl,_dy—ﬂrj;

Mote that this is 1 the surface area of a sphere of radius a, and the length of the interval y = 0to y = a2 is 1 the length of the

interval y = —atoy = a.
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SECTIONB.2 AREA OF ASURFACE OF REVOLUTION 0O 381
19, y:%.z:' = dyfdz:.rd' = l-I-I::dyl,n"dJ::Iz:l-i-IH = S:f; 231'{%:5"']\.-'1-4-.1:“&.:.
Let f(z) = 27" 1 + 2. Sincen = 10, Az = 2% = 1 Then

S = Sig = H2[f(0) + 4f(0.5) + 2f(1) + 4f(15) + 2(2) + 4£(2.5) +2f(3)
+ 4f(3.5) + 2/ (4) + 47(4.5) + (5]
== 1,230,507

The value of the integral produced by a calculator is approximately 1,227 192,

Hy=ze" = dyfdc=xze”+¢* = 1+ (dyfdc)’ =1+ (ze* + ") = S:fﬁl 2rxe™ /1 4 (ze® 4 e*)" dx.

Let f(x) = 2mze® /1 + (we* + e*)2. Since n = 10, Ar = 150 = L Then
§ = Si0 = 2L2[f(0) + 4(0.1) + 2/(0.2) + 4f(0.3) + 2f(0.4) + 45(0.5) + 2f(0.6)

+ 4f{0.7) + 2f(0.8) + 4F(0.9) + F(1)]
= 24.145807

The value of the integral produced by a caleulator is 24.144251 (to six decimal places).

Boy=1z = ds=/1+(dyfde) de=/1+ (=1 dr=/1+1/z'dz =

v 4 .
: 1 VETET Vi + 1
::':f i, 1+—dz_2#f er u—:-(%du] [1w =22, du = 2z dx]
i x e 1 u

4 T+ a2 VIl ‘
:#f #duzz“#[—$+ln(u+ l+uj)]
1 u u

1
:w[-$+ln{4+«£1?} +% (14 v’i]] = Z[1In(VIT+4) = 4ln(vVZ + 1) = VIT + 4V7]
Boy=radl<y<]l = y =3tandD< =<1
du = fxrdr

.‘:'u':fnli'.u‘:r 1+{3;2}2d1::2#f3v1+u5édu |:“=ﬂ_'r2’ :%fnﬂwl-{-uidu

i [or use CAS) "[ vy TFuf+ 1 hl{u+m ]ﬂ [ v"ﬁ+%|n{3+u"ﬁ}] =%[3m+lll|:3+\.""ﬁ]]

= | dy '\ =1 1 = JTT+1
. 5=12r wyll+ 2\ dr=2x =/l =—dr =27 E—+d:: Rather than trying 1o evaluate this
i dr - xt 1 a3
integral, note that +/z% + 1 > +/rt = x* for = = 0. Thus, if the area is finite,

,I' = ] Sf."l )
5=72x f d:}ﬂrf I—xd.: =2;'rf = dx. But we know that this integral diverges, so the area 5
1 T 1 T

is infinite.
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382 O CHAPTERE FURTHER APPLICATIONS OF INTEGRATION

29. Since a > 0, the curve 3ay” = x(a — =)° only has points with = > 0. !
[3.-.1.!,||2 >0 = zfa —.I:I-2 >0 = z>=0]
The curve i1s symmetric about the x-axis (since the equation is unchanged =

when y is replaced by =y). y = 0 when x = 0 or a, so the curve’s loop

extends from x =0toxr = a.

d d , d — z)[=2x -
- Gat) = Tla=2] = oy =r-damo)-)+la-2) = P=lazHBracd
dy {E—I}J{u—alj {u—z]jl[a—ﬁr}z 3a the last fraction | {{.l:—lr:l2
de) — 3Baly? 36a” z(a — x)? slfy | T 12ax
14 dy 2=1+u2—ﬁuz+912 _ 12&I+HH—GGI+Q‘I2 _ a® 4 Gar + 9c” _ I:r:i.+31':|2 for = £ 0.
dx 12ax 12ax 12arx 12ar 12ax
e * Vz(a- 3 “ (a= 3
{a]::'=f oryds =27 [ YE@ZT) a2t Idz=2#f @=0@t3 ,,
sl a v/ 3a 12ax o Ga
a 2
= %fﬂ (a® + 2ax = 32" )dx = %[ajz +ax” —:v:a:];I :%{a3+a3—a3] = % v = :rr%

Mote that we have rotated the top half of the loop about the x-axis. This generates the full surface.

(b) We must rotate the full loop about the y-axis, so we get double the area obtained by rotating the top half of the loop:

i i i a
- + 3 4w ; 2r : a5
5 =2-2#f rds = 4x 2 dr = I"'ul[ﬂ.+31'}da:=—f {a::l"u-l'-ﬁz"r ) e
W da Jo

il [i] LT 120z 2 \..-'3-[.: 0
_ 2 EM”2+EIH24=Enﬁ a2 4 u.,” er\,.-'— + ﬂz_ﬂ:lr\.-"i 28 o
v3a |3 i @ 3va 3 a 3 \3'5 3 15
_ 56w /3a’
- 45
z yj y (dy fdx) x dy b
14+ dy : —14 bt _ ba? 4 aly? _ ¥ + u"'bzil - I"!,r"uz} _ alt? 4+ 't — et et
4 = aly? aty? = ath? (1 — x2fa?) = b — 2B

_a'+ bx® = a’s? _ at = {GH - bzl.rz
- al = g2yd - at{a? = +7)

The ellipsoid’s surface area is twice the area generated by rotating the first-quadrant portion of the ellipse about the r-axis.

Thus,
: Va = -5-5 _ amb
Y B e P N 2 [
v ava® = at [y
4xb [V ad=pe - i 0 a' . _ifwu ayiaz=t®
= — ad -y [u = 1|.-'.n:! - E’fr] = s 4+ —sin (_)
a® Ju Var =62 Jaz_ 2 a2/ |,
dmh ayfad — b al m a*bsin=?! —'G-M
= E : [ Vﬂd_ﬂ'z{ﬂj_w]‘{"—ﬁin-l_] . b2+ I{.I!
a?ya? = b* 2 2 a Vo = b
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SECTION 8.2 AREA OF A SURFACE OF REVOLUTION O 383

(5

z 2
y x (dzfdy) y dr a“y
=—=] = —t tm_m= =& — =-=—-—
+ 5 a? b2 dy -~ Bx

s
nu| H

- d_.r 2_ - aty? _ qu_z +aly? _ b”'u:zlil— yj,!'bj} +aly? _ albt —a?b?y? 4 aty?
dy = b= a1 — y2fb*) aZbt = g2hy?
_ lbd' — b!yi +ﬂjyj _ bd - {bz — uu:.y'.!
T o=yt T BB —y2)

The oblate spheroid’s surface area is twice the area generated by rotating the first-quadrant portion of the ellipse about the
y-axis. Thus,

[ v’—-im
5= zfza-rz 1+ d'y:nlrrf 2= 32
—;,I'

4]"![ Vi = (b =a?)y? dy——f Vi 4 (af = b)) y2dy [since a > b]

T h2
by b d‘l‘.l!

dwa
=% ), VPl gmmm b=V
) by a2 =2
é#ﬂ[ VB ¥t +—1n[u+ﬁr’+u ]]
='t;|2"}%{[EII {ub]-i——lll{bv'n —bi+ab}] [U‘-{-—lll{b ]]}
_ dma aij'n!—b! EI bi,-'a!—zg+uir — 9rq? Drrab? I \fﬂ!—F-l-a
TN 2 2" = Y- b

33 The analogue of f{z]) in the derivation of {4) is now ¢ — f{=]), so

5= lim E 2# e - :I-] w14 [_f I::J:"jl-]J Ar = f 2:rr c —f{:}] 14 U'{I]]"! dr.

= SE

35. For the upper semicircle, f(z) = v72 = 22, f'(z) = —z/+/T% — ==. The surface area generated is

2

[ VA=) 14 =T ’ ) P —
fn:j;’lZ?r{r— = )1,'1+r2_zzﬂ=4#L (r— o )mdz
—_— " .-2 -
_4]"/; (m r|dr

. v 2
For the lower semicircle, f{z) = =/ = z%and f'(z) = ;.1.-"1 805y = 4ﬂf (“——z + r) dxr.
- o =

" ' r . .
Thus, the total area is 5 = 51 + Sa ZS#f (r—) 't.!1':3'.11‘[r2 sizl-l(i)] :Enr‘{ZEJ =4z .
0 r r

ferx

My=elemt? = o =15 L= =
2
1+{H}£—1+(| =2 ; -:fz} 1+lgf_%+_; -x:%‘_.:+%+%E-::(%£:u+%e-,;z}_

If we rotate the curve about the z-axis on the interval a < = < b, the resulting surface area is
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384 0O CHAPTERE FURTHER APPLICATIONS OF INTEGRATION
_ e T _ xf2 =z L xfe 1 e—Ei2 _ b oz f2 =z 22 ;
S=[ 2ay,/1+ () de= erfb +e }( +1 )dx_ﬂjﬁ{e + e~ %) dx, which is the same

as the volume obtained by rotating the curve i about the x-axis on the interval a < = < b, namely, V" == j;b y” dr.

i=1 - i
2

the area of a frustum of a cone. When () is not necessarily positive, the approximations y, = fx,) = f(z]) and
wier = f(ziet) = f(2?) must be replaced by i = |f(x:)] = |f(=7)] and yims = | f(zims)| = [f(x])]. Ths,

39. In the derivation of (4), we computed a typical contribution to the surface area to be 2x | Fi=1Fil.

27 y%-i-y. |Pic1 B = 27 | f(=0)] /1 + [f"(=])]2 Az, Continuing with the rest of the derivation as before,

we obtain § = [* 2= | f(=)| I+ [P ()P de.

8.3 Applications to Physics and Engineering

1. The weight density of water is § = 62.5 lb/fft*,
(a) P = dd = (62.5 Ib/it*)(3 ft) = 187.5 Ib/ft”
(b) F = PA = (187.5 Ib/ft™)(5 ft)(2 ft) = 1875 Ib. (A is the area of the bottom of the tank.)
{c) As in Example 1, the area of the ith strip is 2 { Ax) and the pressure is &d = dx. Thus,
F = [} 6x-2dx =~ (62.5)(2) J§ zdx = 125[42], = 125(3) = 562.5 Ib.

In Exercises 3=9, n i the number of subintervals of length A and =7 is a sample point in the dh subinterval [xi—1, =]

3. Setup a vertical z-axis as shown, with = = 0 at the water’s surface and x increasing in the 70
downward direction. Then the area of the ith rectangular strip is 2 A and the pressure on w.=2 ELI
the strip is §=7 (where § = 62.5 lb/ft*). Thus, the hydrostatic force on the strip is 8 fi &
dx - 2 Ax and the total hydrostatic force == i dx} - 2 Az The total force ln

-l .
F=H1.'_.3Lf;&;:-zaz=j bz 2dr =25 [} xdr=28[}"]," = 5(121 = 9) = 1125 = 7000 Ib

-

5. Setup a coordinate system as shown. Then the area of the ith rectangular strip is
2,/B%F = (g7 )% Ay. The pressure on the strip is §d; = pg(12 — y7), so the

hydrostatic force on the strip is pg(12 =y ) 24/64 = (g7 )* Ay and the total

2

I

m
|
hydrostatic force on the plate = Epg{l?—yf}?w"ﬁ-i—l{y”z Ay, |
The total force F = Iun qulE ¥ 261 = (W) Ay = [, pa(12 = ) 2 /64 = 2 dy
=2lpg-lﬂﬂh\fﬁ4—y2dy—2lpgjzﬂ yu,.-"ﬁél—yidy.

The second integral is 0 because the integrand is an odd function. The first integral is the area of a semicircular disk with

radius 8. Thus, F = 24pg (+7(8)") = T68xpg = T687(1000)(9.8) = 2.36 x 107 N.
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SECTION 8.3 APPLICATIONS TO PHYSICS AND ENGINEERING [0 385

T. Set up a vertical x-axis as shown. Then the area of the ith rectangular strip is 2m 1n
(2 -—= :5:') Az |By similar triangles, == g, souy =2 = —=xf. 1w
V3 ! 2 V3 V3 2m Tm
The pressure on the strip is pgr], so the hydrostatic force on the sirip is 5
1.
paE; (2 - i.r") Az and the hydrostatic force on the plate == i pox; (2 -2 ;") Ax.
I ﬁ ' i1 ’ \,ﬁ ' *
The total force
=t o1 o) 3w [ ome(2 g temrm [ (- )
= hm g, - —=u, T = ik d — Tr—=-—=
""l-'--llr:.| ' V3 i g P ‘u"I'_
_pq[a:‘— .r"] =pg[(3=2)=0] = pyg = 1000- 9.8 = 9.8 % 10° N
9. Set up a vertical z-axis as shown. Then the area of the ith rectangular strip is ,"’ an 0
wi Az = (44 2+ $x{) Az. The pressure on the strip is §(z] — 1), so the / R L ,LG
hydrostatic force on the strip is §(x] = 1){4 + 327) Az and the hydrostatic £ o AN 1
n 21 .
force on the plate == 3~ d(x} = 1)(4 + $27) Ax. The total force
]
— ¥ ; 4 — F 3 B
F_“IE',;,_ I.Elﬁl[.r: -1)(4+ 5-171]31—]., r=1)(44 qr)dr=4d [ (32" + 5r=4)dr
=d[4s + 42" —4a], =d[(12412-12) = ($ + 4 —4)] =4(%2) =889 1b [d = 62.5]
11. Set up a vertical x-axis as shown. Then the area of the ith rectangular strip is 2a Ly

v, % ‘ \ _« /1.
= — = =[Ph = £7). X
h—z; 2R 7y (2h = ) 1,

The pressure on the strip is 27, so the hydrostatic force on the plate

;{Eh — ]} Az By similar triangles,
L}

sz E dx] —{Eh — z]) A, The total force

p=]

F= lim E dx] —I:Eh —rJAr=4§— fﬂ o(2h = z)dx = ﬂfﬂh (2hx = .1:2] dr

Fi—n ﬂ ,

ad ) abd { 2h* o
< = B0 - ) = () - g
L (!

h 3
] w, .o
13. By similar triangles, —— = — = wy = —& The area of the ith x
¥ EI 41,."% :E:' i 1,-"'5 4\? & m
rectangular strip is 2t is pg (43 = z7) '
‘l.-"'ii ’ 1- .1':,'
a3 A3 '
_f pg —I)E—dx_ﬂpgf IdI—Eﬂf de 4
V3 (" V3 Ja
VI Zpg 443 2pg
= dpg[ ] = 22 [0 = 192pg = =22 54 .3 3 = 192pg — 12809 = 64
pa[=* ], Sﬁ[ lo Zp: 33 Py Py Py

7= 64(B40)(9.8) = 5.27 x 10° N
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386 O CHAPTERE FURTHER APPLICATIONS OF INTEGRATION

15. (a) The top of the cube has depthd = 1 m — 20 em = 80 em = 0.8 m.
F = pgdA = (1000)(9.8)(0.8)(0.2)* = 313.6 = 314 N
i) The area of a strip is 0.2 Az and the pressure on it is pgx] .
F = [ pgr(0.2)de = 0.2pg[$2%] |, = (0.20g)(0.18) = 0.036pg = 0.036(1000)(9.5) = 352.5 = 353 N

17. (a) The area of a strip is 20 Ax and the pressure on it is da;. 4l
F= [ 6220 dr = 208[2°]) =206 - £ = 004 201t 91
= B0(62.5) = 5625 Ib = 5.63 = 107 Ib A

(b) F = [ 6x20dr = 204[32°]] = 204 - 3 = 8104 = 810(62.5) = 50,625 Ib = 5.06 x 10° Ib.

{c) For the first 3 fi, the length of the side is constant at 40 ft. For 3 < = < 9, we can use similar triangles to find the length a:

a O =ux B=ux
E_T = a=40- T
F:jﬂ“‘rs;max+j“’az{4n]sz 406[22*]5 + 205 [2(9x — %) dr = 1808 + 24[32* - 127]]

= 1804 + 2432 - 243) — (3 - 9)] = 1804 + 6004 = TE0S = TEO(62.5) = 48,750 Ib = 4.88 x 10* Ib

(d) For any right triangle with hypotenuse on the bottom, 0
Hinﬂ‘—ﬂ_z = 40 !
af -] B af —4
hypotenuse = Axcsefl = Ax 4DE-+E = ;ﬂgﬁx_ ' &
= Ay
g Aresc il = 14‘?—}&1
= [ 6220 338 4 = £(20 /3004 [4:%]] y {

= 1 - 10409 4(81 — 9) = 303,356 lb = 3.03 x 10° Ib

19. From Exercise 18, we have F = fnb pgrw(x)dr = [} 64rw(x)dxr. From the table, we see that Az = 0.4, so using
Simpson’s Rule to estimate F, we get
Fr=64% L2 [7.0w(7.0) + 4(7-4)uw(7.4) + 2(7.8)w(7.8) + 4(8.2)w(8.2) + 2(R.6)w(8.6) + 4(9.0)w(9.0) + 9.4w(9.4)]
= L£L[7(1.2) + 29.6(1.8) + 15.6(2.9) + 32.8(3.8) + 17.2(3.6) + 36(4.2) + 9.4(4.4)]

= LL(486.04) = 4148 1b

2
M. The moment M of the system about the origin is M = E gy = i) 4 mare = 6- 104 9-30 = 330

2
The mass mn of the system ism = 3 my = my +my =649 =15

vl

The center of mass of the system is T = M/m = 228 =22,

3 a
23 Themassism =3 mi =4+ 2 4+ 4 = 10. The moment about the z-axis is Mz = 3 g = 4(=3) + 2(1) + 4(5) =

-1 -]

a
The moment about the y-axis is M, = 3 myr; = 4(2) + 2{=3) 4 4(3) = 14 The center of mass is
-

=7 = (M M A ):(%%) =(14,1).

Copyeight 3046 Conpoge Lemmiog. AB ights Reverves. Moy st b copind, scomm o dmphicate, o whole o . o b et ightn, s shind oty contnt sy b e s the ek e o mptts
Esbirrea rovars b decmacd that as wepy By affect the ovorall bermirg cupencece. Uagage Lcameng rescrves the nght 0 remens sckdtamal oot 2t 2z hine o vebusguent gt s icton regues i




SECTION 8.3 APPLICATIONS TO PHYSICS AND ENGINEERING O 387

25 The region in the figure is “nght-heavy™ and “bottom-heavy,” so we know that !

ba

T >0.5and 7 < 1, and we might guess that T = 0.Tand 7 = 0.7. y=12x

ziszEIdzz[Iz]ézl—Dzl. 1 =1

- 1 _ a 1_ X7
=g [y =(2x)dr = 1 [327], = %. w3

] w=0 g v

F= 4 J7 420 de = [ 2 de =[]} = &

Thus, the centroid is (Z,7) = (5. 5).

i

27. The region in the figure 1s “nght-heavy™ and “bottom-heavy,” so we know Y /
T >0.5and § < 1, and we might guess that ¥ = 0.6 and iy = 0.9,

A= ‘-_:Eld:E:[f.':]i; =e=1

— 1 .
T =g Jy we*dr=I5[ze” — €]y [by pans] ) ,.--"-I:T._”
=ZHb-(-1==Z+ o k=1
— 1 YR — L1[L2 1 -
7=%0 2() dr = 15 - 1 [7]y = e (e - 1) = =1 5 ! "
Thus, the centroid is (%,7) = (5. <42 ) = (0.58,0.93).
H:i:f.;{.rl‘rz—rjjd-rz[élaﬂ-‘jf] %—%}—D:i.

f (= = ]d:s—'if e = ) de

:3[%_:.'-!2_%:4] —3(2-1) =3(2)=2.

o B 4
g=4if %[{Imjﬂ {;2}1] =3(4) [z — ") dx >
=3[ - =", =253 =3H) =%

N A= "Iul::l.{_'h z =sinz)dr = [sinz + Lmr]ﬂ‘“ =ZT=1 !
x4 )= (0.27.0.60)
T=A"" _ﬁ._-l xfeos r — sin ) dr v=giny
=4 [J:I[h'i.ll T4 cosx) 4 cosT — sinr]:"rd' [integration by parts] S

=:4-'(%ﬁ-11=%-

- jm Fd
=A" [T

; 1
7] %{u.mj r =sin® r)dr = ﬁjﬂ cos2rdr = ﬁ[ﬁmﬁr] o =

T2 =4 1

Thus, the centroid 15 (Z,5) = (m m

) == (0.27, 0.60).
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388 O CHAPTERE FURTHER APPLICATIONS OF INTEGRATION

33. The curves intersect when2 =y =¢y° < 0=y " +y—-2 <= 'L‘ =yt
O0=(y+2)(y=1) & y==2ary=1 1 B o1
¥ =153
A=[L2-y=y)dy=[y- 2= 5], =1 (-) =2 i N &
F=g 32wl -V ldy=3-3 [ 4-dy+y' —y')dy -2t
x+y=12

=ilw-2+ 3t -l = B - ()] =%

9=t

Je

=u[y2_%yx_% 4]1-2=%{1I

(5=

Thus, the centroid 15 (Z.7) = (3. —3

35. The quarter-circle has equation y = +/4¢ = =2 for 0l < = < 4 and the line has equation y = =2,

=1a4)*+24) =dr+E8=4(r+2).s0m=pA =647 +2) = 24(x + 2).
M =p [ [{m -{—zjldz_zpjn{lﬁ-; — 4)dr = 1(6)[12¢ - 227]} =3(48 - &) =350,

My=p[iz[VTE=2% = (=2)]dz =p [ 2/ T6 =2 dz + p [ 2zdr = E[—%{lﬁ -I?}“f'*‘]: + E[IH]:

=6(0+ Z) + 6(16) = 224.

My 224 28 —_ M; &0 10
— o = and = —= = .
Uy 24(m+2) 3(x4+2) m 4x+2) 3IHr4+2)

=~ (1.82,0.65).

28
Thus, the center of mass is (3{,1. +2)" 3w +2])

idd=depree lerms
drop out

WA= [ [(* =z)= (" = 1)]de = [ (1=2")dz

=2_fﬂ1{1 - ") dx =2[:r:.— %mz]; = 2{%] =3

E:i_r_ljr{.ra—::—xg+1]d.r:%f_ll{.rd'—rj—1:x+.r}dz

= %f_lll:z" Al % . ELII[.I" - xj}d.r

o=

_ 3 a _
=3[t - 3] = 3(-F) =-%
F=g 3l =x) = (2" = 1) dr =3+ 3 [1, (e = 20" 4 2¥ =" 4 20" < 1) dlx
=2.2[ /(" =32 437 — 1)dr = }[2a" - 227 42 —a] = 3(-H) =-£

Thus, the centroid is (£.7) = (-2, —3).
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SECTION 8.3 APPLICATIONS TO PHYSICS AND ENGINEERING O 389

39, Choose x- and y-axes so that the base (one side of the triangle) lies along b
the r-axis with the other vertex along the positive y-axis as shown. From N

v+ by =he

genmetry, we know the medians intersect at a point % of the way from each ay + by = ab

vertex (along the median) to the opposite side. The median from B goes to A

(A ey A

the midpoint (4(a + ), 0) of side AC, so the point of intersection of the
medians 15 {i- : %{:ﬂ-{‘- ), %b} = {%[ﬂ + ), il-b]
This can also be verified by finding the equations of two medians, and solving them simultaneously to find their point of

intersection. Now let us compute the location of the centroid of the triangle. The area is A = J{e —a)b.

E:%[fr-g[u—z]d.r-i-j:;-g{c—:}dr == [bf (ar —2*)dzx + = f {cz-z}d.r]

_ i[luz _ Lfa]“ L ] _ L[_lua . 143] N i[lca _ lca]
i 3 [i]

Aa|2 3 Ac| 2 Aa| 2 3 Ac| 2 3
2 —a® 2 ot 1 o > a4+ c
_a:—al_l- 6 +r:{:c—u.].E 3[:—4][E —a)= 3

RN AT : “1{b :
and y_jf: E(;(ﬂ-r}) d"-"“‘ﬂ E(;{E-I}) d'r:|
= iFi ﬂ{g —25;54-—:52:]-{{.1:-[\- b— c{fﬂ - 2pr 4 Iz]d.I
~ A 27 J, 2c2

_ 1 b ! ar? L b ] " 1_aye
_—F[a::— +3r]ﬂ+F[EI-E +—§z]n

Al
:i bz {_ﬂ +a -lﬂa]+i E] = {_ﬂ'+f} — 2 _{:f-ﬂ}b2=£
A 247 3 2l (e — a)b & 3
Thus, the centroud is (Z,y) = (E__:E 2) as claimed.

Remarks: Actually the computation of i is all that is needed. By considering each side of the triangle in turn to be the base,
we see that the centroid is £ of the way from each side to the opposite vertex and must therefore be the intersection of the
medians.

The computation of 7 in this problem (and many others) can be ¥
simplified by using horizontal rather than vertical approximating rectangles.
If the length of a thin rectangle at coordimate y is £{y), then its area is

£y) Ay, its mass is pf(y) Ay, and its moment about the z-axis is

AM: = pyfy) Ay. Thus, } v I

M:=[pyfly)dy and F= % = %fyﬂiu]ldy

C=i

In this problem, £(y) = (b — y) by similar trangles, so
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390 O CHAPTERE FURTHER APPLICATIONS OF INTEGRATION

41.

471.

_ l pe=—a
=

| e

2
——ulb=y)dy = bgfn[bﬂ y }dy—b—g[gbyz Wh=p5=

Notice that only one integral is needed when this method is used.

Divide the lamina into two triangles and one rectangle with respective masses of 2, 2 and 4, so that the total mass is 8. Using

the result of Exercise 39, the triangles have centroids (=1, %} and (1. %] The centroid of the rectangle (its center) is (0, = ).

M. 1 2 ;
So, using Formulas Sand 7, we have § = —= = = 3 mup = £[2(3) +2(3) + 4(=3)] = (§) = F.and T =0,
-

since the lamina is symmetric about the line x = 0. Thus, the centroid is (Z,7) = (0, 5 ).

Jilex +d) f(x) dz = [} ex f(z) dx + [, df (x) dx = ¢ [} x f(z) dz +d [} f(z)dz=cTA+d [, f(x)dx [by(8)]
=z [} f(z)dz +d [} f(x)dz = (T +d) [, f(z) dz

A cone of height f and radius r can be generated by rotating a right tnangle -"

about one of its legs as shown. By Exercise 39, T = Jr, so by the Theorem of

Pappus, the volume of the cone is i

"= Ad = (} - base - height) - (22T) = 3rh- 22 (3r) = %‘.ﬂ‘rﬂh. =

HU

The curve ( is the quarter-circle y = /16 = 2%, 0 < x < 4 Its length L is (27 - 4) =2x.

2
. - 16
Nowy' = L(16 = £21=1E[ 2 =_I 1 "t =1 o —
owy' = z( ) (—2x) V16 — 22 = 1+@) +1ﬁ—.r“ -z
4
ds = /1 4 dr = ——dr, 50
) W16 = 2

E= 1 rds = L ’ 4x(16 = :52]-”211: = —[-[1IEi 2}1'&] = |[l]+ 1) = = and
L I Jy 0 T

1 1 4 4 4 4 2 4 2 B
v=— | yds = — Ulﬁ—f-—d:s:—f d.r:—[r]ﬂ:;{d-ﬂ}:;.mm,ﬂwcentrmd

L 2x Jo 3 16 = 2 2x fa T

B
is (; %) Mote that the centroid does not lie on the curve, but does lie on the line y = =, as expected, due to the symmetry
of the curve.

. The circle has arc length (circumference) L = 2ar. As in Example 7, the distance traveled by the centroid during a rotation is

d = 2x . Therefore, by the Second Theorem of Pappus, the surface area is
5 = Ld = (2xr)(2xR) = 4x’rR

. Suppose the region lies between two curves y = fix) and y = g(x) where f(x) > g{x), as illustrated in Figure 13.

Choose points x; with a = xg < x1 < - -+ < 1o = band choose =} to be the midpoint of the ith subinterval; that is,

x =T = §(xi-1 + x:). Then the centroid of the ith approximating rectangle R is its center Oy = (T, $[f(Z:) + g(=:)]).
lis area is [f(Zi) — g(F:i)] Az, so its mass is

pLI(E) = 9(Fi)] Ax. Thus, M, (Ry) = plf(F.) = 9(T)] Az - Fi = 6%, [[(Fi) = 9(F:)] Az and
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SECTIOME.4 APPLICATIONS TO ECONOMICS ANDBIOLOGY O 391
Mo(R) = plf(F) = o(F:)] Az - 3[f(F:) + 9(F)] = p- 5 [/(F)" = 9(=:)°] A Summing over i and taking the limit
asn — oo, we get My = lim ¥, o [f(%) = g(F1)] Az = p [ z[f () = g(=)] dr and
Me = lim ¥, p- 2[f(F) - o(@)'] Ax = p [[ }[f(2)* - 9(2)"] d=

My _ M,
e - P.’i

h ]
=5 [ W@ - sas ans r=%=£=ﬁ£ /(@) - o(a)’] da

pA

Thus, T =

84 Applications to Economics and Biology

1. By the Net Change Theorem, C(4000) = C(0) = [} C'(z)dz =
C(4000) = 18,000 + [;"**(0.82 = 0.000 03z 4 0.000 000 0037) dx
] LTI

= 18,000 + [0.82x — 0.000015z" + 0.000 000 001=*] ™ = 18,000 + 3104 = $21,104

1. By the Net Change Theorem, C(50) — C{0) = f:n{l}.ﬁ + 0.008z)dr =

C(50) = 100 + [0.6x + 0.004z”])" = 100 + (40 — 0) = 140, or $140,000. Similarly,

C(100) = C(50) = [0.62 + 0.004z°] 1" = 100 = 40 = 60, or $60,000.
S plz)=10 = :—:%:1{] = r+8=4 = =13T. m""
" i . SON=UmeT
- _ _ Al COMSUMme
Consumer surplus = ; [p{.r}—lﬂ]dm_f (— 10 | sorplns
= [4501n (z + 8) = 10z]; = (4501n45 = 370) — 4501n 8 ol
. ——
=4501n(42) = 370 ~ §407.25 T T

L P=ps(z) = 625=1254+0002r" = 500=zs' = = =500" = =z=3500
Producer surplus = [**[P = pg(z)]dz = [F*[625 = (125 + 0.0022%)] dz = [[** (500 = ghz2?) dr
= [500z = w52*] 2™ = 500% — 2 (500°) =~ $166,666.67
9. (a) Demand function p(r) = supply function ps(x) & 2284=18r=27r+574 < 1Tl=45z &
xr=42 [3.8 thousand]. p(3.8) = 228.4 = 15(3.8) = 160. The market for the stereos is in equilibrium when the
quantity is 3300 and the price is $160.

(b) Consumer surplus = [ [p() — 160]dz = [;""(228.4 — 18z — 160) dx = [} "(68.4 - 18x)dx
= [63.4.: - 9;”] jﬂ = 68.4(3.8) — 9(3.8)* = 129.96
Producer surplus = [[**[160 = ps(z)] dz = [**[160 = (27x + 57.4)]dx = [*(102.6 — 27x) dx
= [1112_13.: - 13.5;”]2'“ = 102.6(3.8) — 13.5(3.8)* = 194.94

Thus, the maximum total surplus for the stereos is 12996 4 194.94 = 324.9, or $324,900.
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392 O CHAPTERE FURTHER APPLICATIONS OF INTEGRATION

R0, 000e==/5000
1. P[:I:] = W =16 = =z =3I727.04
=5 t

CONSUIMET ?il.LIT.IIIJﬁ

Consumer surplus = [, [p(z) = 16] dz = $37,753

t {=3727 1)

[ AHH)

13. f(8) = f(4) = [, f(t)dt = [ VIdt= [;.-;’*ﬂ]: = (16 /2 = 8) == $9.75 million

15. Future value = [ f(t) "7~ dt = [V 500004 062(5=1) gy = 50O [7 004 037200021 gy

=iz 6
— H[Jﬂﬂj? LUATZ=002R 4y gnnn 0872 f; =02 gy o 0,872 e .
=0.022 |,

0.377
— 800047 {E-n_nz

0022 — 1) = 865,230.48

b =kl B
—k x A 1=k 1=k
1. N = lr " dr=A = b - .
£ : [-k + l]n 1=k { “ :.
b e
Slmllarly,L Ar'=Fdr=A ﬁ] == (5= = a*=*).

[, A@=RIE a0 = B =
= ?‘[0 Ax dx = [,”.{:1 _ k}]{bj-k — u]-k} = {2 _ k}{bj_k _ u:"'k:l'

xPR' _ x(4000)(0.008)"

19, F = = 1.19 x 10=* em?®
Bl o) 9 X 107 emYs

. From (3), F = A _ 8 here

j‘u (1) dt - wr

1w LN 1 [X o inbegralmg
I= te”  dl = | —— =06 =1 = e (=Te=% 4 1
6(0.36 0.108
Thus, F = (036) _ 7z 0.1099 L/s or 6.594 L/min.

20(1 = Te-%t) = 1 =Te-t

23. Asin Example 2, we will estimate the cardiac output using Simpson’s Rule with At = (16 = 0)/8 = 2.
fﬂm c[t] df == %[c{l]} + 41:{2} + 2{:{4} + -'icl:ﬁ'_l -+ EC{E} + 41:{1[!] + 2{:{12] + 4{.‘{14] + c{lﬂ]]
= 2[0 + 4(6.1) + 2(7.4) + 4(6.7) + 2(5.4) + 4(4.1) + 2(3.0) + 4(2.1) + 1.5]
= %—{:1{]9.1] =T72.73 mg-sL

Therefore, F & = = —imm 2 0.0962 L/s or 5.77 L/min.
273 1273
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SECTIONES PROBABILTY 0O 393

8.5 Probability

. (a) f’ﬂ‘m fix)dx is the probability that a randomly chosen tire will have a lifetime between 30,000 and 40,000 miles.
b f;:,o-m Fiz) dx is the probability that a randomly chosen tire will have a lifetime of at least 25,000 miles.

3. (a) In general, we must satisfy the two conditions that are mentioned before Example 1 —namely, (1) f{z) = 0 for all =, and
@) [Z_ flzr)de=1For0 <z <1, f{z) =30z (1 — z)* = Dand f(x) = 0 for all other values of =, so f(x) = 0 for

all . Also,
Jo flx)de = [y 302%(1 = 2)* de = [ 302°(1 = 2z 4 2”) dr = [ (302" = 602" + 302") dx

= [1uxﬂ-15z“+ﬁx=‘];=1n-15+ﬁ=1

Therefore, f is a probability density function.

] 1T

(b) P(X < 2) = [ f()de = [M*300*(1 = ) dr = [102® = 150 4 62°] ) = 20 = 224 8 17

5 (a) In general, we must satisfy the two conditions that are mentioned before Example 1—namely, (1) f(x) = 0 for all =

and (2) J'_mu flx)dz =1 If ¢ = 0, then f{x) = 0, so condition (1) s satisfied. For condition {2), we see that

[ o [ i

ne "
jr ;2 dr = lim f - —dx = ¢ lim [l‘,.u.ll-l I]::' = ¢ lim tan~" ¢ = r_'(
s l#+r o 14+ t—wis Emsox

ral =

)

(£ F

Similarly, fxrﬂﬂmc{;), s f’: e =2e(5) =er.

Since ex must equal 1, we must have ¢ = 1 /7 so that f is a probability density function.

1 1
lﬂ'rr 2 1 2 1 24w 1
h) P{=1 < X <1)= dr = = dr = =[tan™" :-(--{]):-
(b) P{=1 <X <1) j;11+-1:2 ﬂﬁl.{._fﬂ “[u.n r]ﬂ -\ 3

T. (a) In general, we must satisfy the two conditions that are mentioned before Example 1—namely, (1) f(x) = 0 for all =

and (2) [ fx)dz = 1. Since f(z) = 0or f(x) = 0.1, condition (1) is satisfied. For condition (2), we see that

o flz)de= f 0.1ldr = [m.r]ﬂ = 1. Thus, f{x) is a probability density function for the spinner’s values.
(b) Since all the numbers between 0 and 10 are equally likely to be selected, we expect the mean o be halfivay between the
endpoints of the interval; that is, z = 5.
p= [T xf(z)dr = f‘;ﬂ =(0.1) dz = [ﬁzz]:ﬂ = % =15, asexpected.
Jim [LiePa=g = fim [H=5e =4 =

L]

9. We need to find msothat [ f{t)dt =3 =

"”""5]=% = e‘""‘rz'=% = —m,-"ﬁ:l.u% = m=—5|.u%=-5h12253.4?mm.

(=1)(0—e
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334 O CHAPTERE FURTHER APPLICATIONS OF INTEGRATION

it & <0

0
11. (a) An exponential density function with p = 1.61s f(t) = { L=th6 £ >0
= if t =

The probability that a customer waits less than a second is
1
P(X <1)= [} f(t)dt = [} re=/ "0t = [-e"ﬂ-ﬁ]“ = —e~1/16 4 ] 0,465,

i) The probability that a customer waits more than 3 seconds is

PX >3)= [7 f(@)dt = lim [7 f()dt = lim [~e=0]" = lim (<e=/10 4 e70/10) = e < 0153,
Or; Calculate 1 — j‘j‘ F(t) dt.
{c) We want to find & such that P{X > b) = 0.05. From part (b), P(X > b) = =% Solving e=/% = 0.05 gives us
—£ =005 = b=-16In0.05= 4.79 seconds.

Or: Solve [ f(t)dt = 0.95 for b.

ot f0<t<40
13.(a) ft) = g5 — ot f4D <t <D

0 otherwise
!!2 40 t !Q 1]
P(30 < T < 60) = fj[t]d! fﬁ—d +fm —-—)d¢=[m]m+ E'ﬁ]w
- E_ﬁ) (ﬁ" 3Gm)_(ﬂ_@)=_ﬂ+lzﬂ
3200 20 3200 3200 32

The probability that the amount of REM sleep is between 30 and 60 minutes is 32 = 50.4%.

o [0 i) () =] -

_ 64000 (6400 _ 5120001 _ (1600 _ 64,000 __334,0[::1
~ 1800 10 4800 10 4800 )~ ~ 4800

+ 120 =40

The mean amount of REM sleep is 40 minutes.

0

15. P(X = 10) :f (= =9.4)*

1
- dx. To avoid the improper integral we approximate it by the integral from
o 423 “P( 7.42° ) prope PP by

100 2
1 (x —94) }
10 to 100, Thi X > 10) = ———— | dr = 0.443 (using a calculator or com T 1o estimate

us, PX 2 10) fm 122 F‘”’( 242 (using pute

the integral), so about 44 percent of the households throw out at least 10 Ib of paper a week.

Newe: We can't evaluate 1 — P(0 < X < 10) for this problem since a significant amount of area lies to the left of X = 0.

1 (x—112)*
e = —————
8+/2x 2-8

integral), so there is about a 6.68% chance that a randomly chosen vehicle is traveling at a legal speed.

100
17, (a) P(0 < X < 100) = f ) d == [LOGGS (using a calculator or computer to estimate the
o
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SECTIONES PROBABILITY O 385

o0 2 o
(b) P{X = 125]-=f = ! ex —%)dx:j f(z) dx. In this case, we could use a calculator or computer
125 ) :

1 2:
to estimate either 125 j[::} drorl= F(z)dx. Both are approximately 010521, so about 5.21% of the motorists are
targeted.

e

= U\"'I'_

19 P[F—Zn'gxiiy+2d}=f ( [IE::J} )d.r Hubstnmngt——ﬂanddt—id.rg,nesus
H

2 2
1 -:’I,FE 1 f -t’fﬂ
aal) = — et == 0.9545.
f_zdm" (ed)= 5=/ ,°

rre=9 S for - > 0. Next,

- 1 e
f p{r]dr—f —f Temtrl%e g = —_ ].I]'.Ilf e g
= ag = fy

By using parts, tables, or a CAS , we find that [ e dr = (™ /b) (072 = 2bx 4 2). (%)

2. (a) Firstp(r) = é

a
Mext, we use (+) (with b = =2/aq) and I"Hospital's Rule to get i;, [%{-2]] = 1. This satisfies the second condition for
aﬂ —

a function to be a probability density function.

. 1 r 4 2r 2 2
ib) Uill'lgl HOSPI[H' s Rule, E I'IEI-';: m = EJ—IE;; W E; lim W =

To find the maximum of p, we differentiate:

)= = = [rze-wau(_l) +E-2!!an{2r}] _ ée-zrhn{zr](_é " l)

g
Flirj=0 & r=0orl=— & r=ao [as == 5.59 x 10~ m].
L]
¢ (r) changes from positive to negative at r = agp, 50 p(r) has its maximum value at ¥ = ao

ic) It is fairly difficult to find a viewing rectangle, but knowing the maximum L 1

value from part (b) helps.

4 2 =By fog 4 -
ap) = ape = =~ fx 9684 098979
pla) = = o

With a maximum of nearly 10 billion and a total area under the curve of 1,

Rl
we know that the “hump™ in the graph must be extremely narrow.

id) P(r) = f ' %sze-h‘hﬂ ds = Pldag) = f - f;ha”e‘”’f“ﬂ ds. Using (+) from part (a) [with b= —2/ag],
o o

p=2sfan ¢ 4 4 s _ o Lgze=® —
a7 | 2° +—s+2}] =3 _—)[e (644 16 +2) — 1(2)] = — (82 2)

=1=41e~" == 0.986

Plaan) = 5| S
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396 O CHAPTERE FURTHER APPLICATIONS OF INTEGRATION

= 4 i ;
(e)p= f rp(r)dr = — lim f re=2"/% gr Integrating by pants three times or using a CAS, we find that
- iy Tt

o0

. 2
f;“e‘" dr = :—‘[bﬂzx = 3b%z" 4 6bxr = 6). So with b = =— we use I"Hospital’s Rule, and get
Lidi}

EXERCISES

b
d . d
Ly=4z-1*"" = d—”:s{:—ljlﬂ” = 1+(d—y} =1+ 36(x — 1) = 36z — 35. Thus,
4. I

L=['Viox —35dr = [ E (L du) [d“::g“.’_“ﬁ'

u = J6dr
= %[ w] = &(109,/109 — 1)
a -1 13, 1 =l dx R ..
3 12x = 4™ 4+ 3y = T=3y + 3 = E:y—:y =

day* .
Lo (F) =revt o e dt =t et = B Thes

' a
sz {y2+ %y'i]? f |E|f 41 -zl dy =/ Ey +1 -z] dy = [%y;;_ %H-l]l
! 1

4
(x4 1)

For0=z=3 L= Jrﬂ.fl+{y}ﬂd.z _[“ 14 4/(z + 1)* dx = 3.5121.

(b) The area of the surface obtained by rotating ' about the z-axis is

=2

2 ;s
= — = — 1 =1
31 O VT Ea TRy

x 3

. 2

::.':f E:I'ryd.aizzrl'f —— T+ 3/(z + 1) d = 22.1391.
fi] i I+l

{c) The area of the surface obtained by rotating ' about the y-axis is

S = [}owrds =27 [} x/T+ 4f(z + 1)* dr = 29.8522,

TLy=sinr = y =cosz = 1+ (y)* =1+ecos’z Let fz) = T+ cos? z. Then
L= [y f(z)dz S
= L=l [1(0) + 47 (%) + 2/ () + 47 (38) + 2/ ($5)
+4f(5) +2/(55) + 4/ (F) +2f(5F) + 4/ (5F) + /()]
~ 3.820188
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CHAPTERS® REVIEW 0O 387
Ly=[ VVi-ldt = dyfdz=VVi-1 = 1+(dy/dz)'=1+(vVZ-1)=vx

16
Thus, L =f1mVv"?d.:s:flm:slﬂdrzg[r""ull =3(32-1)= %

1

1. As in Example £.3.1, EL ==

5 = 2&::2—Iandw=2{1.5+u:]=3+2n=3+2—z =5hH==z
-

Thus, F = [/ 6x(5 — x)dz = §[32 - iz*]; =48(10 - 3) = £ =458 Ib [ = 62.5Ib/fi*).

A= (VE- gm)de= 3 - 4] = - =g
T=4 ffe(VE-tr)de=§ [} (M - 4a?) e 1 T
4 .l {%.I]
=3[ -4 =R -9 =1 =} 3 -
2
7= 5[ [(VF) - (37| e = - ) e = R - 2l = R #) = 23) =

Thus, the centroid is (£.7) = (2.1).

15. The area of the triangular region is A = 3(2)(4) = 4. An equation of the line isy = Zx orx = 2y.

z=% [ 30 a -f_—.;{zy}”dy=§f4yﬂdy=§[§ar‘]:=§{sl=§
=—f yf[u}dy——j; yiﬂy}dy—%fﬁzyjdy=%[%y3]i=é{31=—

4 4
The centroid of the region is (E E)
17. The centroid of this circle, (1, 0), travels a distance 2(1) when the lamina is rotated about the y-axis. The area of the circle
is 7(1)*. So by the Theorem of Pappus, V = A(2xT) = 7(1)*2x(1) = 2=°.

19. : =100 = P = 2000 - 0.1{100) — 0.01{100)" = 1890

Consumer surplus = [, [p(x) — Pldx = [}™ (2000 — 0.1z — 0.012" — 1800) dx
= [110z = 0.052* — 282£%] )" = 11,000 — 500 — 10090 = $7166.67

21.
flz) = if z<0orx>10

{mmn{mr} if 0<x <10
(a) f{x) > 0 for all real numbers = and
f:; _f[z:ld.:s f i’ﬁul[l z]d.:s:%-L—n[—cm{ﬁ.r}];ﬂ:%{—cm#-iu cutiﬂ}:%{l-{-l:l-:l

Therefore, f is a probability density function.
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398 O CHAPTERE FURTHER APPLICATIONS OF INTEGRATION

ih) P(X < 4) =J‘:-u f{r}d.r:ﬁ & sin( ) dr = %[—cm{%a:}]; = -{—Lm + cos)

~= 1(=0.300017 4+ 1) =~ 0.3455

©p=[" zf(z)de = [}° Zosin(Zz)ds

= [+ &« Luy(sin u}[ %) du [ = Fex, du = & dx ] "“":. o
= —JEI wsinudu = [amu - 1'.u.1.|n.-u.1]+:I =31 s[0==(=1)]=5
0 10
This answer is expected because the graph of f is symmetric about the l J
=Ll
line xr = 5.

_ . ; 0 ift=0
23. (a) The probability ¢ funct t)=
{a) The pr ity density function 15 []‘ %E-!fh- ift=0n

E: ]
PO<X<3)= [ Ltedt = [-e'*f“]ﬂ = —e=¥% 4 1203127

Fen Sl Eew Sl

(b) P(X > 10) =[5+~ dt = lim [—e-'f "] :ﬂ = lim (—e™*/% 4 e7%) = 0 4 7% = 0.2865

(¢) Weneedtofindm suchthat P(X 2m) =} = [*#e~dt=} = lim [-="]" =4 =
m

T D

z = - R -1 =i 8 —
:If;c[ & + e ] 7 = e

% = —me:ln% = m:—B].u%:EI:.nE:sE.EEmmu‘tes.
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[1 PROBLEMS PLUS

Ly <4y & 28 4(y=2)" <4 505 is part of a circle, as shown v

7
x=sdy—y°

in the diagram. The area of 5 15
1.-'4y—y d';,r [H"—‘*,.-'4y - +2c{m-1{‘!7-5'-}] [a=12] N 1 i

= —%v‘i-{- 2:{1@5'1{%]—21'{»5‘1 1 \ﬁ y»‘= !
; o x
=—F+2(3) - 20) =5 -F

Another method {without calculus): Note that = ZCAB = I, so the area is

(area of sector OAB) = (area of AABC) = £(2°)§ = H)VI=2%- -'lz&

3. (a) The two spherical zones, whose surface areas we will call 51 and Sa, are

generated by rotation about the y-axis of circular arcs, as indicated in the figure.

The ares are the upper and lower portions of the circle £* + y* = r that are

obtained when the cirele is cut with the line y = d. The portion of the upper arc

in the first quadrant is sufficient to generate the upper spherical zone, That
portion of the arc can be deseribed by the relation = = /r* — g for
d <y <r Thus, defdy = =g/ /r* =y and

e ,u y =
( )dy_vl+rz-u”dy:\'lr”-yzdy:

rdy

ds_-|||

From Formula 8.2 8 we have

r | 2 r -
. f dr rdy
.‘3'1Zf 2nr l-I-(—) dy:f 2'.'1‘1,.-":'2—;;2—:[ 2ardy =2ar(r =d
d v dy d 1..-":1'i —;,ri d ( )

Similarly, we can compute 55 = ffrinz 1+ (de/dy): dy = ffr 2xr dy = 2ar(r + d). Note that 5, + S, = 4+,

I =y

the surface area of the entire sphere.

{b) r = 3960 mi and d = r (sin T57%) = 3825 mi, it
s0 the surface area of the Arctic Ocean is about
2r(r—d) = 27(3960)(135) = 3.36x 10" mi*. 750
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400 O CHAPTERE PROBLEMSPLUS

{c) The area on the sphere lies between planes y = y1 and y = g2, where yz — g1 = h. Thus, we compute the surface area on

] de 2 L]
the sphere to be 5§ = 2xz4/1+ (E) dy:f 2ardy = 2er(ye — y1) = 2arh.
i Wi

This equals the lateral area of a cylinder of radius » and height h, since such ¥ x=r
a cylinder is obtained by rotating the line & = r about the y-axis, so the /'_,_.-—-—-q.,\

surface area of the cylinder between the planes y = gnand y = y2 5

] dey 2 ] I /
A:f D 1+(—) d'y:f I 1+ 0¥ dy 1
Wi dy "

1

w2
= 211'11.!' = 2ar{ye — 1) = 27rh
iy

(d) h = Zrsin23.457 == 3152 mi, so the surface area of the ¥

Torrid Zone is 2xrh = 27(3960)(3152) = T.84 x 107 mi®.
N

5. (a) Choose a vertical x-axis pointing downward with its origin at the surface. In order to calculate the pressure at depth =,

=
—
-

consider n subintervals of the interval [0, =] by points z; and choose a point =] € [zi—1, z:] for each 1. The thin layer of
water lying between depth xi—, and depth x; has a density of approximately p(x]), so the weight of a piece of that layer

with unit cross-sectional area is plx] )g Az The total weight of a column of water extending from the surface to depth =

f
{wath unit cross-sectional area) would be approximately 5 p{x] )g Ax. The estimate becomes exact if we take the limat
P

T
as 1 — oo, weight (or force) per unit area at depth = is W = lim 5 p{x] )y Az, In other words, P(z) = _f; plx)gde.
b e ] il

More generally, if we make no assumptions about the location of the origin, then P(z) = Fy + [ plx)g dx, where F is

the pressure at = = 0. Differentiating, we get d Pfdz = p(z)g.

(b) F=[" P(L+x)-2v7T—zldr

= J2 (Pt 7 poett g ds) 2T =

=F [T 2T = dr+ pygH [, (e{mw _1) 2T dx

= (Fy— pogH) [T 2T =l dr + pygH [1 00 2 T 5T de

=(F- puqH}{rrrz] + p-n_qui‘rH f:’_ 2 e T T T dr

—_—r
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CHAPTERE PROBLEMSPLUS 0O 401
T. To find the height of the pyramid, we use similar triangles. The first figure shows a cross-section of the pyramid passing

through the top and through two opposite corners of the square base. Now |5 D| = b, since it is a radius of the sphere, which

has diameter 2b since it is tangent to the opposite sides of the square base. Also, |AD| = b since AADS 15 isosceles, So the

height is | AR] = B + b = 2b

A 4
o
b f w . il
- 11 1
B [ B b [N

We first observe that the shared volume is equal to half the volume of the sphere, minus the sum of the four equal volumes
{caps of the sphere) cut off by the tnangular faces of the pyramid. See Exercise 6.2.49 for a derivation of the formula for the
volume of a cap of a sphere. To use the formula, we need to find the perpendicular distance f of each triangular face from the
surface of the sphere. We first find the distance o from the center of the sphere to one of the triangular faces. The third figure
shows a cross-section of the pyramid through the top and through the midpoints of opposite sides of the square base. From

similar triangles we find that

b JAC \/b?+{ﬁb}2 V3R 3

Soh=b-d=b- -'?E- = %b So, using the formula V' = wh*(r = h/3) from Exercise 6.2.49 with r = b, we find that
2

the volume of each of the caps is n(h{ib) (b - %b) = %’r . i*‘“ﬁﬂ:?‘ = (2 = Z+/6 )b So, using our first

observation, the shared volume is V' = %[%m‘:*] -4z = %Jﬁ] b = (26 = 2) ",

9. We can assume that the cut is made along a vertical ling = = b > 0, that the ¥

disk’s boundary is the circle =° + y* = 1, and that the center of mass of the

{£.0]
smaller piece (to the right of = = b) is (1,0). We wish to find b to two :

1 fyz-2/T=aTdz

decimal places. We have - =F = . Evaluating the

2 2Vl =2dx

nmnemmrgj'l.'esus-_fbll[l—::zjlﬂ{—ir}drz-ﬁ[{l- x‘”] [D (1- 3‘“] 1=b%""
Using Formula 30 in the table of integrals, we find that the denominator is

1 3(1 =)
/T =22 4 sin"~'a 0+ %) = (b/T=07 +sin~"b). Thus, we have = =F = = - O,
[ ] =(0+3)=( ) 2 I —byvl—b?—sin~'b
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402 O CHAPTERE PROBLEMSPLUS

1.

13.

equivalently, 2(1 = b*)** = Z — 15 /T — b7 — L <in~"b. Solving this equation numerically with a calculator or CAS, we

obtain b == 0.138173, or b = 0.14 m to two decimal places.
area under y = Lsind Jy Lsingdg _ [=eoslf  —(=1)+1 _ 2

Ifh = L,then P = - )
' - e area of rectangle L T T T

area under y = %Lsinﬂ _ _ﬁ:r %Lﬁinﬂdﬁ" _ [=cos ] _2_1

Ifh=LJ2 then P= = ==
' /2, then area of rectangle =L 2% 37 =

Solvefory 22+ (z+y+1) =1 = (c+y+1)P P =1=-2 = z4+y+l=2y/T-2 =

y=-—r—1%+ /T2

1
A:f [(-z-1+1.f1-z2)-(-z-1- 1-;2)]dz ’
=1
_ ! 2 _afx area of _ 0o
- Iyl=-zx dr_zh'] sermicarile = Y
=1 =1, ik ]
1
- . g = i, =24
T= _1I 21 =xtdr =0 [oddinegrand] PR

7= 11[(_I-l+m)ﬂ_(-z_l_m)“]m%f L(~azVTTE =4 VI= 2 ) de

A)_,3

1 1
:—%f (:5\,-"1—.1:"!-4- 1—:1:"!).&.::—E I\.fl—rde—%f V1—ads
1 =1

1
=1 TS

=-20) ot -2(3) [2mk] =

Thus, as expected, the centroid is (=, ¥) = (0, =1). We might expect this result since the centroid of an ellipse is

located at its center.
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9 [ DIFFERENTIAL EQUATIONS

91 Modeling with Differential Equations

Ly=2e"+ e~ = ' = 2 =2~ To show that y is a solution of the differential equation, we will substitute the

e

expressions for y and i in the lefi-hand side of the aquation and show that the lefi-hand side is equal to the right-hand side.
LHS = I,I" + 2],|' — %E‘l - ZE-ZI + 2(%'5'! + E.-i-'_-] — %L‘E — zﬂ-iz + %Ez + EE—'.EJ

= %e’ = 2" = RHS

L} FE

Lijay=e" = y=re"" = y"=r""" Substituting these expressions into the differential equation
2y =y =0, wepet 2™ fre™ =™ =0 = (Z¥4r=1)"=0 =

(2r—1)(r+1)=0 [sincee™ isneverzem] = r=gor—1

{b) Let ry = £ and r2 = —1, so we need to show that every member of the family of functions y = ae™* + be™* isa
solution of the differential equation 2y" 4 y' =y = 0.
u =ae™? 4 o= = ¥ = %ue‘t"u —be™* = y'= iue"‘” + be™*,
LHS =" 4+ ¢y =y = 2(%&2""2 + be"} + (%a&"frj - i.u_-") = [ae™? 4 he=T)
— %m,:ﬁ +2he=T & %m-“‘rj — he=T — getl? _ pe=t
=(ta+ ja- a.}e"'rj 4+ (2= b=b)e~

=0 =RHS

5 (a)y=sinx = gy —cosxr = y"' ==—sinr
LHS =y" 4 y = —sinz + sinz = 0 # sinr, 50 y = sinx is not a solution of the differential equation.
bjy=cosxr = y ==sinr = y"'=—coszx
LHE =y" 4y = —cosz + cosz =0 # sinx, 50 y = cos z is not a solution of the differential equation.
cly = %:s.l-sin.r = y = %{ILWI-{'— sinz) = ' = %{—-I sin @ 4 eosr 4 cosx).
LHS =y" 4+ y = 3(=zsinz + 2eos z) 4 fxsine = cosx # sinr, 80y = Zrsinx is not a solution of the
differential equation.
(dyy = —%IEU&'I = y' = —%{—Isinr +eosz) = y'= —%{—IEU&I = sinx = sinz).
LHS =y" 4y = —%{—IL‘D&I — Zzinx) + {-—%IEUH z] =sinr = RHS,s0y = -—%IEUHI is a solution of the

differential equation.
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404 O CHAPTERY DIFFERENTIAL EQUATIONS

7. (a) Since the derivative ' = —y° is always negative (or 0 if y = 0), the function y must be decreasing (or equal to 0) on any
interval on which it is defined.

®
1 ] 1 " 1 1 3 \
My=—— = == . LHS=¢y' == — = - = =y = RHS
My =17 ¥ z+C) ¥ z+0) (z+{?) v

{c) » = 0is a solution of y' = —=y” that is not a member of the family in part (b).

1 1 1 l 1
d) If = then (0 . 5 0) =0. - O=2 =—
(d) y{‘r} +£...|, I'.Iy{} ﬂ+f.z L II'.I:E'y{] 51-{: = . S0y +2
d P P P P
9.{a}I_1.2P(1——). Nm\-I}l] = l—m}ﬂ |assuming that P > 0] = m{l =

P« 4200 = the population is increasing for 0 < P < 4200.

[h}E{D = P >4200

{c}%:ﬂ = P=4MorFP=0

11. (a) This function is increasing and also decreasing. But dy/dt = 'y = 1)* = 0 for all ¢, implying that the graph of the

solution of the differential equation cannot be decreasing on any interval .

(b) When g = 1, dy/dt = 0, but the graph does not have a horizontal tangent line.
13. (a) o' = 142"+ > land y' — scasx — oo The only curve satisfying these conditions is labeled I11.

(b)y = ze==" =¥ > 0ifz > 0andy’ < 0ifz < 0. The only curve with negative tangent slopes when = < 0 and positive

tangent slopes when x = 0 is labeled 1.

1
iy = T35 > Oand y' — 0asx — oc. The only curve satisfying these conditions is labeled IV,

1
(d) y" = sin(zy) cos{zy) = 0if'y = 0, which is the solution graph labeled I1.
15. (a) P increases most rapidly at the beginning, since there are usually many simple, easily-leamned sub-skills associated with

learning a skill. As ¢ increases, we would expect dP/dt to remain positive, but decrease. This is because as time

progresses, the only points left to learn are the more difficult ones.

j,
ib) E = k(M — F) is always positive, so the level of performance ic) u

is increasing. As P gets close to A, dP/dl gets close to 0 that is,

the performance levels off, as explained in part (a).
Py
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SECTION9.2 DIRECTION FIELDS AMD EULER'S METHOD O 405

1T. If e(t) = -:.(1 - e'“"") = o —ecae™ " fort >0, where k> 0,¢, > 0,0 < b< 1,anda = k/(1 - b), then

de
ot

i—b o

d (1 —=1b) L—&
dt

- k
= #a [-D - —u.!,"b:]-] . —c,e""j g (=a)(l = b=t = ﬂT e = E_b':c’ —¢). The

equation for « indicates that as ¢ increases, ¢ approaches ;. The differential equation indicates that as ¢ increases, the rate of

increase of e decreases steadily and approaches 0 as ¢ approaches ¢,

9.2 Direction Fields and Euler's Method

1. (a) ¥y (b) It appears that the constant functions y = 0.5 and y = 1.5 are

equilibrium solutions. Note that these two values of i satisfy the

given differential equation y' = & cos Ty,

3 y" = 2 = . The slopes at each point are independent of =, so the slopes are the same along each line parallel to the z-axis.

Thus, I11 is the direction field for this equation. Note that fory =2, ¢ = 0.

Sy =r+y—=1=0onthe liney = =r 4 1. Direction field IV satisfies this condition. Motice also that on the line y = —x we

have ' = =1, which is true in ['V,

7 g
ff/i' ]
T
= |h.~._1«'|t?'| =2.5
TS -
A N, ] ‘
I‘HHQEZ:‘K%H?}
By e
e A
-2 L] 20X
49 MNote that for y = 0, y* = 0. The three solution curves sketched go
' 1
F A ==
S through (0, 0), (0. 1), and (0, =1).
0 0 0
0 0.5
0 2 1
0 =3 =1.5
0 =2 =1 X
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0 for any point on the line y = 2z The slopes are

Maite that i

positive to the left of the line and negative to the right of the line. The

solution curve in the graph passes through (1, 0).

¥ =y=2r
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SECTION9.2 DIRECTION FIELDS AND EULER'S METHOD 0O 407

19 (a)y' = Flz.y)=yandy(0) =1 = ze=0,go=1
(Ph=04andy =yo+ AF(zo,m) = m=14+04-1=1d o=z +h=04+04=04,
soy, =wi(04) =14
(ph =02 = x;=02andxs = 0.4, so we need to find ya.
i =wa+ hF(zo. ) = 1402y, =1402.1=12,

Y2 =in + J:F[I1,y1:|- =12402y,=124+02-12=144

(iph =01 = =z,=04 soweneedtofindy,. v =wy +,F (g, ) =14 01y, =1401-1=1.1,
va=w +AF(z.0)=114+01y, =1L140.1-11= 121,
va =y + hF(ze,y2) = 1.21 + 0.1y2 = 1.21 0.1 -1.21 = 1.331,

wa=wya+ hF(za,ya) = 1.331 +0.1gs = 1.331 4+ 0.1 - 1.331 = 1.4641.

(b) ¥ /,.1' = We see that the estimates are underestimates since
1 . h=0l
= b= they are all below the graph of y = &*.
=14
0 01 02 03 04+

{c) (i) Forh =0.4: (exact value) — (approximate value) = ™ = 1.4 = 0.0918
{ii) For h =0.2: ({exact value) — (approximate value) = ™% = 1.44 = 0.0518

{iii) For h =0.1: (exact value) — (approximate value) = ¢™* — 1.4641 =~ 0.0277

Each time the step size is halved, the error estimate also appears to be halved (approximately).

21. h =0.5,20 = 1, yo = 0, and Fz,y) =y — 2=.
Notethat vy =xo + h =14 05=15 3 =2, and 3 = 2.5.
y1 = yo + hF(zo, ) = 0+ 0.5F(1,0) = 0.5[0 — 2(1)] = -1
ya = y1 + hF(z,,u1) = =1 + 0.5F (L5, 1) = =1 + 0.5[-1 — 2(1.5)] = —3.
ya =we + hF(zy,y2) = =3 4 0.5F(2, =3) = =3 4 0.5[=3 = 2(2)] = =f.5.

ya =y + hF(za,ya) = —=6.5 + 0.5F(2.5, —6.5) = —6.5 + 0.5[—6.5 — 2(2.5)] = —12.25.
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408 O CHAPTERY DIFFERENTIAL EQUATIONS

B h=01Lxz=0,y0 =1 and Fiz,y) = v+ zy.
Note that 21 = zo + h =0+ 0.1 = 0.1, zz = 0.2, x5 = 0.3, and x4 = 0.4.
ys = yp + hF (g, yo) = 1 +0.1F(0,1) = 1+ 0.1[1 + (0)(1)] = 1.1
s =y + hF(z1 ) = 114 0.1F(0.1, 1.1) = 1.1 4 0.1[L.1 + (0.1)(1.1)] = 1.221.
ya = y2 + hF (22, y2) = 1.221 4 0.1F(0.2, 1.221) = 1.221 4 0.1[1.221 + (0.2)(1.221)] = 1.36752.

ya = ya + hF(za, ya) = 136752 + 0.1F(0.3, 1.36752) = 1.36752 + 0.1[1.36752 + (0.3)(1.36752)]
= 1.5452976.

s = ya + hF(z4, ys) = 1.5452076 + 0.1F(0.4, 1.5452076)
= 1.5452976 + 0.1[1.5452976 + (0.4)(1.5452976)] = 1.761639264.

Thus, y(0.5) = 1.7616.

25, (a) dy/dx 4 'y =6z = 3 =6z = 3 y. Store this expression in Yy and use the following simple program to
evaluate y(1) fior each part, using H = h = 1 and N = 1 for part (i), H = 0.1 and N = 10 for part (ii), and so forth,
h—=H0—=X3=1Y:
For(L LN Y4+HxY, =Y X4+H—X:
Endi{loop):
Display Y. [To see all iterations, include this statement in the loop. ]
(DH=1L,N=1 = y(1)=3
(i)H=01,N=10 = y(1)=2.3928

(i) H=00L,N=100 = y(1)=2.3701

(iv) H= 0001, N =1000 = y(1) = 2.3681

3
- — I.I'II - _EIE*E—-'_-

by=24e
LHS =y 4 32"y = —3z%e—=" + 32t (2 + 2‘13) = =3rle—=" + 6x” + 3e2e=*" = 6z = RHS

p(0)=2+e"=24+1=3

{c) The exact value of y(1) is 2 + e~ =24t
(1) For h = 1; (exact value) = (approximate value) = 2 4 &~! = 3 = =0.6321
{ii) For k = 0.1: (exact value) — (approximate value) = 2 + ¢~ = 23028 = =0.0249
(iif) For k = 0.01: (exact value) = (approximate value) = 2 4 ¢~! = 2.3701 = =0.0022

{iv) For h = 0.001: (exact value) — (approximate value) = 2 4 &= — 2.3681 =~ —0.0002

In {1i)={1v}, it seems that when the step size is divided by 10, the error estimate is also divided by 10 (approximately).
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SECTION9.3 SEPARABLEEQUATIONS 0O 409

1 .
1. {a]R% +FQ:E{!} becomes 5&2'+W@ B0 {b) From the graph, it appears that the limiting value of the
or Q' +4Q =12, charge (7 is about 3.
) IfY =0,then4) =12 = {=3isan
¢
RN equilibrium solution.
T I T T T |
TEEEEEE (d) ¢
VUL R Y L I T T I B R T
ES T T T T T T T | L T T TR B O T |
LR . T T T T T
———————— [ T T ST W
P F RS N T
L A A 1 % % % % o ow w
[ I I I | -
[ I I A I B Y | i P s
[ O O O I A | £ ¥ O I P
—t—t—t—t—t——t [ I I
l3'| 2 4 i [ 11
RERERRN
———t —t—

e) Q@ +4Q0 =12 = =12 =40 Now}0)=0,s0ta =0and Qo = 0.
Q1 = Qo+ hF(te, Qo) =04+ 0.1{12 =4.0) = 1.2
Q2 =Qi 4 hF(t:,Q:) =1240.1(12=4.12) =192
Qs = Qs + hF(ty,Qs) = 1.92 +0.1{12 = 4.1.92) = 2.352
Q4 = Qa + hF(ts, Q3) = 2.352 + 0.1(12 = 4.2.352) = 2.6112
Qs = Q4+ hF(1,,Q4) = 26112 4+ 0.1{12 — 4- 2.6112) = 2 TGHT2
Thus, Qs = Q(0.5) = 2.77C

9.3 Separable Equations

1.?:3121;2 =% ﬂzzﬁzzdz [w#0] = fy-zdyzfﬂrjdr = g~ '=zr0C =
£ o

-—1:;1:3-!-(,' = y=

+——- W =0isalsoasolution.
i 4

Lir [z#0] = fydy:f(.:+11—__)dx "

=it + K = =242z +2K = y==7" + 2]+ C, where  =2K.

o
Loagy' =2+1 = ryj—i::sj+l = ;,rd;,r:I

S (e =1 =24 cosx = {ﬂ”—l];ﬂ=2+u.r5:: = [(e¥=1)dy = (2 4+ cosx)dr =
x

J(e¥ =1)dy = [(24 cosa)dr = e¥ =y =2r+sinr 4+ C. We cannot solve explicitly for y.

r.‘j‘: ‘;—“ﬁ = BeosBdd =te="dt = [Oeosfdf = [t dt =

fsin bl + cosfl = = %e‘g 4+ 7 [by parts]. We cannot solve explicitly for 8.
dF' z z 2 1 z

Bp—p+ti—1=p(tf = 1)+ 1(F = 1) =(p+1)(F=1) = Tl = -ndt =

A=t C 3=t

fp+ldp—/{! —dt = lfp+1]=—14C = |p+1]=c = p+1==+eCe

= Ke' =t =1, where K' = +e" . Since p= =115 also a solution, K can equal 0, and hence, K can be any real number.
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1.

13, —

15

17.

18.

O CHAPTERY9 DIFFERENTIAL EQUATIONS

dy _ v =¥ iy = =¥ iy = =y — L2 '

L= = e dy=xdx = [eVdy=[zdr = —eV=12+0C.

y(0)=0 = —e"=10F+C = C=-lso—eV=3s-1 = e¥==I1s41 =
—y:ln(l—%a:”:] = yz—h{l—%rj}.

du 2!-{-&.&{ t

u(0) = e = [(2 4 sec”t) dt = u2=Ej+t.u.nt+(:',
e

where [u[m]2 =0 +tan04+ C =  =(=5)% =25 Therefore, v = t* + tant + 25, so u = +/I7 & tant + 25.

Since u(0) = =5 < 0, we must have u = —/I7 + tant + 25.

.rhl.r:y(l-i- m)#,m{l}: 1. f::lnz:d.r:f(y-{-—ym} dy = %.rzl.ux—f%xd.r

|use parts with & = In =, dv = xdx) =%y2+%{3+y2}a‘u = ;I ].III——I'd +C= J1!,|'2-+-%{34‘-;,I'z:l'p;"rz.

Nowy(l)=1 = 0=34C=L1434)* = C=i+t4+i=%w

Wl

41 afe

lefne = 12% 4 4 = L% 4 L34 ™)™ We do not solve explicitly for y.

dy a4y

ytanr=a+y 0<s <2 = Iz = lanz = G+y=cut.zda: [e+yw#£0] =
d

f ¥ Lm;d‘s = ljaty|=hlsinz]|+C = |ﬂ.+y|=ejnwnzl+c=el"wnzl-ec=eﬂ|ﬁi||a:| =
a1y sl T

a4y = Ksinx, where K = +ot (In our derivation, K was nonzern, but we can restore the excluded case

3
y = —abyallowng K tobe zero) y(x/3)=a = ﬂ.-{-a:h"ﬁin{:%) = 24::!'{% = K=

als

Thus, & 4+ y = EﬁinIﬂﬂdSﬂy: Ea-iirl:l:—i;l:.

E] V3
o
Ii:i = ydy=zdzr = fydy:f.rd:: == %yzzézz-i-f:. yil)=2 = %{2}2=%[ﬂ}j+ﬂ' =

f::ﬂ,sn%y2=%:52+2 = y2=zz+4 = y=+vaz!+4smeey(0)=2>0

dy

d d dd d
=4y = E{u]:g{m-{hy] = —u:l+—ht[l%_r+y_u50—u_l+u =

dx dr’ dr

du
14 u

=dr [u#-1] = f fd:s = hl+uy=z+C = |l+u|=e’+g =

1+—u_
l4u=+e"e® = u=%e"¢" =1 = r4y=zete®=1 = y:!‘.’e’—r—l,\\-herei‘f::teﬂ?ﬁll
fu==Lthen=1=z4+y = y==x=1 whichisjusty = Ke® =z =1 with K = 0. Thus, the general solution

By=Ke* =r =1 where K € B
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SECTION 9.3 SEPARABLE EQUATIONS O 411

; - dy - dy f diy f
R ay =22/1=-yf = —=2r,/]=3y = ——=Drdsr = —_— = 2rde =
dix 1 =gy /1 =y2

th-ly:IE+C1b[—€-‘_:I2+C‘_:;-. |

¥ = sinfx7)

byp(0)=0 = sn~'0=0"4+C = C=0,

sosin~'y =* and y =sin(z*) for = /7/2 < 2 < /72

— &l

\ﬁf.z

0
(c) For /1 — y* to be a real number, we must have =1 < y < 1; that is, =1 < »(0) < 1. Thus, the initial-value problem

y' = 2r /1 =42, y(0) = 2 does nor have a solution.

ﬁﬂ:ﬁ:nz, y{ﬂ}:z. Sufrii.llydyzrﬁlnzd;: & =—ewy=—cosr4+C & cosy=cosz =, From the
dx siny 2 :
initial condition, we need cos £ =cosl = = 0=1=(C = (" =1sothe - ol .

solution is cosy = cos x — 1. Note that we cannot take cos™! of both sides, since that

would unnecessarily restrict the solution to the case where =1 S cosxr<=1 &
0 < cosx, as cos™" is defined only on [=1, 1]. Instead we plot the graph using Maple's

plots[implicitplot] or Mathematica’s Plot [Evaluate([---]].

h

=74

=]
e

0
27. (a).(c) by =y = j_z:!-fz = fv'”dy:de -

1
" l=z4+ 0 = === =
u

v= L where K = =’ y =0 isalso a solution.
Ir

K=

29. The curves = + 2y” = k” form a family of ellipses with major axis on the x-axis. Differentiating gives

i I:J:2 “+ Zyj} = % I[.kz:i = Zr4dyy’' =0 = dyy'==2r = ' = ;—: Thus, the slope of the tangent line

at any point (z, y) on one of the ellipses isy’ = _EI so the orthogonal trajectories

. 2y dy 2y dy dr
mustsatisfy f = == & === S m— 2= -— o
fy T dr T y T

fﬂzﬂfd—x & Inly|=2h|z|+C, < |I||y|=|n|.z|2+f:'| =
u x

lu] = ™=+ & =26 = 2 Thisis a family of parabolas.
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412 O CHAPTERY DIFFERENTIAL EQUATIONS

. The curves y = k= form a family of hyperbolas with asymptotes x = 0 and y = 0. Differentiating gives

_ _k _ Ty . _ W
_{y]_—(;) = y = = = y = =3 [sincey = kfx = zy=k] = y' = I.Tl*ius,meslope

of the tangent line at any point (x, y) on one of the hyperbolas is y' = —y/x,

so the orthogonal trajectories must sansfy ' = =fy < % = =
¥

ydy = rdr & jydy:fzd.r = %yEZ%II-i-C] =

=242 & 2 =y® =C. Thisisa family of hyperbolas with

asymptotes y = .

Boylr)=24 jl.z[.l —ty(t)]dt = y'(z)=z—=zxy(z) [bWFIC1] =

o 5

l—yzfzd.r = —In|l—y|= 32"+ C. Letting = = 2 in the original integral equation
=u

givesusy(2) =24+ 0=2Thus, = |1 =2|=3(2)*+C = 0=24C = C=-2

r c F
TJ"ILB,—I|1|1—y|:%f_2 = |I.I|l—y|:2—%z‘! — |l—y|:ej-‘!-'u .,

l—;,r::l:e!""'ﬂ"r2 = 3,|l=1+15'2-'2‘lrj [w(2) =2]

BS,H{I}:4+J{=2L p()dt = o'(z) =2z u(z) = :—i:hﬁ = f%:fﬂrdr =
o

2,/ =x" + C. Letting = = 0 in the original integral equation givesus y(0) =4+ 0=4.

Ths, 2I=0"4C = C=42,F=2"+4 = F=3"+2 = y=(4"+2)"

d d
II’.meExerclse'ﬂ.l.l?,Ec?:lE--t{E = fﬁ:fﬂ e =:ln|l2=4Q|=t4+C <

In)12 =4Q] = =4t = 4C & |12=4] =~ o 1240 =Ke™" [K =%~ &
A0 =12=Ke™ & Q=3=Ae™ [A=K/4]. Q0)=0 & 0=3=-4 & A=3 o
Q{t) =3 =3 Ast — oo, Qt) = 3 = 0 = 3 (the limiting value).

dP dP
- =kM=-P) = fp M:f{-k}d_t S P=M|==k+ < |[P=M =" o

P=M=Ae"" [A=+4£"] & P=M4+ Ae~"_ If we assume that performance is at level 0 when ¢ = 0, then

PlO)=0 & 0=M+A & A==M & P{t)=M-Me™ lim P{)=M-M.-0=M.
oo

dx . dx : .
4. (@) If a = b, then — = k(a — =) (b - ) becomes = =kla- 2 = (a=2)"W'dr=kdt =

2

m: Q=TI =

Jla=z)"* de= [kdt = 2(a—z)"""* =kt+C [bysubstitution] =

2 ¥ 1
(M_-I-L"') =a-—-r = I{L}:u—W.MmJtlﬂmmemmeafHBr|sl],sn:-.1:{{ll}=ﬂ =
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SECTION9.3 SEPARABLEEQUATIONS 0O 413

C»:;.:—{;i2 = %:a = 2= C =2//a [C ispositive since kt + C = 2(a — z)~'/* > 0].
" - a
Thus, =(t) -
I = —— .
(kt +2//&)"

kdt ().

4T _ i — 2)(b = )12 b= _ dr
(b) Gp =ka=2)b=2)" = T F=s =k = f{u_z;m f

From the hint, u = b —x = wW=b—r = 2udne = —dx, so

[ ==l =‘Ef$u+u“='2f(uﬁiﬁ

= 'z(ﬁal—b tan” Juu— b)

-2 aVb—x -2 - VB
S0 () becomes tz =kt+C. Nowz(0)=0 = C= tan and we have
{* via—b w0 Va=1b =(0) = Va=1b va—=b
-2 W= 2 b 2 [ b=z
tan=! z =kt - tan=1 vE = (Lan —tan™~!,/ ):.H, =
o =b Wa—==b Vi —=b Va—=b Vo —=b '11"u— 1|-"a—

i) = — 2 (tan-t [ L a2
. T kya—b " a—5 ";"a—.b '

dC dC _ o
8 @L=r-kc = L=-(hc-n) = f

" = —dt = (IR kC —r|=—=t+ M =
=/ (1/k) Wk = 1 :

Ik —r|==kt+ Mz = [kC=r|=e M2 o kO er=Me™ = KO=Me M 4r =
C(t) = Mee™ 4+ rfk. C0)=Co = Co=Mi+4rfk = Mi=Co-r/k =
C(t) = (Cy = rfk)e™™ 4+ r/k.
(b) If Ca < v fk, then Co — r/k < 0 and the formula for C(t) shows that () increases and :l_i.“g':: C(t)y=r/fk.
As t increases, the formula for C'(t) shows how the role of Ca steadily diminishes as that of r [k increases.

45 (a) Let y(t) be the amount of salt {in kg) after ¢ minutes. Then »{0) = 15. The amount of liquid in the tank is 1000 L at all

b [0k (1o L) s ke

times, so the concentration at time £ {in minutes) is »(),/1000 kg/L and —

di oo L min 100 min’
4
fy = lﬂﬂ'/rﬁ = |ny——ﬁ+ﬂ,a.miy[l]]=15 = llllE:ﬂ',SDlny:lnlﬁ—ﬁ.
t y
it follows that In{ L) = =—— and L = e=t/100 = 15e~t/100 |
oS “(15) w0 15 ¢ 50y =Tae &

ib) After 20 minutes, y = 15e~0/100 = 15,02 = 123 kg,

47. Let y(t) be the amount of alcohol in the vat after ¢ minutes. Then y(0) = 0.04(500) = 20 gal. The amount of beer in the vat
is 500 gallons at all times, so the percentage at time ¢ {in minutes) is y{t)/500 x 100, and the change in the amount of alcohol

mmrmpectmnmetlsd—”:mrm-ratemn:ﬂ.l]ﬁ(s E) —ﬁ (Eﬂ) =i}.3-i—3ﬂ_;‘r gal
dt min min

500 100~ 100 min

= 1{:":]Iand—Ir1|3l:]-—;,r| = 5t + €. Because y(0) = 20, we have —In10 = C, 0
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. (a) —— =

O CHAPTERY DIFFERENTIAL EQUATIONS

—ln[30 -y =it —Inl0 = Wn|30-—y|=—t/100+1010 = b30-—y|=he "™ 4n10 =
In |30 = y| = In(10e=41%) = |30 = y| = 10e="™ Since y is continuous, y(0) = 20, and the right-hand side is
never zero, we deduce that 30 — y is always positive. Thus, 30 — y = 10~/ = 4 = 30 = 10=1™ The
percentage of alcohol is p(t) = y()/300 x 100 = y(t)/5 = 6 — 2e~/1™_The percentage of alcohol after one hour is

p(60) = 6 = 2=00/100 o 4 9

. Assume that the raindrop begins at rest, so that v(0) = 0. dm/dt = kmand (mv) = gm = mv'+vm' =gm =

du

mt' +v(fkm)=gm = +vk=g = 'ﬂ—g—ku = fg = j-d! =

=(Ifk)njg=ko|=t+C = Injg=kv|==kt=kC = g=kv=Ae"" u0)=0 = A=g

S-ﬂku:g—ge-“ = wv=(g/k)(1 —;-_-‘“].Slncek}l],ast—sx, e—kt —s [ and therefore, !EJI:I. v(t) = g/fk.
==l

1 diy 1 dio d d d d k
_— —(ln L) = —(kIn L —(InlLy)dt = —(In L ) «lt
Lot o Sm=gknn) = [Zoaigda= [ Zoiha =

k k
Inf, = II:I.LE +C = L= gtlza+C _ Wl 0 Iy = I‘.'LE, where K = 7,

{b) From part (a) with L, = B, Lz = V, and k = 0.0794, we have B = K V074

{a) The rate of growth of the area is jointly proportional to /A(t) and A — A(t); that is, the rate is proportional to the
product of those two quantities. So for some constant k, 44 /dt = k ﬂ[ﬁ.! = A). We are interested in the maximum of
the function dAfdt (when the tissue grows the fastest), so we differentiate, using the Chain Rule and then substituting for

dAJdt from the differential equation:

d fdA dA gdA dA
=k WA e (M =AYy A=Y | L=t oA (M= A
2 (%)= H[VAG +0r - ) gD = A G oa s (- )

= LeA=H2 [ky/ (0 = 4)] [0 = 34] = 2R3(A1 = A) (M = 34)
This is 0 when M — A = O [this situation never actually occurs, since the graph of A(1) is asvmptotic to the line y = M,

as in the logistic model] and when Mf — 34 =0 <& A1) = M /3. This represents a maximum by the First Derivative

Test, since :—! %) goes from positive to negative when A(t) = M3

f‘_‘emk! =1

(b) From the CAS, we get A(t) = M ( - ) . To get O in terms of the imitial area Ap and the maximum area M,

g/ ATkt +1

2
we substitute ¢ = Dand A = Ay = A(0): 11.3—1’1-.[(?4‘}) o [C+)yHR=C=-1)vVM <

CVA+vVA=CVM=-VM & VM+VL=CvM-CVA

VI +VE=C(VI-VE) « p:% [Notice that if Ao = 0, then € = 1]
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94 Models for Population Growth

dr P dr
1. (a) Comparing the given equation, - = l].UuiP(l - ﬁ),mEquaLlon4, v :L—P( ) we see that the carrying

M
capacity 15 M = 1200 and the value of k is 0.04.

. M M=F
(b) By Equation 7, the solution of the equation is P(t) = T where A4 = Tﬂ' Since P(0) = Py = 60, we have
Ag= ]
1200 = 60 1200
A=="""" _ 19 and hence, P(t) = ——=—
60 () = T3 oe-o0w
1200
ic) The population after 10 weeks is P(10) = = BT.

1+ 19e="0-04(10}

3. (a) dP/dt = 0.05P = 0.0005* = 0.05P(1 = 0.01P) = 0.05P(1 = P{100). Comparing to Equation 4,
dPfdt = kP(1 = P/, we see that the carrying capacity is M = 100 and the value of & is 0.05.

(b) The slopes close to 0 occur where 7 is near 0 or 100. The largest slopes appear to be on the line P = 50. The solutions
are increasing for 0 < Py < 100 and decreasing for Py > 100.

(c) All of the solutions approach P = 100 as ¢ increases. As in
part (b), the solutions differ since for 0 << Fy < 100 they are
increasing, and for Fy > 100 they are decreasing. Also, some
have an IF and some don™t. It appears that the solutions which

have Fo = 20 and Py = 40 have inflection points at P = 50.

(d) The equilibrium solutions are F = 0 (trivial solution) and P = 100. The increasing solutions move away from P = 0 and

all nonzere solutions approach 7 = 100 as { — oo

M 0
with 4 = M =¥(0)

S — With M = 8 x 107, k = 0.71, and
T+ Ae—2t wo) A s

s@Z=k(1-L) = yo=

8o 107 B 107

y(0) = 2 » 107, we get the model y(t) = T & y(l) = T335=07

= 3.23 ¢ 107 kg,

T 8 x 107 T —0.T1t —071E _ 1
‘b]y’l{t]:ﬁl)ﬁlﬂ — W:‘lxlﬂ = 2=143e = & =5 =
Je=t- :
- 1 In3 —
=0Tlt=lng = tzﬁﬁl.aa}'m
.7
_M=5F _ 10,000 = 1000 _ _ lo,000 o enp 10,000
T. Using (T, A= B i =19, s0 P(t) = T4 Ge—tt" P(l)=2500 = 2500= TF 9@ =

1+9% % =4 = 9 *=3 = e*=1 = —k=Ii = k=In3. Afteranother three years,{ =4,

10,000 10,000 10,000 10,000 10,000
and P(4) = 14 De-lnz)a — ) +ﬂl{£"“?‘:}-4 = T+ 0(3)-° = l+ﬁ == = H000.

o
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416 O CHAPTERY DIFFERENTIAL EQUATIONS

9. (a) We will assumne that the difference in birth and death rates is 20 millionfyear. Let ¢ = 0 correspond to the vear 2000. Thus,

ol 1 m“""““") =1 and% kF(l - ﬂ) = ip(l ; with P in billions.

T Pdt  6.lbillion \ year 305° ] 305
= _ 20-61_ 139 M 20
b 1— = = 22787, PF(t) = = ; o 50
®) ﬂ. 6.1 [Tl P = e T Ty FEIpYED
20
P(10) = T B =~ 6.24 billion, which underestimates the actual 2010 population of 6.9 billion.
TET
. _ = . _ 20 Jp—
{c) The years 2100 and 2500 correspond to ¢ = 100 and ¢ = 500, respectively. P{100) = W == 7.57 billion
20
and P(500) = ———— == 13.57 billion.

1+ L29,=500/305

11, {a) Our assumption is that :y = ky(l = y), where y is the fraction of the population that has heard the rumor.

d P F P dP dy
by U the logisti t 4), == =kP| ] == substitute y = P =My, and == = M —
(b) Using ogistc equation (4), r ( M),we stitute y T u, = i

dyy dy

to obtain M Fi EMy)(l=y) < X ky(1 = y), our equation in part (a).

M M=
Now the solution to (4) is P(t) = TT A where A = =

We use the same substitution o obtain My = M = = L.
ST = Mw Ve et (-
14—
Muyn

Alternatively, we could use the same steps as outlined in the solution of Equation 4.

{c) Let ¢ be the number of hours since 8 AM. Then yo = »(0) = Dm = 0.08 and y(4) = j, S0
1 0.08
- 4] = ——
3 =) = T o0n
0.08 2

= = . Solving this equation for ¢, we get
0.08 +0.92(2/23)7° 2+ 23(2/23)7° B s o g

2 3t 23 oy 23 2 1oy 2=l oy
y+23( =) =2 =\ = 2N _2 1-y 2 _l=v
b+ ”(23) = (23) By (23) 3 Ty (23) w

=1D[{1-Elfyl,mt=4[1+ n((1=y)/v)]

In In = =

T =k __ OBE __ @ -k __ g2
Thus, 0.08 +0.92e* = 0.16,e=* = 8 = Z ande™* = (&

Itibllmﬂm%-l

b

lnﬂ

When y = 0.9, —7_ % 0t = 4(1 - ) 2z 7.6 hor T h 36 min. Thus, 90% of the population will have heard
u

..!E

the rumor by 3:36 M.
P d*p 1 dP P\ dP dP{ P P
1. —_LP 1-— L ke[ -=42 - (L - L
@ ( _u) T [ ( M rﬂ-)+( _ﬂ.f) d't] uz( Tt M)

Aol 5))o-5) =er(e-£) - 5)
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SECTION94 MODELS FORPOPULATIONGROWTH 0O 417

(b) P grows fastest when ' has a maximum, that is, when P" = 0. From part (a), P =0 & P=0,P=M,

of P=M/2 Since0 < P < M, weseethat ' =0 & P=M/2

15. Following the hint, we choose ¢ = 0 to correspond to 1960 and subtract 130,000

094,000 from each of the population figures. We then use a calculator to

r
obtain the models and add 94,000 to get the exponential function
Pg(t) = 1909.7761(1.0796)" + 94,000 and the logistic function
0000
19640 2010
33,086.4394
Puit)= . + 94,000. Py is a reasonably accurate flyear|

T 14 12,3428~ 01007

maodel, while Pg is not, since an exponential model would only be used for the first few data points.

drP d di* .
17. (a) N =kF-=m =!.:(F- %) lety=F —= % snd—? = Iandthedlﬁeremmlequatmn becomes % = ky.

The solution isy = yee®! = P= % = (Ph-

%)e“ = P{L}:%-{u(fh—%)e“.

(b) Since k = 0, there will be an exponential expansion & Fh — % =0 & m< kP

ic) The population will be constant it Fy — % =0 < m=EF,. Itwlldecline if 7y — % <0 < m>kF,.

(d) By = 8,000,000, k = a — 3 =0.016,m = 210000 = m > kP, (= 128,000), so by part (c), the population was

declining,

19. (a) The term —15 represents a harvesting of fish at a constant rate—in this case, 15 fish/week. This is the rate at which fish

are caught.
(b) F ic) From the graph in part (b), it appears that P(t) = 250 and P(t) = 750
s (RN ERNE NI
_i_ i E I EEEE .E. i are the equilibrium solutions. We confirm this analytically by solving the
e =SEEEEZEZEEZE:
SSESESE==SS==S=Z== equation d P/t = 0 as follows: 0.08P(1 = P/1000) =15=0 =
WEZZZZZZZZZZEZ 0.08F — 0.00008P° = 15=0 =
IIIFITITIING ~0.00008(P* = 1000P + 187,500) =0 =
I i 50 120

(d) "

=L LTI, TTEEEEE

&
zd

(P=250)(P-=T50)=0 = P =2500r 750

For 0 < Fy < 250, P(t) decreases to 0. For 4 = 250, P(t) remains
constant. For 250 < Py < T50, P(t) increases and approaches T50.
For Iy = T30, P(t) remains constant. For Py > 750, P(t) decreases

and approaches Ta0.

1000

B dr )

(e) % =n_uap(1 - i) —15 o 100000 4P _ 4 osp — 0.00008P% - 15) . (- 1m,{:m)

P
—12,Eﬂﬂ-IzF‘—lDDDF+lE?,E{JU- =

dP 1
(P =250)(F =750) 12,500

dt =
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418 O CHAPTERY DIFFERENTIAL EQUATIONS

~1/500  1/500 1 1 1 .
dP = — dt - dP = L dt
f(P—EED+P—T5l] 12,500 ﬁf(F‘-EE:D P-T:'::D) =T =

| P=250]
|P=750|"

P =250 . a
In|P =250 =In|P=T750| = £t +C < In P—T =gt +C R Y

P =250 . . . " ;
W:ke'ﬂ‘" & P =250 = Pke'/™ — T50ke'/™ & P — Pke'/™ =250 — Ta0ke'/™ &
Ll s
e tf2s =
p(e) = 290 =TS0ke 7 1y — Dand P =200, then 200 = 20— 90K . 900 _ 200k = 250 — TS0k <
1 = ketfs 1-k
FO12i

o0k =00 & k= ]1—] Similarly, if ¢ = Dand P = 300, then
k = —%. Simplifying P with these two values of k gives us

_ 250(3e"*" = 11) _ T50('*® 4 3)

P{” - 22 1] and F{” - elf2h 4 g
ik 120
i
dP P
2. () 2= {.kP}(l - ﬁ) (1 - %} Ifm < P < M, then dP/dt = (+)(+)(+) =+ = P isincreasing.

If0 < P < m, then dPfdt = (+){+)}(=) == = Pisdecreasing.

ib) F k=008 M = 1000, and e = 200 =
L0 s
, : dP P 200
12000 x @ o _ _ _ =M
Il dt D.DSP(I 1000) (1 P )
20

For 0 < Py < 200, the population dies out. For Fy = 200, the population
15 steady. For 200 < F < 1000, the population increases and approaches

L07 ] [RRASCERNRNRRLY [P EEREe
E27 ] [ARAAEERRRNRANY | FREEEE
G TARARARARARARY | PSR

B ] [11SSS L RTNtY [P

1000. For Fy > 1000, the population decreases and approaches 1000,
0 The equilibrivm solutions are P(t) = 200 and P(t) = 1000.

2 =.H"(1 - ﬂ) (1- 3) =I.-P(u)(u) —E M-P(P-m) &

R o071 [RRAAEEERRNRR:

=
=
L= ¥
=
e

dt M P A r M
IL =fid.!. By partial fractions, ! -_4 + B L 50
(M = P)(P =m) M (M = P)(P —m) M-=FP P-=m

AP =m)+ B(M=-P)=1

1 1 1 1 1 k
Ifr= B = i P=M A= dPF = — i
e e e _u—m‘mu-mf(u-PJ“P—m) 7
1 k 1 P=m k
— (-Wm|M=Pl4+W|P=m|)= —t+C 1 =
= e |+ |P—m]) = Zt+C = g/l =gt+C =
n| E=™ (M em) it 0, o DT peMemIAN (D= 4.0,
M—P M M-—F
Py =-m P =m Fo—-m
Lett=0: ——=D.8 = el M=mMkfM)t
M= CM—P_ M-hR

m{M = Fy) + M(Fy = m)elM=mltk/A)t
M =Py 4 {JH} - m]*_.{.u-m]{k;m:

Solving for P, we get P(l) =
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SECTIONS.S LINEAREQUATIONS 0O 419

(d) If Py < m, then Py — me < 0. Let N(t) be the numerator of the expression for P(t) in part (¢). Then
N =F(M-—m)>0,and Fp —m <0 = t].irn M(FPy - rnjl-e{"'f-m}{k"r"'”: == = !].im N(t) = —oc.
—— ——on
Since IV is continuous, there is a number ¢ such that V() = 0 and thus P(t) = 0. So the species will become extinet.

2. (a) dP/dt = kPeos(rt = ¢) = (dP)/P =keos(rt =@)dt = [(dP)/P =k [cos(rt =¢)dt =
In P = (k/r)sin(rt = &) + C. (Since this is a growth model, P > 0 and we can write In PP instead of In|P].) Since
P(0) = Fy, we obtain In By = (k/r) sin(=¢) + C = = (kfr)sind 4+ C = O =InF <+ (k/r)sind Thus,
In P = (k/r)sin(rt = &) 4 In Fy 4 (kfr) sin o, which we can rewrite as In( P/ Fy) = (k/r)[sin(rt = &) 4 sin d] or,

aﬁer Exmmntmm F{!} — ﬁeik_ﬂrf‘} |sin{rt =) 4-sim ﬂ']_

(b) As k increases, the amplitude As r increases, the ampliiude and A change in ¢ produces shght
increases, but the minimum value the period decrease. adjustments in the phase shift and
stays the same. amplitude.

i

Comparng values of k with Comparing values of rwith Comparing values of ¢ with
Fo=1,r=12 and ¢ = 7/2 Po=1 k=1 and ¢ = 7/2 Fo=Lt=1andr=2

P(t) oscillates between Phel®/m145i08) gng pp(h/rH{=142i08) (e axtreme values are attained when rt = & is an odd

multiple of £, so :l_iHL P(t) does not exist.

K
25 By Equation 7, P(1) = TT A= By comparison, if ¢ = (In A)/k and u = 1k(t — ¢), then
Ae
g - e g~ gt -t Dt e 2
14+ tanhu =1 = = —_— —
+ 1 + £ + e=u el +E-“ + gt -I-E-“ E""-+- =t g 1 + E-121.:

and e=%% — E-k[:-:] — Ekce-kt — Ejn.-ie-kt — AE—E:: a0

2 _ K _ K
14 e=2u — 14 de=kt

$K[1 + tanh(3k(t = ¢))] = %[l + tanhu] = K = P(t).

7 14 e=2u

9.5 Linear Equations

Ly +z,¥= =* is not linear since it cannot be put into the standard form (1), y" + FPz) y = Q{z).

d L
3,ue-*:!+u“?£ & Viu —e'u=—=t & u' =—=u=—yT islinear since it can be put into the standard form,

Wi
u' 4+ Pt} u = t).

5. Comparing the given equation, i’ 4+ y = 1, with the general form, ' + P(z) y = ()z), we see that P{x) = 1 and the

integrating factor is I{z) = e/ P21 = o J1ds — .= ©Npyltiplying the differential equation by I(x) gives
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420 O CHAPTERY DIFFERENTIAL EQUATIONS

* et
ey +efy=¢e = (y) =& = e’y:je’d.:: = fy=+C = E:;-{-—

1] ks
Il

y_l-l'-f' -

Ly=z=y = y4+y=xz () I(z)=el P = pJ 14 — o= Nultiplying the differential equation (+) by I(x) gives
ey +efy=x¢* = () =zef = e’y:jre’d.r = fy=re® —e* 4+ |bypans] =

y=xr=14+Ce™® [divide by e%).

8. Since P(xz) is the derivative of the coefficient of ' [P{x) = 1 and the coefficient is x], we can write the differential equation

zy’ 4y =+ inthe easily integrable form (zy)' =vVz = w=2"4+C = y=34/z+C/z

2 2
Moy ==z = y==y=2x = Plz)=-==
x =

I{z) = efPledds — J=2fzds _ =2lnz 1, ) = = lﬁ Multiplying the differential equation by I'({x) gives
I

1 2 1 1y 1 1 1 1 " .
F”“‘§F=E = (F”)zE = r'dyzf;d” = Iﬂ‘!’=l“I+C = y=z(hz+C)
o 3 VI 3

B304y =VIFE = y4y="f3— = P=1.

I{t) = S P dt _ [3/tdt _ ame [y o g) — ¢ Multiplying by £* gives £y + 3t2y = t T+ 12

() =tWVTHFE = ty=[tVT+0dt = ty=31+)4+C = y=30+8P 40

15. 2y’ + 2zy =Inxr = () =lnzr = Izy:flnrd:s = rly=xlnz=x4+ [by pars). Since y(1) =

PF2)=1nl=14C = 2==14+0C = C:E,ma:”y=Ilnz-r+3,my=lln:-l+%_
r T
Wt o 4 3u = o = Sumt (a) I(t) = el "YU = Bl o (elty=1 =3 [y 5 0) = L Multiplying (+)
dt T t : - - = = =g ying

1 3 1 1y 1 1 1 1 1 e
b}f{i]gﬁes—u—Fu=F = (Fu) =7 = U= th =» Fu:—I‘{-f:.blnl:eu[E]:‘i,

1

1 - 1
19z =y +rising = y ==y=zsinxr I{.r]:e-ﬂ-”’]d’:e'mz:ej"“ g
x T

v
Multiplying by lgl\-‘&ﬂ ly' —i,y:sin.r = (ly) =sinr = ly ==mpmr+C = y==recosxr+Cz
x = x? r £

yl[:rr]:[! == -:rr-[-l]--+-(,'rr=!]- = {(==l%0y==—rcosr-—rx.
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X

2 , .
May'+y=e" = y"+_y=E__ C=3 =3
= I

A

I{x) = e l2fx)dz _ Zinle] (E'nl?l)z = |.1:|2 =1
Multiplying by [{x) gives ° ¢’ + 2ry = xe®™ = [(o'y) =z" = -3
Izy:_ruzd.zz{z—ljez-i-f-' |by parts] =-

y = [(z = 1)e* + C]/x”. The graphs for C = =5, =3, =1, 1, 3,5, and 7 are f__ﬂ’/ =3 '\‘{* -3
shown. ¢ = 1 is a transitional value. For (" < 1, there is an inflection point and e=-1 e

for ' = 1, there is a local minimum. As |C7) gets larger, the “branches™ get
further from the origin.

y dy " du _ u =) gy

o
23. Setting u = =" == =(1=mn)jy=" Then the Bernoulli differential equation

T dx dr " dr ~ 1-ndzr  1-n dz
S =m) g p
becomes ?E" + Pe)ut/0=m) = Qz)u™ =" op £+{1-“}P[I}“ — Q)(1=n).
3
H.Herf.-y'+gy_£ son =3, Plz)= —and{:;}l{;s]._ . Setting u =y~ - usm.lsﬁesu"—‘l_uz_%_
r — .
m“I{I}=EH-q=}d‘=I-d'imdu:z"' —lda:-i-(' —— i+(' =f'r"+£
zf } Sl ) : B

=12
'l'hus,y::l:(ﬂ:s"‘-{-——) .
S

27. (a) 2 £ + 10 = 40 or % 4 51 = 20. Then the integrating factor is e/ * ¥ = ¢ Multiplying the differential equation

dl
by the integrating factor gives e Frig sle™ =20e™ = ("1) =20 =
I(t) =~ [[20e™ dt + C] =44+ Ce™™ But0=I(0) =4 + C,so [(t) =4 — 4™

ib) I{D.1) = 4 = 4e~%% = 15T A

2.5 % + 200) = 60 with (}(0) = 0 C. Then the integrating factor is e/ ** = ¢ and multiplying the differential

equation by the integrating factor gives e 2+ 4e™) = 12" = (eVQ) = 12" =

Q) = e~ [[ 12" dt + C] =3+ Ce~". Bt 0 = Q(0) =3 + Cs0 Q(t) = 3(1 — e=") 15 the charge at time ¢

and I = d3/dt = 12e=* is the current at time .

P
Ho o +HkP=kM,s0 I(t) = eT*4 = * Multiplying the differential equation Pir)
M
di?
by I(t) gives e** 5 + kP = kMM = (MP) = kM =
P(t) = e~ ([ kMe*dt + C) = M + Ce™™  k > 0. Furthermore, it is
Pl
reasonable to assume that 0 < P(0) < M, so =M <O <0, o
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L

—) =2 ﬁ.&']m& solution 15 drained from the tank at a rate of

y(0) =0kg. Salt is added at a rate of (5.4 E) (5 —

L

3 L/min, but salt solution is added at a rate of 5 L/min, the tank, which starts out with 100 L of water, contains (100 + 2¢) L

1)k
of liquid after ¢ min. Thus, the salt concentration at time ¢ is _ult) ke Salt therefore leaves the tank at a rate of

W0+2t L7
y(t) ke L dy kg
—_— | — — . Comby the rates at which salt ente d 1 the et
(11]!)+21L mm ) = T+ 2% min- Combining the rates at whic enters and leaves the tank, we g
o] 3 3
Eyzz-ﬁ.Rmmngmlsequﬂmas%-in(m)yzi,mmr}\a‘unslmw.

I(t) :E,Lp(fmz_‘fzt) = exp($ In(100 + 2¢)) = (100 + 2¢)*/

Multiplying the differential equation by I(t) gives (100 + 2¢)*/* ‘%‘r + 3(100 + 2¢)1%y = 2(100 + 2¢t)*? =

[(100 + 2t)**y)" = 2(100 + 20)** = (W04 2t)**y = 32(W0+2)"* +C =

y = 2(100 + 2t) + C(100 + 2¢)=*/* Now 0 = »(0) = 2(100) + - 100~ =40 + = = = —40,000, s0
y= [ﬁ[lﬂﬂ + 2t) — 40,000 100 + 2!}'”9] kz. From this solution (no pun intended), we calculate the salt concentration

—40,000 2 - ke
T 02275 2

t -
at time ¢ to be C(t) = y(t) = |: 20.000 + z ELE In particular, C'(20) =

100 + 2t (100 4+ ﬂ]“‘fﬂ o5

and y(20) = $(140) — 40,000(140)~*" = 31.85 kg.

35. {a} — + —u = gand I{t) = efle/m)dt — Jle/mbt and multiplying the differential equation by

me[ﬂfm it

dr
It (efmbt
(t) gives e = +

= gele/mit = [E_:cfm]:u]' = gel®/™)_ Hence,
e

vft) = e~le/mlt [j gels/™i gt 4 K| = mgfe 4+ Ke™ /™ _ Byt the object is dropped from rest, so v{0) = 0 and
K = —mgje. Thus, the velocity at time ¢ is v(t) = (mg/e)[1 — e-{t"’m}'].

ib) llln;c vit) = mg/e

(c)s(t) = f vit)dt = (mgfe)[t + {mfc}e'(ﬂf"'}t] + e1 where o = s(0) — ngfr_#.

5(0) is the initial position, so s(0) = 0 and s(t) = (mg/c)[t + [rnfc]e-{t‘"lm}l] - rn-z_q,-"c'ﬂ.

1 1 Z Z 1 1
. {a};:F = P==- = I":—j.Substm.umgmm.!'*"zkf‘[l-F,-"ﬂf]gwesus—jzk:(l-m) =
= ks 1= L ks =
p—— (1 ;M) = d=—kit = > k= ()
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SECTION 96 PREDATOR-PREY SYSTEMS 0O 423

et

k k
{b) The integrating factor is e / ¥ = &*_ Multiplying (=) by e*' gives "2’ 4 ke*'z = :f = (M) = i et =
k 1 1 1
e*t::fﬂehdi == e*t::HEM-ILC =" ::ﬁ-inf.'-‘e‘“.fimf:—,mha‘.'e
d £ 1 z
FP= ! = P= o which agrees with Equation 9.4.7, P = 2 when MC' = A
ekt T T MCe Eq SR EE TR e WERHE = 4
M )

96 Predator-Prey Systems

1. (a) defdt = =0.05x + 0.0001xy. If y = 0, we have dirfdi = —0.05z, which indicates that in the absence of i, = declines at
a rate proportional to itself. So x represents the predator population and y represents the prey population. The growth of
the prey population, 0.1y (from dy fdf = 0.1y — 0.005xy), is restricted only by encounters with predators (the term
—0.005:xy). The predator population increases only through the term 0.0001xy; that is, by encounters with the prey and
not through additional food sources.

(b) dyfdt = =0.015y 4+ 0.00008zy. If £ = 0, we have dy fdi = =0.015y, which indicates that in the absence of =, y would
decline at a rate proportional to itself. So y represents the predator population and = represents the prey population. The
growth of the prey population, 0.2 (from dr/dt = 0.2x = 0.00022° = 0.006zy = 0.2x(1 = 0.001x) = 0.006xy), is
restricted by a carrying capacity of 1000 [from the term 1 = 0.001x = 1 = =,/1000] and by encounters with predators (the
term =0.006xy). The predator population increases only through the term 0.00008xy; that is, by encounters with the prey

and not through additional food sources.

3. (a) dr/dt = 0.5z = 0.004z* = 0.001zy = 0.5x(1 = £/125) = 0.00Lzry.

dy/dt = 0.4y — 0.001y" — 0.002zy = 0.4y(1 — y/400) — 0.002zy.

The system shows that = and y have camrying capacities of 125 and 400. An increase in x reduces the growth rate of y due

to the negative term —0.002zy. An increase in y reduces the growth rate of = due to the negative term —0.001xy. Hence

the system describes a competition model.

(b) defdt =0 = z(0.5=0004x =0001ly) =0 = =z(500=4r—y)=0 (1) anddy/dt =0 =
(04 =000y — 0.0022) =0 = y(400 —y—2x) =0 (2).
From (1) and {2), we get four equilibrium solutions.
(i) x = Dand y = 0: If the populations are zero, there is no change.

()z=0and 400 =y =2z =0 = z=0andy =400 In the absence of an z-population, the y-population
stabilizes at 400.

(i) 500 =dr =y =0andy =0 = =z =125and y = 0: In the absence of y-population, the z-population stabilizes
at 125,

(W)500 =dr =y =0and 4] =y =2x =0 = y=50=drandy =400=2r = 500 =dzr =400 =27 =
100 =2 = x=350andy = 300: A y-population of 300 is just enough to support a constant x-population of 50.
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424 O CHAPTERY DIFFERENTIAL EQUATIONS

5 (a) Attt =0, there are about 300 rabbits and 100 foxes. At ¢t = iy, the number F =i,
g

of foxes reaches a minimum of about 20 while the number of rabbits is "
about 1000. At t = ts, the number of rabbits reaches a maximum of about

2400, while the number of foxes rebounds to 100, At ¢ = ¢, the number of

Nl

rabbits decreases to about 1000 and the number of foxes reaches a it

maximum of about 315. As # increases, the number of foxes decreases

greatly to 100, and the number of rabbits decreases to 300 (the initial U e s0 1200 1600 2000 X
populations), and the cycle starts again.

(b} R &

ERIE 3
300
20001
1500 4
[EEITLE 3

S0

200

My

0

Lo f

T Spevies 2
f =

R{EIE 3 L
(ETE 3
i =1

o

0 SO0 W0 151 TO0 2% Species

di =0.021 4 0.00002 R . . .
4. 1R = 008F —0D0LRW < (0,08 = 0.001W)R4AW = (=0.02 + 0.00002R)W 4R <

0.08 —.il::ﬂﬂlli- AV = =0.02 +}{;.[IIIJEH I(DDS_DMI) dI _f(—nﬂz-i-ﬂﬂ[ﬂ]i)ziﬂ -

0.08 In|WW| = 0.001W = —0.02 In|R| + 0.00002R + K < 008 InW 4002 In R=0001W + 0.00002R + K <

In (WO RO%) = D.00002R + 0.001W 4+ K & WOMRHO = (0 0002RE000MIWER - o

. _ 008 dy + = y"
021708 _ 1 0.00002R 0.001W i _ —ry + bay ¥
R0 — e ¢ & ey = C- In general lf = ————— then 0= ———.

11. (a) Letting W = 0 gives us dR/fdt = 0.08R(1 — 0.0002K). dRfdt =0 < R =0or5000. Since dR/dt > 0 for
0 < K < 5000, we would expect the rabbit population to ircrease to 5000 for these values of . Since dfi/di < 0 for
R = 5000, we would expect the rabbit population to decrease to 5000 for these values of K. Hence, in the absence of

wolves, we would expect the rabbit population to stabilize at 5000.

(b) Rand W are constant = R'=0and W' =0 =

0 = 0.08R(1 - 0.0002R) — 0.001RW 0 = R[0.08(1 — 0.0002F) — 0.0011]
=
0= —0.021 + 0.00002EW 0 = W(=0.02 + 0.00002R)
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The second equation is true if W = 0 or B = ;202 = 1000. If W = 0 in the first equation, then either B = 0 or

R = ooy = 5000 [asin part (a)]. If B = 1000, then 0 = 1000[0.08(1 — 0.0002 - 1000) — 0.001W] <+
0=80(1=02)=W & W=64
Case {i): W =0, & =0: both populations are zero

Case {if): W =0, & = 5000: see part (a)
Case (ii): R = 1000, W = 64: the predator/prey interaction balances and the populations are stable.

ic) The populations of wolves and rabbits fluctuate around (d) R
4 and 1000, respectively, and eventually stabilize at 1ati
those values, 100
S0
of t
9 Review
TRUE-FALSE QUIZ
1. True. Since y* = 0,y" = =1 —¢" < 0 and the solutions are decreasing functions,
3. False. x 4 y cannot be written in the form g{=) f{y).
5. True. ey =y = y =Ty = gy +(—"")y =0, which is of the form y" + P(z)y = Q(x), s0 the
equation 15 linear.
d
7. True. By comparing d—i’r = Ey(l - 3} with the logistic differential equation (9.4.4), we see that the carrying
(1]
capacity is 5; that is, tlirn. y=>"a
-
EXERCISES
¥ V] i s "
1. {a) é o {h}tlﬂiy{!}appearsmbeﬁmtemrﬂﬁ_fcgd.lnfm:t
AR
TR RN, lim y(t) =4 fore =4, lim y(t) =2 for 0 < ¢ < 4, and
LI o o ol fres e
e e e e ] -
% i i Ry il :“m y(t) = 0 for ¢ = 0. The equilibrium solutions are
T, T, T T T Tm T e =l
, =====
%ﬁu:::::.ﬁ u(t) =0,y(t) =2, and y(t) = 4.
$ZZZZZZZZE252w
R N N E I
L T T T T Y I T T .
LA L] L T T | LI TR T T |
L0 TN T T T R R R B L O
LU | D T T R R R N R N B
L
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3. (a)

We estimate that when = = 0.3, y = 0.8, so y(0.3) = 0.8,

-

I;;;;-'
IJ###

-

I AL L e TR N e
[

|\ﬁh-w1hﬁh¥Luh»1&ﬁw1-15\I
- \-u----—-l- e i I
rrresf | hunantrrwny | freees
T ARNS Y SESY PP
Jmmmmm ey f LR 22
e A1) LYY
NPT LR TN N —
EEFEFFARLEEEY T

Rl ARttt} Rt

P R e el S,

| R T T L e

() h=0.1, 20 =0,y0 = Land F(z.y) = z* =y, S0yn = gn-1 + 0.1(zh_; =yi_,). Thus,
w1 =14+0.1(0° = 1*) = 0.9, y2 = 0.9+ 0.1(0.1% = 0.9°) =0.82, ya = 0.82 + 0.1(0.2° - 0.82*) = 0.75676.
This is close to our graphical estimate of y(0.3) = 0.5
{c) The centers of the horizontal line segments of the direction field are located on the lines y = rand y = =
When a solution curve crosses one of these lines, it has a local maximum or minimum,
5 ¢y =ze”""F —yoosr = y' + (cosz)y=xe” """ (x). This isalinear equation and the integrating factor is
I(z) = efeos=d= = #in=x Nltiplying () by €*™* gives " ' 4 "™ *(cosz)y =z = (")’ =z =

E'Im:j,i:%Ij-i-f:' = y= I '+'[-’J = sinx

T. Zyeb'?y':2x+3v"; = Eyeb'?:—y:21+3v"; == Zyeyjdy:(2:5+3v";)dr =
T

fﬂye”idyzf(ﬂ.:-i-Ev'{;)dz = o =242 40 = p=In(z* + 22 L ) =

v =%./In(z? + 223/ 4 C)

dr dr Il :
9.E+2!r—r = I:r—E!r:rl{l—Eﬁ} == f—r——f{l—ﬁ]dﬁt = hfrl=t=-t*+C =
r

¥l = e =140 = ket~ Gince (D) = 5,5 = ke” = k. Thus, r(t) = Set=t

1 =1 -
Moy —y=zrhr = y ==y=Inzx f{;s:] = pfl=t/=ds _ =lalz] _ (E'ul:l) = |:5| = l_fISJJ“IGE the conditicn
&£

y(1) = 2 implies that we want a solution with = = 0. Multiplying the last differential equation by I{x) gives

1 r
ly'_.iy_i]n;g — (—y) =l|:r_|.z l fll'.I.I iy:%{ln:s:lj-i-f: =
F A i I i

x x? x

y:%:s{ln:s]j+(:I.Nﬂwyl[l}=2 = 2=040C = C:ls&y:%m{lnm]z+2$_

d d 1 o 1
13. E{y] = E{ke'] = y' = ke® =y, so the orthogonal trajectories must have y' === = ﬁ =-

ydy=—dr = [ydy=—[dr = ly'=—-z+C = z=C-1y", whichare parabolas with a horizontal axis.
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dP P
15 (a) Using (4) and (7) in Section 9.4, we see that for - = l].lF‘(_'l - —) with P(0) = 100, we have k = 0.1,

M = 2000, Py = 100, and zl:%:lﬂ. Thus, the solution of the initial-value problem is
P[t]:%mp{zﬂ}:%am.
{b) P=1200 & 1200:% = 1+19€“-“=% = 1&-'“*:%-1 o
et =(2)/19 & —0l=lnhE & t=-10lnzZ =335
17. {a}%mLx—L = %:k{Lx—L} = fl:—‘t_szkd! = —ln|l.-Ll=kt+C =

n|ly=Ll==kt=C = |Lo=Ll=e*C = L —-L=Ae™ = L=L,—Ae"
Att=0,L=L(0)=Lac=A = A=Lwx=L(0) = L(t)=Lx =[Lx=L(0)e"".
(b) L =53cm, L(0) =10cm,and k =0.2 = L(t) =53 = (53 = 10)e~"* = 53 — 4302,

19. Let P represent the population and 1 the number of infected people. The rate of spread df fdi is jointly proportional to I and

mF—I,sufarsumcnnslamk,%:k!{F-f} = I{t)=

IaP
Iy + {.P - Iﬂ}E-th

[from the discussion of logistic

growth in Section 9.4].

Now, measuring ¢ in days, we substitute ¢ = 7, P = 5000, fy = 160 and [({7) = 1200 to find k:

160 - 5000 2000
1200 = 3= 480 + 14,520e=200% _ 3000
160 + (5000 — 160)e—00 7% = = Tog ¢ fsape—mmooor & A0 H 14520e =
2000 — 480 38 -1 _ 38
=35,000& __ — —_
, - —35.000k = In — k= In —— 7 0.00006448. Next, let
¢ 14,520 . "33 35,000 363 et
160 - 5000 200
1 = 5000 = 4000, and solve for ¢: 4000 = 1=
x 80% = 4000, e 160 + (5000 — 160)e—koo00e T60 + 5d0c—t000kt
200 — 160 1
= MM =S00kt __ — A —
160 + 4840e =20 o e =g & -S000kt=In- &
t= - 1 L_ ! 1 L 7 12l == 14.875. So it takes about 15 days for 805 of the ulation
TS0k 121 In= T2 me= Y pop
to be infected.

dh _ R{ h k+h , R k _ R
n o= F(m) = f - dh_f( ?)dl = f(l-l'-ﬁ)dh— - [ 1dt =

R
h4bklnh == v t 4 . This equation gives a relationship between f and £, but it is not possible to isolate i and express it in
terms of £

23. (a) dx/di = 0.4x(1 — 0.000005x) — 0.002zy, dy/di = —0.2y + 0.000008zy. If y = 0, then

defdl = 0.4x(1 — 0.000005x), so defdt =0 < = =00orx= 200,000, which shows that the insect population
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428 O CHAPTERY DIFFERENTIAL EQUATIONS

increases logistically with a carrying capacity of 200,000. Since dx/dl = 0 for 0 < x < 200,000 and d=/dt < 0 for

a > 200,000, we expect the insect population to stabilize at 200,000.
{b) xand yare constant = ' =0andy' =0 =

0 = 0.4x(1 = 0.000005x) — 0.002zxy 0 = 0.42](1 — 0.000005x) — 0.005y]
=1
0 = —0.2y + 0.000008xy 0 = y(=0.2 + 0.000008x)

The second equation is true if y = Dorx = % = 25,000. If y = 0 in the first equation, then either = = 0

of £ = gy = 200,000, If z = 25,000, then 0 = 0.4(25,000)[(1 — 0.000005 - 25,000) — 0.005y] =
0 =10,000[(1 = 0.125) - 0.005y] = 0=8750-50y = y=1T5

Case (1): =0, x =0: Zero populations
Case {ii):  y =0,z =200,000: In the absence of birds, the insect population is always 200,000.
Case (ili): x = 25,000, y = 175: The predator/prey interaction balances and the populations are stable.

(c) The populations of the birds and insects fluctuate id) plinsects) (birds) ¢ v
4250
around 175 and 25,000, respectively, and 4200
150
410

P

eventually stabilize at those values.
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[1 PROBLEMS PLUS

1. We use the Fundamental Theorem of Calculus to differentiate the given equation:
V@I =100+ F{U@F +'OF fat = 20@)f @) = UEF + @ =
(=] + [j'"l[.z}|2 =2f(x)f'(x) =0 = [f(z)=f(z)]°=0 <& f(x)= f'(x). We can solve this as a separable
equation, or else use Theorem 9.4.2 with k = 1, which says that the solutions are fi{x) = Ce®. Now [f(0)]* = 100, so

J(0) = C = 10, and hence f{x) = £10e" are the only functions satisfying the given equation.

3 f(x) :Eﬂw = lim @ () =1] [since f(zx + h) = f(z)f(h)]

-} h

= 1@ fim LB =1 = 1) tim L =LO) — (2 p/(0) = 1)
Therefore, f'(x) = f(z) for all = and from Theorem 9.4.2 we et f(x) = Ae®.

Mow f(0)=1 = A=1 = flz)=¢"
5. “The area under the graph of [ from 0 to = is proportional to the (r 4+ 1)st power of f{+)” translates to

Iy F(tydt = E[f(x)]"™*" for some constant k. By FTCI, i ﬁz flt)dt = i [Kf(=)]"*'} =

f@) =k + DFEF () = 1=k + D@ @) = 1=kn+ )y =

- - 1
kn+1)y"dy=ds = [kin+1y" 'dy=[dr = kn+1l)—y"=z+C.
mn

Now f(0)=0 = 0=04C = C=~O0andthen f(1)=1 = k{n+l}%:l = k=
soy"” =xand y =_||"I[.::|-=.:1"r".

T. Let y(t) denote the temperature of the peach pie ¢ minutes after 5:00 PM and R the temperature of the room. Newton’s Law of
Cooling gives us dy fdi = k(y — R). Solving for y we get % =kdt = Injy-R|=k4+C =

ly = B =&Y = y-R==x".e = y= M+ R, where M is a nonzero constant. We are given
temperatures at three times.

y(0) =100 = 1WO=M+R = R=100-M

y(lo)= 80 = B0=Me" 4+ R (1)

y(20)= 65 = 65=Me* 4R (2)
Substituting 100 — A for & in (1) and (2) gives us

—20 = Me™ A (3) and =35 = Me™ — A1 (4)
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43 O CHAPTERS PROBLEMSPLUS

-0 j'lf!em* -1 4 MWk _ . _
Dividing (3) by (4) gives us T = N =) = 7 = ET = 4o g =Tl 7 =

4e* — Te'® 4 3 = 0. This is a quadratic equation in e'™_ (4™ —3) ("™ 1) =0 = ™ =30or1 =
10k=m3orlnl = k=LIn2since kis a nonzero constant of proportionality. Substituting 2 for &*** in (3) gives us

=MN=M- ——_-U = =20=-iM = M =280 NowHR =100- M soR=20"C.

8. (a) While running from (L, 0) to (x, y), the dog travels a distance 1 Blope of tangent line
i, <) _ AT
s:LL 1+ (dy/dz)* dr = = [} 4/1 + (dy/dz)? dx, s0 =
d'ﬁ b .
- = =/ 1 < (dyfdx)?. The dog and rabbit run at the same speed, so the ¥ i, ¥
L
rabbit’s position when the dog has traveled a distance = is (0, 5). Since the X Lo+

dog runs straight for the rabbit, j_y =2
L

_ dy ds  dy dy dyly d2y ds
Thus,s_y-zE = E_E-(EE+13 _—;F.Equatmgtmnmexpressmnsfmz

2 2
gives us.z:I—y =,/1+ (i) L as claimed.

L d= iz o
(b) Letting = = d—i, we obtain the differential equation r——= 14 =2 or ﬁ = ?I Integrating;

(—+ 1+;=) +C. Whenz = L, = = dyjdr =0,s0ln L = In1+ C. Therefore,

e = dz =
n.r_f—m_nu
ﬂ':lnL,mlnz=In{\.-'l+:!+:]+1nL=]n[L{v’l+;!+:]] =» z=L{v’l+:!+;] =

x Ty T
l+z*=—=x= ( ) (—) —2:(—)—1:!]'
* T = = \T 2 =
' a b
(z/L)" =1 a*'-L x L1 dy & .
z= = =— — =— [ 0). S =— =] .
2(z/L) 2z 2L 2g Lore>0)Since:=gy=p-ghr+
L L L L
Sicey=0whenz=L,0=—=—InL+C1 = Cy=—InL-=—. Thus,
4 2 2 4
_IE LI +Ll I L_;l:z—L2 Ll x
T T 3 zn(f_)'

{c) As x — 0F, y — oo, 20 the dog never catches the rabbit.

11. (a) We are given that V = 1xrh, dV/dt = 60,0007 fi%fh, and r = L.5h = 3k, So V = ix(2h) " h = 3an® =

dv 2dh _ dh _ 4(dV/dt) _ 240000x _ 80
S =330 5 = 9202 S8 Therefore (dV/dt) _ 240,000x _ 50,000

dt 4 di di -:.E! = Tosh® - omh2 a2 M T

[3h*dh = [80000dt = h*= 80,000+ C'. Whent =0,k = 60. Thus, C = 60* = 216,000, s0

h® = 80,000t + 216,000, Let A = 100. Then 100% = 1,000,000 = 80,000¢ + 216,000 =
S0,000¢ = TR4.000 = ¢ = 0.8, s0 the time required is 9.8 hours.
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(b} The floor area of the silo is F = # - 200° =

h)* = t=p?

_ 2 _ a
A=nr"= “‘.E 5
F — A = 40000 — 81007 = 31.900x = 100,217 fi*. Now A = ZEh*

and from () in part (a) we know that when i = 60, dh/dt = 307

dAfdt = Z£(2)(60)( 32) = 20007 =~ 6283 fi* /h.

CHAPTERY PROBLEMSPLUS O 43

40,0007 fi, and the area of the base of the pile is
. S0 the area of the floor which 15 not covered when h = 60 1s
= dAfdt = 2= . 2k (dh/dt),

20000 = 29 fi/h. Therefore,

{c) At h = 00 fi, dV/dt = 60,000x — 20,0007 = 40,000x ft*/h. From () in part (a),

dh _ A(dV/dt) _ 4(40,000%) _ 160,000

dt Oxh? Oxh? Oh?

h = 90 therefore, " = 3 - T20,000 = 2,187,000. So 3&* =

Jon*dh = [160,000dt = 3h*=

160,000t 4+ (. When ¢ = 0,

160,000t + 2,187,000 At the top, h = 100 =

3(100)" = 160,000t 4 2,187,000 = = 314000 - 5) The pile reaches the top after about 5.1 h.

13. Let P{a, b) be any point on the curve. If m is the slope of the tangent line at /2, then m = y'(a), and an equation of the

1 1
normal line at Pisy — b = ——(x — a), or equivalently, y = ——x + b 4 —. The y-intercept is always 6, so
T T T

i:ﬁ-—b = m=
m -

b+i:ﬁ- =
b

dy =

= T We will solve the equivalent differential equation == = —

dr G=1y

(6=y)dy=zdr = f[ﬁ—y}dy:f.rdx = ﬁy—%y2:%1'2+ﬂ' = 1y =y =2+ K.

Since (3,2) is on the curve, 12(2) = 2 = 3* 4+ K

Py =12 +36==114+36 = z'4(y

15 From the figure, slope 0.4 = < If triangle O AR is isosceles, then slope
aT

AR mustbe =2, the negative of slope 0.A. This slope is also equal to f'(z),
Fa

sc:wehaved—y:—g = fd_yz_fE
dr x u T

= Inje |+

Inly|=-njz|+C = |y=e =

K
ly| = (€=)"1eC = p|= = = y=—,K#0
=

= K =11 Sothecurveisgivenby 12y —y* =" +11 =

—6)? = 25, a circle with center (0, 6) and radius 5.

¥=fix)

Al ¥

[y Ble ) x

Copyeight 3046 Conpoge Lemmiog. AB ights Reverves. Moy st b copind, scomm o dmphicate, o whole o . o b et ightn, s shind oty contnt sy b e s the ek e o mptts
sckitzrml

Esbirrea rovars b decmacd that as wepy adfoct the overall berming expencrce. Umgage | cameng rewrves the nght t2 renans

contot ot amy time o webecquent rghts sostrictaons roguin: i




Coprright W6 Cengage Learsimg. A0 gy Rienerved. Wy ot be coped, scanned, or deplacaied, m whok or in pert. Du o chociners sights, sorme thind party comte moy be spprened from the diock andier o hepierial.
Esbtrrea rovarn S decmcd that s wepproncd content doc By affect the ovorall bermirg cupencece. Uagage Lcameng rescrves the nght 0 remens sckdtamal oot 2t 2z hine o vebusguent gt s icton regues i




10 [0 PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.1 Curves Defined by Parametric Equations

Lr=1=1% = = -]
Le=1=1t°, y=2t=1", =1=t<2 r=1, 40, 1)

t|-1 0o 1 2
x| 0 1 0 =3
w|-3 0 1 0

r=00.m

dr=t4sml y=oml, —=c=t<w ¥ -'1=:1
i
t | =« =n/2 0 =f2 T
| = —=x/241 0 =241 s
==, t=m,
v -1 0 1 0 -1 |—=,.—11 [w,—1)
S r=2=1, y:%!’-l—l
la) ! =4,
i | -4 =2 o 2 4 1=, =2, 2w
5 = =11 (3. 2)
r| =0 =5 =1 3 7 _5_...-}"';" .
y | =1 0 1 2 3 T .3 U 5 p
! =I?_i' 50 T7°
—4% =1

bz=2=-1 = H=z4+1 = !:%I-}-%_,Sﬂ

y=%1+1:%{lr+%}+1:%1+%+1 = y:%.r-{-

e

-
I
s
I
=
—
L

B
&
I
[
I
[
o

y | =1 1 3 5
:';.
by=t4+2 = t=y=2 30

.1':!2—3:{y—ﬁ]z—ﬂzyz—-ly-i-J—ﬂ =

z=y'—dy4+1,-1<y <5
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— — 1= ¥
.=+l y=1-t 11 =10

@ N\ o
3 3 1 (.0 e=1

1.414 1.732 2
=1 =2 =3

== =

=

,—3) ¢=4

ihz=+v1I = t=2" = y=l—=t=1=z" Sincet>0,z >0
So the curve is the nght half of the parabolay = 1 = =~
. (@) r =sin i, y=eos 1, —r << m (b) y
r* 4 y* =sin” %E?+ oo %ﬁ‘: 1. For =7 < & < 0, we have
=l<zr<0Dand0 <y <1 ForO<# <x wehavel < x <1
and 1 > y = 0. The graph 15 a semucircle.

1 [i] 1

1 1 ;
13. (a) r =sint, y=eset, 0 <l < Ty =esel = — = =, (b) ¥
sin it T

ForO<t< &, wehaveD < = < Lland y > 1. Thus, the curve is

the portion of the hyperbola y = 1/x with y > 1. L1

=
=

1B (ajy=nt = t=e" s0x=t= l:ﬂ*!":l-2 =¥, (k) ¥

7. (a) x = sinhi, y = cosht = ¥ = % = cosh®¢ —sinh®t = 1. (k) 1

Since y = cosh t > 1, we have the upper branch of the hyperbola /
yj =rf =1

2 sinwt = y_;'i cos”(wt) +sin®(wt) =1 =

19. =54 2cosml,y =34 2sinml = ocosTl= r=

-5 -3 i
(I2 )-4-(”2 ) = 1. The motion of the particle takes place on a circle centered at (5, 3) with a radius 2. As f goes

2 2
from 1 to 2, the particle starts at the point (3, 3) and moves counterclockwise along the circle (I ; 5) + (y ; 1) =1lto

(7, 3) [one-half of a circle].
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SECTION 101 CURVES DEFINED BY PARAMETRIC EQUATIONS O 435
x o 2

sin“t4ens?t=1 = (%) +(E) = 1. The motion of the

M. x=>50sinl,y=2¢cost = sint= %, ool = ;—i
particle takes place on an ellipse centered at (0, 0). As ¢ goes from = to 5, the particle starts at the point (0, =2) and moves

clockwise around the ellipse 3 times.

23. We must have 1 < = < 4and 2 < iy < 3. So the graph of the curve must be contained in the rectangle [1, 4] by [2, 3].

25. Whent = =1, (x,y) =(1,1). Ast increases to 0, x and y both decrease to 0. ==
As t increases from 0 to 1, x increases from 0 to 1 and y decreases from 0 to It

=1. Asf increases bevond 1, x continues to increase and y continues to

decrease. For ¢ < =1, x and y are both positive and decreasing. We could
achieve greater accuracy by estimating x- and y-values for selected values of ¢ T =1

from the given graphs and plotting the corresponding points.

27. Whent = =1, (z,y) = (0,1). Ast increases to 0, x increases from 0 to 1 and f=—l1
y decreases from 1 to 0. As ¢ increases from 0 to 1, the curve 15 retraced in the
opposite direction with = decreasing from 1 to 0 and y increasing from 0 to 1.
We could achieve greater accuracy by estimating - and y-values for selected \\\
values of ¢ from the given graphs and plotting the corresponding points.

2. Usey =t and x =t — 2sin =t with a t-interval of [—=, 7] il

NHiarz=m+(m=on),y=m+yz=m)t, 0=t £ 1 Clearly the curve passes through P (1, g ) when ¢ = 0 and
through Palxa,y2) whent = 1. For 0 < £ < 1, = is strictly between = and x2 and y is strictly between y: and ya. For

Yz =1
—

every value of £, = and y satisfy the relation y =y =
Ly == ]

x = x3 ), which is the equation of the line through

Pi(x.yn) and Pa(xa, ya).

p=n _==% ; if we call that common value £, then the given

Finally, any point (x, ») on that line satisfies =
v, any point (x. y) PP —

parametric equations vield the point (x, y); and any (z, y) on the line between Prixy, ) and P2, ya) vields a value of

t in [0, 1]. So the given parametric equations exactly specify the line segment from Py (1, gn) to Pz, go).

b)r==24[3=(=2))t==245tandy =T+ (=1=T)=T—Rtfor0<1<1.
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43 O CHAPTER10 PARAMETRIC EQUATIONS AMD POLAR COORDINATES

33. The circle % + (y — 1)° = 4 has center (0, 1) and radius 2, so by Example 4 it can be represented by = = 2cost,
y=142sint 0 <1< 2% This representation gives us the circle with a counterclockwise orientation starting at (2, 1).
{a) To get a clockwise orientation, we could change the equations to x = 2ecost, y = 1 — 2sint, 0 <t < 27,
ib) To get three times around in the counterclockwise direction, we use the original equations = = 2eosf, y = 1 4 2 sin ¢ with
the domain expanded 10 0 < ¢ < 6.
(c) To start at (0, 3) using the original equations, we must have xy = (0 that is, 2cosf = 0. Hence, t = %. 50 we use
r=2cost,y=142sint, £ <t = %
Alternatively, if we want ¢ to start at 0, we could change the equations of the curve. For example, we could use
x==2sint,y=142cost, 0 <1t <.
35, Big circle: IU's centered at (2, 2) with a radius of 2, so by Example 4, parametric equations are
x =24 2cost, =24 2sint, 0D=t=2r
Small civeles: They are centered at (1, 3) and (3, 3) with a radius of 0.1. By Example 4, parametric equations are
fleft) £=1+01cost, y=3+0lsing, O0<t<2x
and frigh) z=34+01cost, y=3+01sint, 0<t<2x
Semicirele: 1t's the lower half of a circle centered at (2, 2) with radius 1. By Example 4, parametric equations are
=24 lcost, y=2+41sint, w<t<27
To get all four graphs on the same screen with a typical graphing caleulator, we need to change the last i-interval tof0. 2] in
order to match the others. We can do this by changing ¢ to 0.5¢. This change gives us the upper half. There are several ways to
zet the lower half—one is to change the “47 to a *=" in the y-assignment, giving us

r =2 4 1 eos{0.5¢), y =2 = 1sin(0.51), D=<i<2x

. (a)x =t = t=z"'rx,5|}y=£2=z£"m. b=t = £=.r1"ﬁ,50y=!"=.r"‘rﬁ=z2‘m.
We get the entire curve y = %/ rraversed in a lefi to Since = = t* > 0, we only get the right half of the
right direction. curve y = /%,

¥ ¥
=t y=t =
y=r =0
/ -
g
il T 0 T
{c)x = =M ={e't]3 [me-: :.1:”3], y
\ _ ; r=g Y
y= E_-2! — {E I}E — {Ilfﬂ:}.é — IEH:. _'|'=t'_!' s
Ift < 0, then = and y are both larger than 1. If ¢ > 0, then = and i P
(L1
are between 0 and 1. Since x > 0 and i > 0, the curve never quite o -
reaches the ongin, ]
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SECTION 104 CURVES DEFINED BY PARAMETRIC EQUATIONS O 437

39. The case § < 8 < = is illustrated. (" has coordinates (r#, r) as in Example 7,
and () has coordinates (7, r 4 reos{m = #)) = (1, r{l = cos )
[since cos(® — a) = cos T oos a4 sin g sina = —cosal, so P has

conrdinates (vl = rsin{m = #), r(l = cos 1)) = (r{@ = sin#), 11 = cos #))

[smce sin{rr - n.] = SN 7 008 & — COS 7 &R a =:.-iina]. Again we have the

parametric equations © = r(f —sinf), y = r{l1 — cosd).

41. It is apparent that = = || and y = |QF] = |5T|. From the diagram,
x = || =acosfand y = |ST| = bsind. Thus, the parametric equations are

x = acos and y = bsin 8. To eliminate § we rearange: sinf = y/b =

sin’ 6 = {yﬂ:]j and cosld = zfa = cost = I:I]iru:l-z. Adding the two

equations: sin” & 4 cos” # = 1 = 2 fa” + y°/b°. Thus, we have an ellipse.

43 O = (2acot 8, 2a), so the z-coordinate of P is x = Zacot §. Let B = (0, 2a). ¥
Then £0AR is aright angle and ZOBA =8, 50 |0A] = 2asin § and __//Iﬁ'\_
A = ((2asin 8) cos #, (2a sin #) sin #). Thus, the y-coordinate of P
a I

sy = Zasin® 0.

45. (a) 4 There are 2 points of intersection:

(=3.0) and approximately {=2.1, 1.4).

(b} A collision point occurs when £y = xa and g1 = ya for the same . So solve the equations:
Isint = =3 4 eost (1)
Z2eost =14 sint (2)
From (2), sint = 2eost — 1. Substituting into (1), we get 3(2eost = 1) = =3 +eosl = Sest =0 (») =
cost=0 = t=3Zor :’T’ We check that { = :th satisfies (1) and (2) but ¢ = I does not. So the only collision point
occurs when t = 2= and this gives the point (=3, 0). [We could check our work by graphing z and 2 together as
functions of ¢ and, on another plot, yu and g2 as functions of £. If we do so, we see that the only value of ¢ for which both
pairs of graphs intersect is ¢ = 3% ]
ic) The circle is centered at (3, 1) instead of (=3, 1). There are still 2 intersection points: {3,0) and (2.1, 1.4), but there are

no collision points, since () in part (b) becomes beost =6 = cost = % = 1.
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438 O CHAPTER10 PARAMETRIC EQUATIONS AMD POLAR COORDINATES

47, x =ty =1 — cf. We use a graphing device to produce the graphs for various values of ¢ with =7 = ¢ < 7. Note that all
the members of the family are symmetric about the x-axis. For e < 0, the graph does not cross itself, but for e = Dithasa
cusp at (0, 0) and for & > 0 the graph crosses itself at = = ¢, so the loop grows larger as e increases.

3 I

i

89, r =t 4+ acost,y =t 4+ asint, a > 0. From the first figure, we see that
curves roughly follow the line y = =, and they start having loops when a

15 between 1.4 and 1.6. The loops increase in siZe as a INCTeases.

While not required, the following is a solution to determine the exact values for which the curve has a loop,
that is, we seek the values of a for which there exist parameter values ¢ and u such that ¢ < u and
(t4acost t+asint) = (o4 acosw, u+ asine)

'I P

T In the diagram at the left, T denotes the point (¢, £), 7 the point {u, u),
rd
el - %\ and P the point (£ 4+ acost. f 4+ asint) = (v 4 acosu, u + asinu).
1
_;’/ ] E,r o Since PT = FIT = a, the triangle FTI is isosceles. Therefore its base
|II %, e II| A
- ! | angles, o = A PTU and 3 = £ PUT are equal. Since o« = { = < and
7
N, ;’f G=2r= — =u = =% = g, the relation & = 3 implies that
(A 1=
T u 4+ =i
X
Since TU = distance((t. t), (u. u)) = /2(u = £)* = +/2 (u = t), we see that r

Cisy =

—TU -1
PT {u L.I'v-"_ u—1= v@acmu,ﬂtatjs,

u—1t= \-"Ea.cu:i{! - %} (2). ND\.'\-'L‘U.E(!. - 1] =hin[% - l:t - %}] = th{% - !],

4

S0 We can rmme{:}asu—a:q’iusin{%’—t) {2'). Subtracting (2') from (1) and T uzt u—r U

dividing by 2, we obtain t = 2 — Lasin(3E —t),or ZE -t = ?sul[— =t} (3. I 3 |
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES O 439

Since a > O and ¢ < wu, it follows from (2') that sin (25 — t) > 0. Thus from (3) we see that ¢ < 2% [We have
implicitly assumed that 0 < § < & by the way we drew our diagram, but we lost no generality by doing so since replacing t

by t 4+ 27 merely increases x and y by 27, The curve’s basic shape repeats every time we change ¢ by 2x_] Solving for a in

V2 (3= ¢ 2=
iJLWESHu:ﬂ. Write z = 2= = ¢, mna:“j——,m-}ere;::-u. Mowsinz < zforz >0, s0a > 2
!':'IIIT— sz

As z — 0%, that is, as ¢ — {;’T']-,u—t vz .
51. Note that all the Lissajous figures are symmetric about the x-axis. The parameters a and b simply stretch the graph in the
a- and y-directions respectively. For a = b= n = 1 the graph 15 simply a circle with radius 1. For n = 2 the graph crosses

itself at the origin and there are loops above and below the z-axis. In general, the figures have n — 1 points of intersection,

all of which are on the y-axis, and a total of e closed loops.

21 .‘i
[ -1_ |:-.',!.II'}]=I.'IT,2| 1—||f?nll?]_‘2..:|i
- — [, ) = {3, 2)
o by=10(2 1
2.1 b N | £
N = -
=211
n=2
10.2 Calculus with Parametric Curves
t dy 1 i 1 de  (14t)(1) =¢t(1) 1
la=— y=+T%1 — = (141N = —_= =
Ty Y o= =5+ Il T +10)° T+

ﬂ_dy;d.-,_lf{zﬂﬂ}_glﬁf_l{H”w
dr ~ dzfdi ~ 1/{1+1)* — 2,T+t 2 '

dy _ dyfdt _ 4* 41
dr ~ drfdt — 3

. d d
Lr=t'4+Ly=t'+t ::-1_d—::41“+1,£:3f,w Whent = =1, (z,y) = (0.0)

and dy fdx = =33 = =1, so an equation of the tangent to the curve at the point corresponding to £ = =1 is

y—=0==1{zx=0),0ry = —x.

dy dy fdt _ teost4sint
dr e fdt T =tsint + cost’

&

dx
=teosl 4 sint, — = #{—sint) + cost, and

8 x=1 t =tsint, I =
T cost, y sin it T T

Whent ==, (z.y) = (—=,0) and dy fdx = —=f(—1) = =, s0 an equation of the tangent to the curve at the point

corresponding tot = v isy =0 =w[x = (=7)], or y=wr 4+ 7.
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440 O CHAPTER10 PARAMETRIC EQUATIONS AMD POLAR COORDINATES

TL@z=1+lnt, y=024+2 (1,3). W g 92 _1 gy _dy/dt _ 2
di dt U de dejdl 1t

=2t% At(1,3),

r=14+ht=1 = hi=0 = t=landit—y=2,snaneqmtlan:}fthetangent15y—3=2{z—1]-,
ory =2xr+1

(Blz=1+Int = Int=x-=1 = t=e""lsoy=t+4+2=("1P +2=e"242,andy =e™2.2
At(1,3),y" = e*=2.2 = 2, 50 an equation of the tangent isy =3 =2z = 1), ory = 2 + 1.

. . dy  dyfdt 2041
 a=tiot y=tt4t4l (0.3) Lo _2EL s the 5

dr  drfdt  2t—1
value of ¢ corresponding to the point (0, 3), solve z =0 = 0.4
#=t=0 = #t=1)=0 = t=0ort=1 Onlyt=1gives

y=3 Witht = 1, dy/dx = 3, and an equation of the tangent is

Ll

y=3=3z-=0),0ry =3+ 3.

d (dy
; dyfdt _ 241 1 d’y  di (d;) =1/(2t*) 1
Mar=t'41, y=1t +t dy _dyjdt 2+l _ 1 = = =—
r=ErALy=ERl = T T o tu T T o 2 TE

o
The curve 15 CLI when d—z = 0, that 15, when £ < 0.
L

_ dy  dyfdt —te~" 4 o=t e~ H1=1) _
— —_ =t I —_ —_— — 28 -
B xx=e,yp=1te = d'.r_d'.]:f — p: = p: — ] I:]_ [:]- -

d dy
d*y E(E) e (1) 4 (1= t)(=2e=2)  e~M(—1-242) _, .
Tt Tzt = p = = = e~ (21 = 3). The curve is CLJ when

di

) }l],thaljs,when!}—

dy _ dyfdt 141/t  t+1
dr  drjdt 1-1jt t—1

. x=t=Int, y=1t4+Int |notethatt >0] =

4 (d_y) (t=1)(1) = (£ + 1)(1)

dly  df \dx (t=1)2 -2 d’y
== = = . The curve is CU when —— > 0, that is, when 0 < ¢ < 1.
dz? T dzjdt t—1)/t o ecunestiwhenn > D Rats whentl <t <
g dy dyy 2
Ma=t"=3t, y=1t" =3 G20 =0 & t=0 & P -

o,

(z.y) = (0, =3). EI =3 =3=3(t+1)(t = 1],5;}% =0 <

t==lorl & (z,y)=(2 =2)or (=2, =2). The curve has a horizontal

=2, =2
=1

tangent at {0, —3) and vertical tangents at (2, =2) and (=2, =2).

-4
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19, & = cosf, y = cos 38 The whole curve is traced out for 0 << # < &, 2

SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES O 441

i &
dy dy =3.1) i1
:-3ﬁi.n34ﬂ,sn£:!} & sindP=0 & ¥=0r2rordr & fl= 23 =1

0%, % 0% o (zy) =(L1),(4-1),(-11),0r(=1,=1).

SR

—2 z
=—5inﬂ,50d—1=ﬂ & sinff=0 & f=0o0rw <= /
dﬂ —1.-1) H\'-_l]

(z,¥) =(1,1) or (=1, =1). Bmh%and —p ©qual 0 when 6 = 0and . == 8=w3

-

e

dy —3sin 30 —0cos 38
To find the slope when 8 = D,Mﬁm:llqu_li i T == =9, which is the same slope when # = =.

—_— lilg ——
Bl = sin i Bl = s

Thus, the curve has horizontal tangents at (3, —1) and (—3. 1), and there are no vertical tangents.

. From the graph, it appears that the rightmost point on the curve x = ¢ = 1%, y = &'
is about (0.6, 2). To find the exact coordinates, we find the value of ¢ for which the
graph has a vertical tangent, that is, 0 = drfdt = 1 =6t = t=1/v6. >
Hence, the nghtmost point 15

(1/¥5=-1/(648). &E) = (5.6 ) = (058.2.0). —

23. We graph the curve r = t* = 2t* = 2¢*, 5y = * — ¢ in the viewing rectangle [=2, 1.1] by [=0.5, 0.5]. This rectangle

corresponds approximately to ¢ € [—1, 0.8].

7 |

—0.5 =1

We estimate that the curve has horizontal tangents at about (=1, =0.4) and (=0.17, 0.39) and vertical tangents at

_dyfdt 1.-19 -1
dr — drjdt — 4 =6t =4t

about (0,0) and (=0.19, 0.37). We mlcmm The horizontal tangents occur when

dyfdt =3 =1=0 & t= tﬁi’ s0 both horizontal tangents are shown in our graph. The vertical tangents oceur when

defdt =2(2 =3t =2) =0 = 2(2t+1)(t-2)=0 = t=0, —2 or 2. It seems that we have missed one vertical

tangent, and indeed if we plot the curve on the f-interval [=1.2, 2.2] we see that there is another vertical tangent at (=8, G).

¥

x=cost, y=sintcost, drfdt = —sint,

dyfdt = =sin“t + cos”t =cos 2t (r,y) =(0,0) = cost=0 & tis

an odd multiple of £. When { = £, dr/dt = =1 and dy/di = =1, s0 dyfdr = 1.

When t = %,d::fdl = land dy/fdt = =1. So dy/dx = =1. Thus, y = = and

y = —x are both tangent to the curve at (0, 0).
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44 0O CHAPTER10 PARAMETRIC EQUATIONS AMD POLAR COORDINATES

M= =dsinf, y=v =dcosf.

dr ) dy dy d=ini
{a} E —T—di’.uﬁﬂ"ﬁ —dhl]’.lg,SDE = m.

(b) If0 < o < r, then |[deos 8] £ d < r,s0r —deosf 2 r —d = 0. This shows that dx/df never vanishes,

so the trochoid can have no vertical tangent if f < +.

. dyfdt 32t 1 t 1
B =341 y=1"-1 dy _ Ayt 3L L e tansentline has slope — when & = & t =1, s0the
o +h T dr  dzjdt 6t 2 gentineassiopegwWiel3 =3 = .

point is (4. 0).
. By symmetry of the ellipse about the z- and y-axes,
A=4 [ yde = 4_’:}# bsin @ (=asind) did = 4&!:_[0""2 sin® 6 dff = 4&!:_!::"'2 21 = cos 20) dff

= Zﬂb[{ﬁ' - — sin 29];!2 = Zﬂb{%] = wab

33 Thecurver =1 + 1,y = 2t —t* = (2 — t) intersects the s-axis when y = 0, that
is, when ¢ = 0D and ¢ = 2. The corresponding values of = are 1 and 9. The shaded area
is given by

{yT—yB}d.r f y(t) — 0] ='(t) dt = f{z.&—t}{&:]

I
Iem

v '
=3 [2(2* = tY)dt = 3[;:" - i:“]ﬂ =3(8-2) =2

o

Br=r=dsinf, y=vr=dcosf.
A= [ yde= [["(r = deost)(r —deost)df = [7(r* = 2drcosf 4 d* cos® 8) df
= |:r245I = 2dr sin 6 4+ %dj {3 + %.&'in Zﬁ']]ir = 2rr” 4 wd”
Ma=t4+e™, y=t=e"", 0=t <2 defdi=1=¢""anddyfdt =14, 50
(de/dt) + (dyfdt)* =(1=e" P 4 (1de™ )P =12 e 4 142 4™ =24 272,

Thus, L= [0 /Tdz]dl)® + (dyfdl)? dt = [ 2T+ Ze- 2 dt ~ 3.1416.

B r=t=2snt y=1=2cost, 0 <t < 4dn. defdi =1 =2cost and dyfdl = 2sint, s0

(de/dt) + (dy/dt)* = (1 = 2cost)® + (2sint)? =1 =4cost 4 deos” t + 4sin®t =5 = deost.

Thus, L= [0 \/(dz/dt)® + (dyjdt)® dt = [;'™ /5 — Tcos Lt = 26.7298.
M.x=143" y=44+2* 0<t <1 de/dt =6tand dy/dt = 6%, so (dz/dt)” + (dy/dt)* = 36t + 36¢%
1 1 2
Thus, L:f 35.-,2+3ﬁ¢uz=f 6t 1+.Pd.£=ﬁf Vu (3du) [u=1+¢du=2edt]
i} 1
=1[§ “f‘] =2(2** 1) =2(2+2-1)
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES O 443
4. x =tsint, y=tecost, 0 ¢ < 1. E:lcm£+mntmdﬁz—!ﬁult+cmhm
dr\*  [dy)*
(E) +{d—i:) =t cos’ t + 2sint cost +sin” £ 4+t sin § = 2t sint cost 4+ cos”
= lj{cmz t 4 sin? t) +sin?t +eos?t =1+ 1.
Thus, L= [} P+ Tdt 2 [3tyFF 1+ It + EFT)], = $vZ+ £In(1+32).

45. il r=elcost, y=¢'sind, 0 <1 < 7.

{%f-f + [%ﬂz = [e*(cost — sin i.':]-]2 + [e*{sint + cos .',]]2
= {Et}j{cuﬁz I =2cost sint + sin? t)

+ (e')*(sin® t + 2sint cost +cos” t

-5 25
& = e (2eos? t 4 2sin? 1) = 2™
Thus, L = [ V263 dt = [7/2e'dt = 2 [']] = vZ(e" = 1).
47, 4 The figure shows the curve = = sint 4 sin L.5¢, y = cost for 0 < ¢ < 4x.

defdl = eost + L5eos 1.50 and dy/dt = —sini, so

el

(dx/dt)* + (dy/dt)* = cos” t + 3cost cos 1.5t + 2.25e0s” 1.5¢ + sin” t.

~

Thus, L = J:;r 14 3cost cos 1.5 + 2.25cos® 1.5t dE == 16.7102.

0 c=t—-e¢"  y=t+e, =6 =<t <E.

(=) 4 (2 = (1= e")2 4 (14 )2 = (1=2e" +¥) 4 (14 2 +2) =24 22 so L= [°, VI+2e5dt.

Set f(f) = /T4 Ze™. Then by Simpson’s Rule with n = 6 and At = E=L=8) — 2 we get

L = 3[f(=6) + 4f(=4) + 2f(=2) + 47(0) + 2f(2) + 4f(4) + f(6)] == 612.3053.
.z =sin'il, y =cos" &, 0 < ¢ < 3.

(defdt)® + (dyfdt)* = (2sint cost)® + (=2 cos tsint)? = Bzin® tcos®t = 2sin® U =

2
Distance = [" /T |sin 2t] dt = 6 /3 [*/* sin2tdt [by symmetry] = -aﬁ[cmm:]' = =33 (=1-1)=6v3.
o

The full curve is traversed as ¢ goes from 0 to 5, because the curve is the segment of = 4 y = 1 that lies in the first quadrant

(since x, y = 0, and this segment is completely traversed as ¢ goes from 0 to 3. Thus, L = f"'umnzid-t 2, as above.
53 x =asinf, y=beosd, 0 <8< 2.

[T] +[ :I = (acos@)? + (=bsin#)* = a” cos® # 4 b sin® @ = a®(1 = sin® @) + b* sin” 0

=a’ = {uz - bz} sin § = a® = * sin” # =a2(1 - i_! sin? ﬂ) =a2{l — & sin® 3]
a

So L= 4_["“ a® (1 =e?sin 0) df  [by ymmenry) —aklfr‘” V1 = e?sin® 0d.
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44 0O CHAPTER10 PARAMETRIC EQUATIONS AMD POLAR COORDINATES

55 (a) x = 1leost — deos{114/2), y = 11 sint — 4sin(118/2). 15
MNotice that 0 < £ < 2= does not give the complete curve because
z(0) # =(2x). In fact, we must take ¢ £ [0, 47] in order to obtain the 5 5

complete curve, since the first term in each of the parametric equations has

period 2 and the second has period 7377 = 7F. and the least common

integer multiple of these two numbers is 4.

() We use the CAS to find the derivatives dx felt and dyfdt, and then use Theorem 3 to find the arc length. Recent versions

of Maple express the integral f:' W lde/dt} + (dy/dl)? di as BBE(2 v/Z1), where E(z) is the elliptic integral

f Nivrs Ij ot and 1 is the imaginary number /=1
—t

Some earlier versions of Maple (as well as Mathematica) cannot do the integral exactly, so we use the command
evalf({Int (sgrt (diff (x,t) 2+diff (y,t)"2),t=0..4*%P1i)) ; toestimate the length, and find that the arc

length is approximately 294.03. Derive’s Para_arc_length function in the utility file Int_apps simplifies the

integral to 11 f; V'(—du.m! -::u.a{]T] = 4=int hl]’.l{_ll!} 4+ St

57, x =tsind, y=teost, 0 <t < xf2. defdt =tecost 4 sint and dyfdi = —tsint 4 cost, so

(de/edt)* + (dyfdt)” = cos™ { 4 2tsint cost 4+ sin” {4 *sin” 1 = 2 sint cost + cos™ ¢
= !zirl:f.ni2 (s +5in2£:| + sin? t+ecos’t = i + 1

8= [2ayds = [ 2nt cost/IT + Lt = 4.7304.

Moar=t+e, y=e™, 0=t < 1.

defdt =1+ ¢ and dyfdt = —e™", so (dx/dt)* + (dy/dt)’ = (1 + ') 4 (=e~T) =1 4 2e' 4 ¥ 4 =%,

5= [2nyds = [j 2me~* T+ 2et + e + e~ dt = 10.6705.
BLe=t" y=t 0=t <l (&) 4 (L) = (@) 4 (2 =o' 4 4°.
! 2 ] Lo e '
S‘:f 2ay/ (£) + () d.l:f 2nt !-}t‘+=lt2d::2rrf £/ 12(92 + 4) dt
i} o o
Wilu—4 1 w=92+ 4,12 = (u—4)/9
=2“£ ( )"E(ﬁdu} du = 18t dt, 50 ¢ dt = ohe du

_ = [zu:.,.u :ua,m] " .2 [3:.:"-'" — 90 1;2]
4

BT

3
ut? — 4ul"rj]-du

B

== [(3-13"v13-20-1313) = (3-32 = 20-8)] = 35 (247TVI3 + 64)

6. r=acos® 0, y=asin”#, 0 <8 < <. (5_5]1 + {%E-:Ij = {—ﬂ-uu.mj # sin#)® + (3asin® @ cos#)® = a® sin® 8§ cos” @,

8= J::"rz 27 - asin® @ - 3asin @ cos # df = Gxa’ j?"rj sin® 6 cosfl dfl = Sma’ [HII‘.I." Ei"] == txa’
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES 0O 445

r q ' r G c
85 r=3t%, y=20°, 0t €5 = (L) 4 (&) =(61)° + (6°)* =361 + %) =

§= [ 2ma /(de/dt) + (dy/dt)? dt = [ 2a(3t)6t T+ 2 dt = 187 [ #*/T+ 2 2t dt

g =1+, AT 3 mga 3 aga]®
=187 [ (u=1) Judu |*Z1F! ] = 187 [*(u™? = u"?)du = mn[;uw - gu’*ﬂ]l

= 18a[(£-676vI6 = - 2626 ) = (3= )] = L (M6 + 1)

67. If ' is continuous and () # 0 fora < t < b, then either ['(t) > 0 forall ¢ in [a, b] or f'(t) < O forall £ in e, &), Thus, f
is monotonic (in fact, strictly increasing or strictly decreasing) on [a, &]. It follows that [ has an inverse. Set F =go =7,

that is, define F by F(z) = g{f~"(z)). Thenz = f{t}) = [~Yz) =t soy=gl(t)=g(f~"(z)) = Fiz).

o dy d _ d A 1 d dy dy _dyfdt _ 3§
®. (a) ¢ = tan (r) = o (E)—W[E(E] B T &jai - %

d ] d i & — Iy deh 1 Wi — iy i = Iy
( H) (E)zyl' Ty i (UI_Z-FH)=g+?_llsmgtheﬂhamRule,aﬂiﬂT
]

dt\dz) = d@t 2 a1+ @)

mmu:f;uf(%fu%fm = a2 = (3 4 %) we have tha

do _ dejdt _ (- & __d@i—dy o |do| | &j-3y |_ _|#j -y

ds dﬁ',l;'lﬂ- R +!,|' {I -|‘-i.|| 1_,:"2 - {f +L'I,2:..‘i-,.l'2 db’ {5_.24_#2]3_,:"2 - {J'_.ﬂ_l__ﬂz]_yj'
bz =zandy = flz) = '—1"—l]and'—d—y"—dj—y

r=1m v = flz t=1££= y_dx'y_dr”'

So p = |11 (@y/dz®) =0 (dy/dz)] _  |d*y/dz’|

s [1 + (dy/dx)*]** L+ (dy/dx) [

Marz=0=sinfl = F=l=cosfl = F=sinfandy=1=cosll = F=sind = §=cosd Therefore,

|{.‘Lmﬂ—t.'ﬂﬁzg—ﬁ:-l.llzﬂ| Icmﬂ—{cm2ﬁ+ﬁin2 ﬂ‘:l-l |cusﬂ—_'l| )
E = - = E 3 . The f the h
[(T—cof)’ 4 s 077  (1-Zomf+co 04 sl 072 (Z—Zcosg)pre o opOICACRE

characterized by a horizontal tangent, and from Example 2(b) in Section 10.2, the tangent is horizontal when & = (2n = 1),

Jeos T = 1| |=1=1] 1

(2= 2cosm)?/2 — [2=2(=1)]32 " T

s0 take i = 1 and substitute # = 7 into the expression for k2 & =

T3 The coordinates of T are (rcos®, rsin#d). Since T was unwound from K
arc TA, TP has length rf. Also £PTQ) = £PTR— £QTR= 37 -0, . ;’(’/
s P has coordinates z = r cos® + ré cos(1x — 8) = r(cosd + 8 sin#), . ¢
y=rsint = rfsin(ix = 8) = r(sing = 6 cosd). — £ < : -
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44 O CHAPTER10 PARAMETRIC EQUATIONS AMD POLAR COORDINATES

10.3 Polar Coordinates

1 (a) (1. 5) e By adding 2= to 5, we obtain the point (1, 2%), which satisfies the
1T

r = 0 requirement. The direction opposite T is 2%, s0 (-1, &) isa

point that satisfies the » < 0 requirement.

(b) (-2, %) (o 32 r>0: (=(=2).3E -7x)=(2,%)

0z (=2, 4 +27) = (=2.7F)

(c) (3.-%) r=>0: (3, -F +2x) = (3, 3F)
7] - - r<0: (=3, =% 4+ 7) = (=3, F)
-F
(3-F)
3. (a) - r=2cosiE —EID}_Dandy_Eam—_Z{ 1) = =2 give us the
2, Cartesian coordinates (0, —=2).
o i
w (2. 3
(b) (V2.2) Izﬁtw%zﬁ(ﬁ)—lﬂlldy_v“'iﬁlll—zfr(‘_r)z

give us the Cartesian coordinates (1, 1).

e TN — (M3 V3
ic) I——ltu&(—E) _-I(T) = _Taﬂd
y=-=1 Hin(—%) =—l(-%) = % give us the Cartesian
coordinates (—?1 %)

S az==4dandy =4 = r= \.-'E—4i2+42 =4/Tand tand = _iq ==1 [ﬂ:—% + nw]. Since (=4, 4) is in the
second quadrant, the polar coordinates are (1) (44/Z, 22 ) and (1) (—44/2, I%).

w"

(b)r=3andy =3V = r=1/324(3v3) =TT T =6andtand = == = T [0 = F + nn)

Since (3, Hﬁ] is in the first quadrant, the polar coordinates are (1) (6, 5) and (ii) [—ﬁ-, =)
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SECTION 103 POLAR COORDIMATES 0O 447

L r =1 Thecurve r = 1 represents a circle with center Orz0 x/4<80<3x/4
O and radius 1. So r 2 1 represents the region on or # = k represents a line through .
outside the circle. Note that # can take on any value.

13. Converting the polar coordinates (4, 57 and (6, 5F) to Cartesian coordinates gives us (4eos 57, 4sin 37 ) = (=2, -2,/3)

and (6eos2E 6sin 25 ) = (3, —=3+/3 ). Now use the distance formula

d= @ =nP i —w P = /B - (-2 + [-3v3 - (-2v3)]’
= /5% + (—«ﬁ]z =25 +3=128=24T

15 r? =5 & z%+4y* =5, acircle of radius /5 centered at the origin.

M. r=5cosf = ri=5recmfl & 2+y'=5z < 5.r+z"+y =T"' = [I—%]2+yj=%,
a circle of radius  centered at (7, 0). The first two equations are actually equivalent since r* = 5reosd =
r=5ewl)=0 = r=0orr=>5cosf) Bulr= 5cos# gives the point r = 0 (the pole) when # = 0. Thus, the

equation r = 5cos # is equivalent to the compound condition (r = 0 or r = 5eos #).

19 ricos2 =1 = rj{:cueiuﬂ — sin® N=1 = {rcmﬁ']j - {r.ﬁinﬁ']j =1 = z° —‘i,||2 = 1, a hyperbola centered at

the origin with foci on the z-axis.

2
Hy=2 & rsinf=2 & r=— & r=2csch
sin f

By=14+3r & rsinf=14+3rcosf? = rsinf=3Jrembii=1 < r{sinﬂ'—ﬁcu&ﬂ]:l =

1
" sinfl = 3cosf

Bl =% = P =%crcosl & rP=Zcremsfi=0 = rir=2ecosd) =0 < r=00rr=2ccost.
r = 0is included in r = 2ecos  when & = & 4 nm, so the curve is represented by the single equation » = 2ccos .
21. (a) The description leads immediately to the polar equation & = £, and the Cartesian equation y = tan(£) = = ?1; x5

slightly more difficult to derive.
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448 O CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

(b) The easier description here is the Cartesian equation x = 3.

B r==2sinf ri

i

12, 32}

M r= El[l + c{mﬂ]

=

4, 0}

m in' t
Br=d 6=0 r
/ﬁj \ﬂw. 1wl
i) ]
35 r=3cos36
¥
34
1 +
I &
—34
M. r=2cosdf

3/ r=1<+3Fcosd r

DL
\J/
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SECTION 103 POLAR COORDIMATES 0O 449

M. v* = 9sin 29 2
it
. (3 w4
i}
u rr o q
-3t
43 r =24 zin3f
’ {3, mih)
1l (\/}
14
s
Iz
ir 1= g ¢
i [ 3]
45 r = a-iinl[ﬂ‘fﬂ:l
! 3
't (%)
H— M. -!|.Fln3\-:—l.3vr:-

H
w
=
"

47. For @ = 0, m, and 2=, r has its minimum value of about 0.5. For @ = J and ?",T', r attains its maximum value of 2.

We see that the graph has a similar shape for 0 €0 < wand 7 € 8 < 27

(

89 r =veosl = (44 2sect)cosf =4eosf 4 2. Now, r = oo =
(44 2secl) = 00 = ﬁ‘—s{%}'nrﬁ—v{%’]* [since we need only

consider 0 < # < 2x),50 lim x = lim (deosf 4 2) =2 Also,

e B f2—

re= =g = (44 Zsecl) = =co = Ei‘—-[f}*'nrﬂ—r{"?’]',sn

lim = lim (4cos8 <4 2) =2 Therefore, lim =2 = z = 2isavertical asymptote.
o = G2t s o
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450 O CHAPTER10 PARAMETRIC EQUATIONS AMD POLAR COORDINATES

51. To show that = = 1 15 an asymptole We must prove li]’.il:l x=1
r=etoc =1
=(r)cost = (sin® tanf) cos @ = sin” @ Now,r — oo = sind tanf — 0o = J
o

Ei"—i-{} 50 lim x = lim sinﬂﬂ:l.hls‘.ﬂ,r—-—-::c = sinf tanf — =co =

L e f2—
ﬂ'—h{ } o0 lim == lim sinﬂﬂ'zl.ﬂberefme, lim =1 = x=11s

r——2c f—emjat rovtec

a vertical asymptote. Also notice that = = sin® @ > 0 forall #, and z = sin® 6 < 1 for all §. And = # 1, since the curve is not

defined at odd multiples of . Therefore, the curve lies entirely within the vertical strip0 < = < 1,

53. (a) We see that the curve » = 1 4 csin# crosses itself at the origin, where + = 0 (in fact the inner loop corresponds to

negative r-values, ) so we solve the equation of the limaconforr =0 & esinff= =1 & sin# = =1fe Now if
|2] < 1, then this equation has no solution and hence there is no inner loop. But if ¢ < =1, then on the interval (0, 27)
the equation has the two solutions § = sin~'(=1/¢) and # = 7 = sin~*(=1/¢), and if ¢ > 1, the solutions are

8 =x +sin='{1/c) and # = 2z = sin='(1/c). In each case, r < 0 for # between the two solutions, indicating a loop.

ib) For 0 < e < 1, the dimple (if it exists) is characterized by the fact that y has a local maximum at § = :’T" S0 we

2

d
determine for what c-values d;j is negative at f# = 4T = since by the Second Derivative Test this indicates a maximum:
. - - dy dﬂ
y=rsinf =sinf! + csin"§ = pr =cosf 4+ 2esind cosf = cosf + csin28 = F——unﬁ+2ccm33

At 8 = 2=, this is equal 1o =(=1) 4 2¢(=1) = 1 = 2¢, which is negative only for ¢ > . A similar argument shows that

for =1 < ¢ < 0, y only has a local minimum at # =  (indicating a dimple) for ¢ < —%.

55, r=2¢cosf = r=reosf =200,y =rsint =2sind cosf = sin20 =

dy  dyfdi 2 cos 20 cos 28

dr = dejdB — 3 DcosB(—sinf) — —=in2d — 1%

=T __, N =eatT=L1 .
When 8= 2, = = —cot (2 3}_cm.3_f§_ [Anather method: Use Equation 3.)

S.r=1f8 = zr=rcost = (cost)f0,y =rsind = (sind)/0 =

dy _ dyfdé sin 8(=1/6%) + (1/8) cos®  &* _ =sinf 4 foosd

dr ~ dx/df ~ cosf=1/6%) = (1/8)sinf 87 T —costl = Osinf

__dy  =D4w(=1) =7
mﬂ—ﬂ,a—m————#.
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SECTION 103 POLAR COORDIMATES O 451

5, r=ecos 2 = x=rcosl =cos cosll y =rsinf = eos20 sinfl =

ﬂ _ dyfdﬂ _ cos 20 cos @ 4 ﬁi.llﬁ{-iﬁiniﬂ‘}
dr d:rfdﬁ T eos Eﬂ‘l[— sinﬂ] + E{JHE{-EH:‘I.I‘.I.E&]

0(v2/2) + (v2/2)(=2) _ =2

dy —
dz 0(—vZ/2) +{ﬁ.-'"-,-"2]{—2} —Z =t

=
When# = —,
"w=r

6l. r=3cosf = r=reosf=3cosf eosfl, y =rsinf =3cosf sinfl =
H=-3sin’0+3cos”0=3cs2W=0 = W=For¥E & O=5Forll
S0 the tangent is horizontal at (:fff %) and (-:‘:‘E ‘%’) [same as (?:‘E-f)]
& = —6sinfeosf = —3sin20 =0 = 20=0or7 < @=~00rZ. Sothetangent is vertical at (3,0) and (0, ).

6l r=14cosfl = z=romstl =cosl(l4cosl), y=rsinf =sind (14 costl) =

= (14 cosd) cost = sin® 6 = 2eos™ 0 4 costl = 1 = (2eosf =1)(cosf + 1) =0 = ecwfi=Zor=1 =

-

=Z.mor & = horizontal tangent at (3, ), (0, =), and (3, ).

:‘—f:—{1+cmﬂ'}ﬁinﬂ'—:.usﬂﬁin3=—:-iini?{l-{-zcmﬂ'}zﬂ' = rii.llﬁ:ﬂﬂfcmﬂ':-% =

#=0,x 2F or 4T = vertical tangent at (2,0), (3. 5%).and (3. 3F).

Note that the tangent is horizontal, not vertical when & = «, since ||I|| dy::'dﬂ
[ I

B5. r — asin® + beosd = ¢ —arsinb + breosf = P ry =ay+br =

T _1..;[.4.{11;] 4+ —ay+ (1 u} —{11:] +{Ja} = [.z——b} +{y-—a} —1{a + &%), and this is a circle

with center (2b, $a) and radius $/a” + =3

B7. r = 1 4 2sin(#/2). The parameter interval is [0, 4x]. B9, r = &5 — 2 cos(48).
- The parameter interval is [0, 2x].
ER]
-3 1
—25 ’

M. r = 1 + cos™™ @. The parameter interval is [0, 2x].

1.1
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452 O CHAPTER10 PARAMETRIC EQUATIONS AMD POLAR COORDINATES

73. It appears that the graph of r = 1 4 sin(# — £ is the same shape as

the graph of r = 1 + sin#, but rotated counterclockwise about the (v = 1+sin8
ke = 1+ sinf@ —Z |
origin by . Similarly, the graph of r = 1 4 sin(# — $) is rotated by |+ :::.y :.I
Fr =1+ sinjd — % |
3 In general, the graph of r = f{# — a) is the same shape as that of

14
= _r (i) , but rotated counterclockwise through o about the ongin.
£l

That is, for any point (ry, ) on the curve r = f(#), the point
{:ra, & + nj] is o the curve r = _,I"f_ﬂ‘— u], since rp = f{ﬁaj] = f{{ﬂu + EI::]' - n].

75, Consider curves with polar equation + = 1 4 ceos 8, where ¢ is a real number. If ¢ = 0, we get a circle of radius 1 centered at
the pole. For 0 < e < 0.5, the curve gets slightly larger, moves right, and flattens out a bit on the left side. For 0.5 < e < 1,

the left side has a dimple shape. For ¢ = 1, the dimple becomes a cusp. For ¢ = 1, there is an internal loop. For e 2 0, the

rightmost poirt on the curve is (1 4 . 0). For e < 0, the curves are reflections through the vertical axis of the curves

withe 2> O
L5 1.5 1.5 2
. ~ - ¢ 5 7
_] /\ N (/’\ N /_\ N |
L A LY " \ -
=1.5 - - -2
e=0.25 e=0.75 e=1 e=2

tand = tan d_y—lanﬁ" %—l&mﬂ‘

1. tand = tan{d —8) = _ dr _
. 1 + tand tané 1+d—yliu|ﬂ‘ l+_dy,-"dﬂ
dx dz {df

tan &

% - % tand (% sin 4+ T*-'l-ﬁf-') = lﬂlﬂ(%tmﬁ‘— T sin ﬂ‘) reoed 4+ r - HiI'Ej
= = e
T dr  d - - T
d‘T-i- d‘—?tﬂnﬁ (% :_mﬂ—rﬁiuﬂ) + lilIIﬂ'(j—; sin B 4 reos 6 dﬂt{hﬁ-’-:ﬂ on :
i
_ reoos 4 rsin® 8 T
% cos? § 4 j—; sin” @ dr [df

10.4 Areas and Lengths in Polar Coordinates

Lr=e gzf2<o<n

A :f _rldg f 1{ -E‘H}zdﬂ f % =812 g — %[—22‘”2] " _ —ll:e""m _E_-,M} = p==4 _ ==/
w2

Coprright W6 Cengage Learsimg. A0 gy Rienerved. Wy ot be coped, scanned, or deplacaied, m whok or in pert. Du o chociners sights, sorme thind party comte moy be spprened from the diock andier o hepierial.
Esbirrea rovars: b decmcd that asy wepproncd content doc st mateuly affet e overall kerming cxpencsce. Umgage | sameng rewrves the nght te renovs ackdial comiant o sy bne = vebeguon g o com reours o,




SECTION 10.4  AREAS AND LENGTHS IN POLAR COORDIMATES O 453
Lr=sind +ecosll, 0=<0<x.
fl:Jlr l‘rjdﬂzf l[sinﬂ-{-cmﬂ}zdﬂ =f l{}iilﬁﬂ-{-ﬂ}iinﬂ'tﬂﬁﬂ‘{'-cmgﬂ}dﬂZf l|:l+:ai.||2ﬂ:lrlﬂ
o 2 2 o 2 a 2
_E[ﬂ-ﬁtmzﬁ] =i(r-%) -(0-%)] =%
5 ¢ =sin20, 058 <=2
/e 1.2 e 1. 1 =2 1 1 1
A= A g odf = A 3 sin 20 df = [—;u.mﬂﬂ]a ==jleosm —cosl) = =4(=1=1)= 3
T.r=4+ 3sind, —% = i< %
w2 wf2 ]
A:f 3((4 + 3sin8) dff = & (16 + 24sin f + 9sin” ) db
=mf2 =mf2
=41 f (16 + 9sin” @) d@  [by Theorem 5.5.7(h)]
=2
w f2
=1 -zfﬂ [164+9-1(1 —cos28)]df  [by Theorem 5.5.7(a)]

w2
=f (4 — 2cos26) df = [0 — 2in20] 7" = (42 —0) — (0 - 0) = &=
L]

9.ﬂbearealsbnundedbyr:ﬂsinﬂfﬂrﬂ:ﬂmﬂ::rr. iz, w2l
J’[:‘llr %rzdﬁ‘zéf {Esillﬂ:lzdﬂzéj- 4sin” 8 dp
i} (1] [1]
=2f %I{l—cmiﬁ']dﬁ‘:[ﬂ‘—%ﬁinﬂﬂ]'=# roe 2 sin 6
o 1]
0

Also, note that this is a circle with radius 1, so its area is 7(1)? =

2x 2x 2
1. .fl:f %rEdﬁ :f é{ﬂ+2¢u&ﬂ]jdﬂ:%f (9 <+ 12costl 4 4cos” &) dit
i}

L L (3, w2
2
= %f [9+ 12cosf 4 4- 11 +L'uﬁ23l,|] dtf L. m(q
o
x . (
=1/ (114 12cosf + 2cos20)df = 1[118 + 12sin 6 + sin26] |~ 3.3 'hd

0

= %{Eﬂrr] =1lx

2

I i
13 zl:f %rl‘!dﬂ :f %{2+5indﬂ}2dﬂ=% {4+4Hin4ﬂ+ﬁhl24ﬁ}dﬂ' 3
1]

: nz: [4+ 45in 46 + 3(1 — cos 88)] df j ,g\\/?
=)

'y g
:%J{; {§+45in4ﬂ—§cmﬂ-ﬂ:]dﬁ:%[%ﬂ—cm-iﬁ—ﬁsinﬁﬂ];’

= zl(97 = 1) = (=1)] = 3=
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454 O CHAPTER10 PARAMETRIC EQUATIONS AMD POLAR COORDINATES

I
15. ;’l:f ET b = f l+<_ue.‘!5|9) df
i}

1.4
T Fa o
=%f {1+cm25.|9]d9:%f [1+ (1 + cos 108)] d6 N N
1] 1] . =
= %[%ﬂ-{-— %Hill lﬂﬂ];t = %{E-rr] = %.‘ﬂ' z’L/

_] |4

17. The curve passes through the pole whenr =0 = 4cos30 =0 = cs3f=0 = 3W=F4+mm =

# = £ + Fn. The part of the shaded loop above the polar axis is traced out for

# = 0to 8 = /6, so we'll use =x /6 and 7 /6 as our limits of integration. Q r=4cos 38
x 6 w fl .
A:f 1 (4 cas36)? .:m:zf 1 (16 cos” 36) df —
- o
=[G =6
=1Ej; %{l+u.mﬁﬂ]dﬂ:3[ﬂ+%ﬁinﬁﬁ]ﬂ =B{%]=§i‘l‘
8. r=0 = sindl=0 = dM=mn = #=In r o sin 44

xfd ) w4 . w fd
A:L %{sinnlﬁ‘}zm?:%L sin? 40 = 5£ £(1 = cos 860) df

= %[ﬂ‘— —sulEﬂ]"'rd' =i(Z)=1inm

r=1+ 2sin #{recr.)

This 15 a limagon, with inner loop traced
r=1+ 2xin @

out between # = IF and 2% [found by

solving ¥ = 0]

-\..\H
_Ix* _ s
=< o=1c

axf2 ) A 2 ) an/2
A:ﬂf 3(1 + 2sin#)" db = (1 + 4sin 6 + 4sin” 6) df = [1+4sin8 + 4. 3(1 — cos20)] dff
T f e

TG
kLo
[ﬁ—dtu-.ﬂ+2-ﬁ—aln25] J” ‘k —(7"+21,-"— ):;'|'—“"+"E
3 4sinf =2 = ﬁinﬁzi = i‘?:%ﬂr% = s

a6 xf2

_fa:f L[(45in 0)? -:ﬂu&:zf L(16sin 6 = 4) df
w fis w i
w2 wfE [1' i_:':' [1%]

= [15-%{1-:;;52&}-4]&9:]' (4 = Beas26) db

w6

w6 [l "
=[45'—45in29]::={23—E}—{2T'—2v"'§}="%+2vﬁ r=12
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SECTION 10.4

25, To find the area inside the leminiscate +*° = 8 cos 20 and outside the circle r = 2,
we first note that the two curves intersect when r~ = Scos 26 and r = 2,
that is, wheneos 20 = 2 For —w < 0 < 7w, eos 20 = 3 & 20 =+n/3
of +5%/1 & 0= %76 or £5x /6. The figure shows that the desired area
is 4 times the area between the curves from 0 to = /6. Thus,

A=4 "FE [1 {E'EUH 29} = %{212] '*'“{zm. 26 - 1} dd

— 8 [si..zﬂ - ﬂ]:’rﬁ = 8(v3/2 - n/6) =43 — 4n/3

7. 3eosb =1 4 cosl & cmﬂ‘:% = #=For—y.
A=2 [T L[(3cos)? = (1 4 cosf)?] db
r‘n{ﬁtm 0= 2cosll =1)dil = J"‘n (14 cos20) =2cosfl = 1]df!
:er3{3+4u.r52{;—2cmﬂ‘}dﬁ [39+2hulﬂﬂ Emnﬂ]’”
=r+v3=-v3=n
29, 3sinf = Jcos 3ﬁmﬁr:.'l = tanfi=1 = #=% =
Jeosd 4
wfd . = fd wfd
zl:Ej: %{ﬂﬁhlﬂlzdﬁ:‘/; 9sin’ 9dﬂ:£ 9 2(1 = cos 26) dft

xfd

(0 -0)

I
ey

(%= Zeos20)do = [30 = 2sin20] " = (2 - 2) -

Il
=5
]

[ [

sin 26
cos 24

3. sin 20 = cos 28 =1 = tanW=1 = W=% =

=2 =

L FE ] a8
A=38 -zf gﬁh.ﬂwdeﬂf L(1 = cos 46) df
0 1]
=4[Ei|‘— %ﬁindﬂ‘]:ﬁ

33. From the figure, we see that the shaded region is 4 times the shaded region
from# =0twd==n/4 +* =2sin2andr=1 =

5in25’=% = Eﬁ:% == ﬂ_ﬁ

2zinMW =1 =

xf12 = 4
A= 4]; (2 sin 26) dft 4 4f %I[l:]- dff

w12
w12 = /4 w12 x4
:f 4 sin 26 dif -I-f 2df = [—Zcuﬁiﬂ] + [Eﬂ]
o xf12 o xf12
=(=v3+2)+(5-5)=—/342+Z

AREAS AND LENGTHS IN POLAR COORDIMATES O 455

A =fes2l

r=1+cof

r=3pos i

r=3sni

= =i 2#

r’=2sinl#
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456 O CHAPTER10 PARAMETRIC EQUATIONS AMD POLAR COORDINATES

35. The darker shaded region (from # = 0to & = 2x/3) represents 4 of the desired area plus § of the area of the inner loop.
From this area, we'll subtract J of the area of the inner loop (the lighter shaded region from & = 27 /3 to @ = =), and then

double that difference to obtain the desired area.

A=2 J-zir.:":! 1{ +EU&-HJ A - IA«}JJ{E+LU&& dﬁ]

|
r=5+ocos i

= 377 (3 cos0+ co 0) d0 = [, (3 + cost + cos?0) do
S [+ con+ 401+ con20)] b

= J::f:! [% + cos 4 %{1 +‘-"-""39}] dff

=(F+F+3-9)-G+D+(+F+5-4)

—2+3Vi=3(x+3V3)

Lo =

+=infl 4+ = 4 I+:iinﬂ+§+ 1

6 sin20]*?* [e o sinﬂﬁ‘]'
2 L

37. The pole is a point of intersection. sinf =1 —sind = 2sinf=1 = = sin @
sinf =% = 6= % or 3£ So the other points of intersection are
(3.%) and (3, 5)
r=l=sam#
39 2sinW=1 = Hinﬂﬂ‘:% = W:%,%,%,m%_ r=1
By symmetry, the eight points of intersection are given by /
r=2sin2f
(1.6), where§ = L, 3= 1= and 172 and
(=1.6), where = I Lx 1% a4 2
| There are many ways to describe these points. |
#1. The pole is a point of intersection. sin# = sin28 = 2sinf cosf = [Znd
sinf(l—2eosf) =0 & sinf=0orcosf=; =
#=0,m F,0or =% = the other intersection points are (-'; %)
g ) etry
( - [h} symm ] r=sml#
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SECTION 10.4 AREAS AMD LENGTHS IN POLAR COORDIMATES O 457

\_/ y=1+sinx

From the first graph, we see that the pole is one point of intersection. By zooming in of using the cursor, we find the f-values
of the intersection points to be a == 0.88786 == 0.8% and 7 = a == 2.25. (The first of these values may be more easily
estimated by plotting y = 1 4 sinx and y = 2 in rectangular coordinates; see the second graph.) By symmetry, the total

area contained is twice the area contained in the first quadrant, that is,
o w2 ; a wf2

;‘l:ﬂj- %{233]2 dlg-i'-EJIr %I[l-{-sillﬂ}ddﬂ:j- 49sz+[ [1+25in9+%{1—cm2{?}]dﬁ'
o i o

= ["9‘1]n + [ﬂ‘ Deosl 4 {13— -mnEﬁ']] u:! + [{% + E] - {u -2 eos o 4 %u -— %Hiniu_}] == 3.4645

5. 1= [ VAT GTER s = [/ (2
a (1]

[ i = [ Vi = ] =

As a check, note that the curve is a cirele of radius 1, so its circumference is 2x(1) = 2x.
] Swr B
4. L= f JTEF (dr/do)E db =f J(6%)2 + (20)2 do = f VO + 467 do
a (1] ]
Ex Qo
:f 1fﬂ“{ﬁ“+4};ﬂ:f 0e + 1dp
0 o

Now let u = 6" 4 4, so that du = 28dfl [#dfl = L du] and

f“g & 4 4d0 :f“ " FVudu= ;- %[um]‘{’?“} =1/ m{ﬂ + ”w _ :c.rz] _ _[{# + 1}*” 1]
0 1 4

49, The curve r = cos*(6/4) is completely traced with 0 < # < dx. J

r o+ (dr/di) = [cos®(8/4)]" + [4 cos*(8/4) - (—sin(#/4)) - 4]

= cm“{ﬂf-‘i]- + cmﬁ{ﬂfﬂ sin? (8/4) —1,7% 125

= cos" (8/4)[cos"(0/4) + sin®(8/4)] = cos"(8/4)

Jo© /o (B/4) do = [, |cos*(8/4)| db

= ﬂ_rﬂ Teost(0/4) df  [since cos® (8/4) > 0for 0 < 8 < 27) :'E-j:]""f2 cos® wdu  [u= 30]

I = sinu,
dr = cosu du

= S_I;r"rj{l —sin” u)cosudu =8 [ (1 = z)dr

=8z -], =8(1-3) =%
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458 O CHAPTER10 PARAMETRIC EQUATIONS AMD POLAR COORDINATES

51. One loop of the curve r = cos 28 is traced with —x /4 < 8§ < =/4.

™ (:’;) = eos” 26 4 {—Zsinﬂﬂ‘}z = o 20 4 45in® 20 = 1 4 Fsin® W =

wfd
v 14 3sin? 260 df = 24221,

= fd
53. The curve » = sin(6sin ) is completely traced with 0 < 8 < x.  r = sin(6sind) =

]
:—; = cos(Bsind) - 6eosf, sor + (:—;) = sinj{ﬁ sin ) + 36 cos” # cos®(Bsind) =

L :f k/sin”l[ﬁsinﬂ] + 36 cos® 8 cos? (6 sin 8) df == 8.0091.
o

55. (a) From (10.2.6),

S = [ 2my /T A0 + (dy D) df
= f: 2y 4 (drfd@)? dif [from the derivation of Equation 10.4.5]

= f: 2rrsindy/r 4 {drf{.l'.ﬁ']zdﬂ

{b) The curve r* = cos 26 goes through the pole when cos 260 =0 =

[“_ £:l e — 1)
260=35% = 0=3% We'llrotate the curve from & = 0 to & = £ and double ! —_
i, 00
this value to obtain the total surface area generated. 7

dt 49 rf T o9

=/4 w4 ] PR
5:2[ 27 Vieos 20 sin / cos 26 + (sin® Eﬂ}fcmiﬂdl?:d#f chiﬂﬁhlﬂv w'cﬂ?
i i) OOs

. el dr\*®  sin®20  sin® 20
=2 = Ir— =-=2&n28 = (r) = =

xf
—4:I'rf W oo mnﬁ'mdﬁ‘ 411]; JHiIlﬂdﬂziﬂ[—ﬂ.m ]:“:—4#(-"?—1}:2#(2—»’5}

10.5 Conic Sections

1..:2=G;,ram:l.':2=4py = 4dp=6G = p=%. 3.2.::—1;2 == ;;2:—21'. dp==2 = p=—%.

The vertex is (0, 0), the focus is (0, £), and the directrix The vertex is (0. 0), the focus is (—3.,0), and the

sy==2

=1
3 directrix 1s £ = 5.

T P
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SECTION 105 COMICSECTIONS 0O 459

5 (x42)" =8(y =3). 4p =8,s0 p =2. The vertex is Ty +6y+2:41=0 & p4+by==2r-1
(=2, 3), the focus is (=2, 5), and the directrix is S 4y +0==2r4+58 =
y=1 (+3)? ==2(x—4). 4p=-2s0p=-}.

¥
The vertex is (4, —3), the focus is (£, —3), and the

=1 5.
\// directrix is = = 3.
.".

! 1

-4 I

(.-3)

=

.-l-""'-‘-‘# ¥

9. The equation has the form y~ = 4pa, where p < 0. Since the parabola passes through (=1, 1), we have 1° = 4p(=1), 50

2

4p=—land anequationisy” = —zorz = —y”. 4p = —1,s0 p= —1 and the focus is (=30} while the directrix

sx= i
2 2
11.%+3’T=1 = a=+v1=2b=vZ2e=vai—B=4I-2=+2 The

ellipse is centered at (0, 0), with vertices at (0, £2). The foci are (0, +4/2).

—y2
-1
. 2t
13. 2+ =0 = T+T=1 = a=+0=1, 15 0r® — 182 4 4° =27 =
2 2 __ o
b:ﬁzl,vﬂ: .-—_ruz_b — ﬂ-l:ﬁzzﬁ. Q'l::I —2I+l::|+4y = 27 +9 =
The ellipse is centered at (0, 0), with vertices (£3, 0). Hr=1 +4°=36 o {I-llz+£=1 —
4 9

The fi +2+2,0).
oci are (+£2v/2,0) a=3b=2c=+5 = center(1,0),

1 vertices (1, £3), foci (1, £+/5)

- -
o =20 22w "

_|t . B

=3

2

3
17. The center is (0, 0), a = 3, and & = 2, 50 an equation JSIT +% =1 =+ = b =+/5, so the foci are {l],i\ff_:).
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460 O CHAPTER10 PARAMETRIC EQUATIONS AMD POLAR COORDINATES

2 2

19. L2 1 = a=5b=3c=vHB+0=+/31 = 7
25 9 h, 34 ¥ =*q.'-*
L/
center (0, 0), vertices (0, £5), foci (0, /34 ), asymptotes y = + 3. i3, 5
i, 511
Newe: 1t is helpful to draw a 2a-by-2b rectangle whose center is the center of
the hyperbola. The asymptotes are the extended diagonals of the rectangle. x
i), =51

i, =+, A
2 x
N 2% =% =100 = _¥ =b=10 ) =
* ¥ = 100 100 =« ! (161, 1l
e= IO+ 100=10y2Z = center (0,0), vertices (+10, 0), _\
I INERIT M., e RN

foci (£10v/2,0), asympiotes y = 38z = +x

=

/

y=-x

B =y’ 4+y=2 = rj—{y2—2y+1:]-=2—1 = It oy=x+1
2 2 .
I__"-r.y 1} =1 = a:b:l‘c:\m:ﬁ = - - [\.E'I.I
1 1 (Y I!—'j v
=1, 0 01,4
center (0, 1), vertices (1, 1), foci (£+/2, 1), -
asymplotes y — 1 = :l:%x = . |
y==I=
. o 2t g
Bal=y'44 & & -y'=14 & —- T =1 Thisisan equation of a yperbola with vertices (£1.0).

The foci are at (£/T+ 4,0) = (£/5.0).
Nl =ay=-2 = .1:2+2y2—4y=|i} = Ij+2{y2—2y+1]=2 = Ij+2{y—l]2=2 =

2 -1 ]
I? + M = 1. This is an equation of an ellipse with vertices at (+/2, 1). The foci are at (£+/2=1,1) = (£1,1).

B3I -fr=-y=1 & F'-6r=+1 & H'=2c+1)=29+1+3 & Hz=-1 = +4 &
(z = 1)* = #(y + 2). This is an equation of a parabola with 4p = 3, so p = £. The vertex is (1, =2) and the focus is
(L.=2+3)=(L=-%)

3. The parabola with vertex (0, 0) and focus (1, 0) opens to the right and has p = 1, so its equation is y* = 4pr, or y* = 4.

33. The distance from the focus (—4,0) to the directrix = 215 2 — (—4) = 6, so the distance from the focus to the vertex is
(6) = 3 and the vertex is (=1, 0). Since the focus is to the left of the vertex, p = =3. An equation isy” = 4dp(x +1) =

yj = =12{z + 1).
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SECTION10.5 COMICSECTIONS O 481

35. The parabola with vertex (3, =1) having a horizontal axis has equation [y — (=1)]* = 4p(x — 3). Since it passes through
(=15.2), (2 + 1}2 =4p(-15-3) = G=4p(-18) = 4dp= —%. An equation is (y + 1}2 = —%{I -3

37. The ellipse with foei (£2, 0) and vertices (£5, 0) has center (0, 0) and a horizontal major axis, witha = 5and e = 2,

b 2
b =gl =25-4=21 A i —t =1
S0 a nequalnn1525+21

39. Since the vertices are (0,0) and (0, 8), the ellipse has center (0, 4) with a vertical axis and & = 4. The foci at (0, 2) and (0, &)

(=02 =9 _,

are 2 units from the center, so ¢ = 2and b = va” = ¢f = 47 =27 = +/12. Anequation is 7 - =
e

C k)

12 1w

2 2
#1. An equation of an ellipse with center (=1, 4) and vertex (=1,0) is [I';;” + (y :24} = 1. The focus (=1, 6) is 2 units

@+ =9 _

from the center, so e = 2. Thus, & + 2 =4 = b = 12, and the equation is

12 16
.1:2 yz 2 2 2
43, An equation of a hyperbola with vertices (+3,0) is ToE- 1. Foci (£5.0) = e=5and3° 44 =5° =
2 2 !.I'2
& =25-D=1ﬁ,sumeeqmunnjsi-ﬁ L

45, The center of a hyperbola with vertices (=3, —4) and (—=3,6) 15 (=3, 1), s0 a = 5 and an equation is

¥=17° (z+3)°
B

w=1°_(@+3)° _,
25 I

=1 Foci (=3, =T)and (=3,9) = c=8s05 +b" =8> = b»* =64—25=39andthe

equation is

2

FoE=T

47. The center of a hyperbola with vertices (3, 0) is (0,0}, s0 a = 3 and an equation is

: 1
Asymplotes y = £2r = E:2 = b:ﬂ{ﬁ}:ﬁa.ruimeequatmms%-%:l_
(1]

49. In Figure 8, we see that the point on the ellipse closest to a focus is the closer vertex (which is a distance
a — ¢ from it) while the farthest point is the other vertex (at a distance of a 4 ). So for this lunar orbit,
(a—e)+(a4c) =22 = (1728 + 110) 4 (1728 4+ 314), or a = 1940; and (a + ¢} = (& — ¢) = 2e = 314 = 110,
2 2

= 102. Thus, b* = a® — ¥ = 3,753,196, and the equat l ¥ =
ore s I =A== a0, equation IS = =r2 500 T 3.753.106

51. {a) Set up the coordinate system so that A is (=200, 0) and B is (200, 0).

|PA| = |PB| = (1200)(980) = 1,176,000 fi = 2 mi=2a = o= 52 andc = 200s0

T

B gt o 3330375 1212* 121y"
- 17 1500625 37339375
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462 O CHAPTER10 PARAMETRIC EQUATIONS AMD POLAR COORDINATES

(121)(200)? 121 _ 133575
1500625 3339373 Y= 530

(b) Due north of B = = =200 m= 248 mi

53. The function whose graph is the upper branch of this hyperbola is concave upward. The function is
y=flz)=ay/1+ % = %\,-'F+z2,suy' = %I{ﬁ'! +;|:I’!:|-1"|I2 and
y' = % [[b“ + )2 2 220 4 22| = ab(b® + 2%)~** > 0for all z, and so f is concave upward.

2 2

55. (a) If k > 16, then k = 16 > 0, and IT + E y T4 1 is an effipse since it is the sum of two squares on the left side.
-2 .
() If 0 < k < 16, then k = 16 < 0, and T + YT 1 is a lyperbola since it is the difference of two squares on the

left side.
{c) If k < 0, then & — 16 < 0, and there is no curve since the left side is the sum of two negative terms, which cannot equal 1.
(d) In case (a), a® = k, b* = k = 16, and ¢* = a® = b* = 16, so0 the foci are at (£4,0). Incase (b), k = 16 < 0,s0a® = k,

b* = 16 = k, and ¢* = a® + b* = 16, and 50 again the foci are at (+4,0).

5. & =dpy = 2x=dp’ = y":Ei,someta.ngemljmal{zn,yn}my-ﬁ=;ﬂ{x—zﬂ}.mlsllmpasses
p P
I‘::l. Iy ’ r '
through the point (a, —p) on the directrix, so — o it a=xn) = =4p" =af="2ar -2z <
p 2p

IE-E&I&--‘IFEZU =] Iﬁ-iﬂ.m-{-ﬂj:uz-i“lpj (=2

(g =a)’ =a® +4p° & x9=a=+,/a% + 4p%. The slopes of the tansent
+ S T )

linesatr =a+ n3+4pﬁmﬂ,mﬂwpmdmtmmem'o

Zp
slopes 15
. . i [y L] ¥=—p
a+ /a2 + dp -u—v.,.-"uz-i-:l;_uz—{ﬂz+dp2]_—4p‘!_ :
2p 2p 4p* 4p* ’

showing that the tangent lines are perpendicular.

2 |
58, G 4 4y =36 = % + % = 1. We use the parametrization r = 2eost, y = 3sini, 0 < ¢ < 27, The circumference

is given by

L= [ /Tdz]d" + (dyfdi) dt = [7 \/T=Zsinl)? + (3cos1)? dt
=f;' 4sin® t 4 Deos? tdl = ;’ W4 + Geos? Fdi

2z =0

Now use Simpson’s Rule with e = 8, At =

:%,a_ruij{tj:mmget

Lom Sy =ZL[f(0) + 4F(Z) + 2F(F) + 4F(38) + 2F (=) + 4f (32) + 2F () + 4f(ZE) + f(2n)] = 15.0.
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L5
[
[

CHLY

u . ¥
6. le = E= a2 — y—:l: r? -t -._\
2b - : .
A=12 f Y {IIN 2\.-':‘—11 —Ell||.r+ £ —a? ] N
i
K]
:-[-:- T—a? —a®lnfe 4 /c? —udl-l-u ||||u:|] /
Sincea” 4+ b =c', ¢’ =a” = b, and v/c2 = a? =

b ; ; b g

= - [-:b —a’lnfc+ b) +a” In a] == [cb 4+ a*(lna = In(b + (]]]
a a

= blcfu 4 b In[ﬂf{'b + r::I-]1 where ¢f = a® 4+ §°.

IJ

6. 9z + 4" =36 & 7+ % =1 = a=3b=2 Bysymmetry,T = 0. By Example 2 in Section 7.3, the area of the

top half of the ellipse is 3(wab) = 3=. Solve 9z° + 4y* = 36 for y to get an equation for the top half of the ellipse:

9" +4y" =36 & 4 =36-9%" o yP=31-7) = y=3/T-7% Now

=—f ~[f(2))? dz_— ( u’-_z} dr = Ij:u-;”;;:; ’

2
3 1 . 3 /16 4
=—-2 4 =x")der = — |4r = =" = —
f @==)de = 3" ]ﬂ 4rr( 3 ) =
so the centroid is (0, 4/7). -2 “| 2o
= oy 2z ' b .
65 Differentiating implicitly, == + 7= 1 = = + - =0 = ' = - | # 0]. Thus, the slope of the tangent

2

b
line at I*is — f] . The slope of F1.P is
@

15

. By the formula in Problem 21 on text page 273,

1=t
we have )
LI -bzl']
- 3 39 T 259 P 3 a2 — 22
tan o= I 4 e asyn ay[+-b:1{:1+e] _ a b 4+ b ex using b~ xy +uy a b,
- i.l-z:l']_;,r] - uzy:{uu +r::]-—|'.r2.':1;,r1 - e”I:y1 +1:!!E;,r] and a® — b* =
aly (x; +¢)
bz{-r..n +a” p b!
= anler: +a?)
rn_ w . . . . .
and tans = afyy T = —a'y] = bz (r; =¢) _ =’ 4 bexy _ bd[E'Il —EJ:I _ b
- 1 briyn  @fm(;=c) =boun Fnan —afan aplen —a?)  on
ayiz =)
Thus, o = .

10.6 Conic Sections in Polar Coordinates

1. The directrix = = 4 is to the right of the focus at the origin, so we use the form with “4 e cos 87 in the denominator.

ed 504 4

See Theo 6 and Figure 2.) An equati f the ell = = = .
(See rem 1 1 qUATINNn o ellipse is r TTeond l+%c{mﬁ ST ool
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484 O CHAPTER10 PARAMETRIC EQUATIONS AMD POLAR COORDINATES

3. The directrix y = 2 is above the focus at the origin, so we use the form with “4 esin 7 in the denominator. An equation of

ed 1.5(2) 6
the hy ola = = = '
yperbol b = G ~ T+ L5snd 2+ 3anb

5. The vertex (2, 7) is to the left of the focus at the origin, so we use the form with “—e cos 67 in the denominator. An equation

of the ellipse is r = s Using eccentricity e = 3 withd =7wandr =2, we get 2 = T %{_1} =

HO 10
l—%cmﬁ' T 3 —2cosf’

= d =25, 50 we have r =

7. The vertex {3, i—} 15 3 units above the focus at the origin, so the directrix is 6 units above the focus (d = 6), and we use the

. . . el 1(6 ]
fiorm “+-e sin & in the denominator. ¢ = 1 for a parabola, so an equation is r = 1 +Zﬁmﬂ =7 T Eh_::"ﬁ. =7 T eng

1 1/5 4/5 p R
9 r= —— e = . whe =canded == d=1 ,
TTS—dsnd 15 1-fsme o oCMEE T !
! {4, L)
(a) Eccentricity = & = 3
(b) Since e = g « 1, the conic is an ellipse.
{c) Since “= esind™ appears in the denominator, the directrix is below the focus 2=\ , (2, 0)
at the origin, d = |FI] = 1, so an equation of the directrix isy = =1. —
FET

{d) The vertices are (4, "}and{" ix

2 3 __ 23 wheree=landed =2 = d

Mr=—— A2 /7 _
"T3+3sin0 1/3 1+ lsing’ 3

s

(a) Eccentricity = e = 1

ib) Since e = 1, the conic is a parabola. {‘i 7]//—-""\|-% 0]

{c) Since “4 esinf™ appears in the denominator, the directrix is above the focus 0 x

at the origin. d = |FI| = £, so an equation of the directrix isy =

(d) The vertex is at [3; 7). midway between the focus and directrix.

9 1/6 32

11 5 = — e = —
r 64 2 cos .1..-’5 1+%ELHE‘

— 1 _ 3 _ g
wheree=sanded =5 = d=75.

(a) Eccentricity = e = 3
(b) Since e = % « 1, the comic is an ellipse.

y
{c) Since “4-e cos 8 appears in the denominator, the directrix is to the right of 2z '"=%

the focus at the origin. d = |FI| = 3, so an equation of the directrix is @ *‘:'/— ’Ill:.L“]

Ir = I-‘:' : — L)
(d) The vertices are (=.0) and (. x), so the center is midway between them, \—v )

that is, (=, 7).
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SECTION10.6 CONIC SECTIONS IN POLAR COORDINATES O 485

1% r = 3 -U—4— E‘IH

T =_—"1" wheree=2anded=23 = d=2.
1-Becosf 1/ 1-2Zcosd - T 8

(a) Eccentricity = e =2

(b) Since e =2 > 1, the conic 15 a hyperbola.

ic) Since *—e cosd ™ appears in the denominator, the directrix is to the left of

the focus at the ongin. d = |FI| = 3, so an equation of the directrix is

— 3
T = Fi

(d) The vertices are (—=3,0) and (3, ), so the center is midway between them,

that 1s, {%:‘I‘}
1
17 (@) r = g5 wheree = 2anded =1 = d= %. The eccentricity ) ! .
e =2 = 1, so the conic is a hyperbola. Since “=esinf™ a % in the N el
hype ppear 3 o 2

denominator, the directrix is below the focus at the origin. J = |FI| = %

s0 an equation of the directrix is y = —3. The vertices are (-1, I) and /
(%.2£), so the center is midway between them, that is, (3, 2£).

(b) By the discussion that precedes Example 4, the equation 2

_ 1
Br= l—Eﬁin{ﬂ—;’T"]. H\\-\
. ™

19. For e < 1 the curve 15 an ellipse. It 1s nearly circular when e 15 close to 0. As e

increases, the graph is stretched out to the nght, and grows larger (that is, its

right-hand focus moves to the night while its lefi-hand focus remains at the

origin.} At e = 1, the curve becomes a parabola with focus at the origin.

M. |FF|l=¢e|Pl| = r=ed=rcos(zr=0)] =eld+rcostl) = ¥
i -
{l —ecostl) =ed = r:?m F
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466 O CHAPTER10 PARAMETRIC EQUATIONS AMD POLAR COORDINATES

3. |F.F'| :e|FI| = r :e[d—rﬁinl[i;— ﬂ]] :el:d+r5inﬂ:]- = ¥
i
r(l —esind) =ed = r=L‘_ \\ I'/H\'I. / .
1 =esind i j/ X
P

2. We are given e = 0.093 and o = 2.28 x 10%. By (7}, we have

_afl= &) _ 228 x 10°[1 — (0.093)7] ~ 2.26 % 10°
"TT1txecosf 1+ 0.09cosb 1+ 0.093cos 6
27. Here 2a = length of major axis = 36.18 ALl = a = 18.09 AU and ¢ = 0.97. By (7), the equation of the orbit is

_18.00[1 — (0.97)] 1.07
T T 4 09Temso 14007 cosf

. By (8), the maximurm distance from the comet to the sun is

13.09(1 + 0.97) == 35.64 AU or about 3.314 billion miles.

29. The minimum distance is at perihelion, where 4.6 x 10" =+ = a(l — &) = afl = 0.206) = a(0.794) =
a = 4.6 x 107/0.794. So the maximum distance, which is at aphelion, is

r=a(l+e) = (4.6 x 107/0.794)(1.206) = 7.0 x 107 km.

3. From Exercise 29, we have e = 0.206 and a{l — &) = 4.6 x 107 km. Thus, a = 4.6 » 107/0.7%4. From (7), we can write the

1 — e
= S0 s1nce

uation of Mercury’s orbitas r —g———_ &
«q ury r ul+ecusﬂ

dr  afl =e*)esing

dit — (14 ecosd)?

. dr

z 2 a3 2 E - 2 2 a2
1= l=e¢ sin” & 1= .
) a1 —e%) a- (1 —e”)" e sin a“(l—e (14 2ecosB + €?)

= {1 + ecu:iﬂ':l-"! + {_'l + ecu::iﬂ]"' = {1 + ecu&iﬂ'}

the length of the orbit is

(14 ecosb)?

ax N vy g ey
L:j’ rz+{drjdﬂ}2dﬁ:u{l—ej}f It e+ 2ecosd 16~ 36 x 10° km
0 (1]

This seems reasonable, since Mercury s orbit is nearly circular, and the cireumference of a circle of radius a

is Pra == 3.6 x 10° km.
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10 Review

TRUE-FALSE QUIZ

1. False.

Consider the curve defined by = = f(t) =t — 1:]-:t and y = glt) = (t = 1:]-2. Then g'(t) =2(t = 1), 50 4'(1) =0,
but its graph has a vertical tangent when ¢ = 1. Note: The statement is true if f'(1) # 0 when g'{1) = 0.

3. False.  Forexample, if f{t) = cost and g(l) = sint for 0 < ¢ < 4=, then the curve is a circle of radius 1, hence its length
is 2, but [\7 /IF(OF + [o' (O dt = [[7 /(—sint)? + {cost)?dt = [[7 1dt = 4=, since as ¢ increases
from 0 to 4=, the circle 15 traversed twice.

5 True.  The curve » = 1 — sin 26 is unchanged if we rotate it through 1807 about O because
1 —sin2(@ + 7)) =1 —sin(20 4+ 27) = 1 — sin 20 So it’s unchanged if we replace » by —r. {See the discussion
after Example 8 in Section 10.3.) In other words, it's the same curve as r = =(1 = sin 20) = zin 26 = 1.

T. False.  The first pair of equations gives the portion of the parabola y = =* with = = 0, whereas the second pair of equations
traces out the whole parabola y = =*.

9. True. By rotating and translating the parabola, we can assume it has an equation of the form y = ex”, where ¢ > 0,

The tangent at the point (a, ca”) is the line y — ea® = 2ea(r — a); Le., y = 2enx — ea®. This tangent meets
the parabola at the points (z, cx”) where ex” = 2eax — ca”. This equation is equivalent to =~ = Zar —a”
[since e = O]. Butz’ =2 —a® = z°—Zar4+a=0 = {x—a:l-z =0 & r=an &
(2, ex”) = (a.ea”). This shows that each tangent meets the parabola at exactly one point.

EXERCISES

La=t'44y=2=t,-4<t=<11=2=y,50 ot

r=(2=y) 442 -y)=4-y+p' +8 =y =By +12 &

z+4=y"=8y+ 16 = (y = 4)*. This is part of a parabola with vertex

b LB, 1= —

(=4, 4), opening to the right. H‘h"""""--rw I

Iy =sech = =_ Since0 <A< a2, 0<Cxr<landy = 1 ¥

This is part of the hyperbolay = 1/x.

1 1

{.‘u&-&ﬁ‘ b

(11 #=0
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5. Three different sets of parametric equations for the curve y = +/x are

z=t y=vI
(iyr=1*, y=1+
(iii) £ = tan“t, y=tant, 0 <t <72
There are many other sets of equations that also give this curve.
3

1. (a) (4,22} The Cartesian coordinates are x = 4cos 2 =4(=1) = =2 and

y=4sin 2L =4(%) = 2/3, that is, the point (2,2 v/3).

N

{b]ﬂwen::—ﬂandy:ﬂ,we}wwrz1,.-fi—3i2+35=«.,-'1 =3ﬁ.h]m,t&nﬂ=£ = t.anﬂ:iq,a.ndsmce

£ -
{—3,3) is in the second quadrant, # = 2% Thus, one set of polar coordinates for (—3,3) is (3+/2, %), and two others are
(3vZ 2=) and (=32, IF).

9. r =1 4+ sin#. This cardioid is (2.5)
r ..T_

symmetric about the § = =2

P T 1, 0]

b

1. r=cos30. This isa

three-leaved rose. The curve is

==

~

traced twice.
(1.0}

13. r = 1 4 cos 26, The curve 15 r

symmetric about the pole and 2 I
both the horizontal and vertical - nlm*l I
axes. . \-—A—/
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CHAPTER 10 REVIEW 0O 489
3

1ir=m = e =221, sothe conic is a hyperbola. de =3 =- 3=
d = 2 and the form “+2in 6" imply that the directrix is above the focus at \éﬁ’/
1
the origin and has equation y = 3. The vertices are (1, £) and (-3, 3£). .f")“h‘aKWI 3
WN
IS e
[I.?l
Mz+y=2 & 0+rsin@=2 & r(cosf+sing)=2 & r=—o>
a o = T oos rEme = i Cos s = r= ‘_‘mﬂ n ﬁi“ﬂ
19 r = (sinf) /8. As@ — foo, r = 0. . s

Asfd — 0,7 — 1. Inthe first figure,
there are an infinite number of
T-intercepls al x = T, 1 a NONZero

integer. These correspond to pole

points in the second figure.

—0.25

—0.75
. diy dr 1 dy dyfdt o .
Mae=lnly=14+t%t=1. —=2and — = — == =— =2
e=hty=1+t3 dt dt 4 T dejdt 1t
Whent =1, (z,y) = (0, 2) and dyfdr =2
B.r=e = y=rsind =e "sinfand r = reost = e~ el =
ﬂ _ dy fdf} _ %Hillﬁ-i'-rﬂ-lh'ﬂ _ —e~Pgind + e~ cosf  —ef _ sin f = cos f
de ~ dx fdif - %cuﬁﬂ—rﬁinﬂ T —e=Prosl —e=?sinl  —e® T cosf 4 sinf
| dy _0=(=1) _1
Whenb=n, —= ——=— ==L
=TT 1v0 T -1
. dy  dy/fdi 1 4sint
25 x =1 4 sint =1 =cost —= = = —
* +sinl, y cost = de  dxfdi 1 4eost
d (dy (14 cost) cost = (1 4 sint){=sint)
dy  dt \dz) (14 cost)? _ cost 4 cos” t 4 sint +sint 14 cost +sint
de? — dxfdt T 1+ cost - (14 eost)* T {1+ cost)?
IT.Wegraphmecun'ez:!:‘-jr,y:!“+-i‘+11‘nr-2.25££l.2. 4

By zooming in or using a cursor, we find that the lowest point is about

(1.4, 0.753). To find the exact valves, we find the t-value at which b

dyfdt =2t 4+1=0 & i:—% = I[I..y:l-zi%,%}.
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470 0O CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

N or=2acmt —acos2 = —I=—Eatii.lll-l-ﬂaﬁi.llﬂt:Eﬂsin!{ﬂumt—1:]-=|:|' =
thl:ﬂﬂftmt:% = L:D,%,#,or
y =2azinl —asin2i = d—y:2&11&&!:—2&&1@52!:2&{1+cmt—2cm¢2!}=2nl[l—ct:a!}{l+2umt]=ﬂ ==

t=0, 2—,\:",nr

]

Thus the graph has vertical tangents where t = . = and "’T" and horizontal tangents where £ = QT' and "T" To determine

what the slope is where £ = 0, we use I'Hospital’s Rule to evaluate llrn % = [0, s0 there is a horizontal tangent there.
t T U Vi
0 a 0
5| 2a | o
7 | =3a 0
£ | —ta | -2

3. The curve r* = 9 cos 56 has 10 “petals.” For instance, for =& < i < = there are two petals, one with r > 0 and one

withr < 0.

i dfl = j'r"rm DeosHidil =5.9. Efﬂ"'im cos 5 dil = lﬁ[ﬁhlaﬂ]:ﬂo =18

A=10 " e

1
xf1h 2

33. The curves intersect when dcosf =2 = Emﬂ':% = #=%3 —de
E r=4cosl

for =7 < @ < «. The points of intersection are {2, =) and {2, -E}

35. The curves intersect where 2sin ! = sin @ + cosfl =

dw

sinf! =cosf = # = %, and also at the origin (at which # = =F
on the second curve).
A= [ 3(2sin6)* db + [77]* $(sind 4 cos6)” df
= o (1 = cos20)dd + £ [27/% (1 4 sin 20) df

r=2sm# r=sin & + cos i

= [ﬁ‘— Eﬁillﬂf?];“ + [Eﬂ - :c{miﬁ]::d =i(r=1)
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CHAPTER10 REVIEW 0O 47
o =3%, y =25
L= [ \/d=]d)” + (dy/di)  dt = [} /(6L + (62)2dt = [} /3662 + 3680 dt = [ /36T /1 + L dt
= [ 6l VTFTdt =6 [JtvTFFdt =6 [ u'*(fdu)  [u=1+¢" du=20a]
=61 %[::“”]j:z{a“"” —1)=2(5v5-1)

B L= "V /a0 do = [T V10 + {uaﬂﬂdﬁr:f” —ﬁ:z“da
1=4[-#+h-(ﬂ+gﬁ)r'=*‘f"“l—"q#z“+ln(2"+‘-’m)

w 2w w4/ 41

_ 2»,#::2+1—v-“432+1+h (zwhsﬂw )
- 2w T4+ VT +1

-..ul""'i_-

Moz =41, y =73 zilgtgd =

§= [} 2wy (de/dt)? + (dy/dt)? dt = [ 2= (3t + 3177) \/(zfﬁ]j + (12 = 1=3)2 dt

=2x [M (1% 4+ 17 I+ o P dt =2n [ (300 + 2 Lm0 dt = 2w [La8 4 2o = Lymd)) o ALd0n

1

43. For all ¢ except =1, the curve is asymptotic to the line x = 1. For
¢ < =1, the curve bulges to the right near y = 0. As ¢ increases, the
bulge becomes smaller, until at ¢ = =1 the curve is the straight line z = 1.

As ¢ continues to increase, the curve bulges to the left, until at ¢ = 0 there

15 a cusp at the origin. For ¢ = 0, there is a loop to the left of the origin,

whose size and roundness increase as c increases. Note that the x-intercept

of the curve is always —c.

z 2
45. % + yT = 1 is an ellipse with center (0, 0). .6y +c =3y +55=0 =
2 =
u:ﬂ,b:?v”ie:l = by —6y+9)=—(z+1) =
foci (+1,0), vertices (+3, 0). (v = 3)* = =1(z + 1), a parabola with vertex (-1, 3),

opening i the left, p = =g = focus (=33, 3) and

S
directris = = — 45,

1.2
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472 O CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDIMATES

49. The ellipse with foci (44, 0) and vertices (£5. 0) has center (0, 0) and a horizontal major axis, with a = Sand ¢ = 4,

. . x? 2
5052:41-1'1:52-42:9-.Anequa1mms—+%=l.

23
= R
51. The center of a hyperbola with foei (0, +4) is (0.0), so ¢ = 4 and an equation ]SGT_;,_E:L
— a_3 — B2 _ 2 2 r _ a2

ﬂwasymmme;r_ﬂr]ﬁsslnpeﬂ,sui_i = a=3%anda" 46 =c" = (W) +b"=4" =

2 1 3 2

T _ T _ T _ 8 _ 1z ¥ r oy ar _

108 =16 = b =Zandsoa _lﬁ-g_%.ﬁus,anequalmnlsﬁ-ﬁ_l,mE-T_l.

5. x4y =100 & z°=—(y— 100) has its veriex at (0, 100), so one of the vertices of the ellipse is (0, 100). Another
form of the equation of a parabola is * = 4p(y — 100) so 4p(y — 100) = —=(y = 100) = 4p=-1 = p=-1
Therefore the shared focus is found at (0. 22 ) so2e = 2% —0 = = 22 and the center of the ellipse is (0, £2). So

101% = 399° 2 (y-22)°

a=100=22 = W apd p* = a* = ' = 7 = 25. So the equation of the ellipse is 73 + ——"—=1 =

2
S E o g Yt
25 {“m} T35 160,801 .

ed A

5. Directrixnz =4 = d=4s0e=3% = r=oT T
[ ] u s

57. In polar coordinates, an equation for the circle is r = 2asin 8. Thus, the coordinates of ¢ are = = reos @ = 2asind cosd
and y = rsin # = 2asin® §. The coordinates of R are = = 2a cot § and y = 2a. Since P is the midpoint of (7., we use the

midpoint formula to pet = a(sin @ eos# + cot #) and y = a(1 4 sin® 9).
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[1 PROBLEMS PLUS

1. See the figure. The circle with center (=1, 0) and radius +/2 has equation

(i 1

{z + 1)* + 5" = 2 and describes the circular arc from (0, =1) to {0, 1). WHIF+y=2
Converting the equation to polar coordinates gives us
(reosd 4 .'l'_l2 + (rsinf)* =2 =

™ eos 0 4 Preosfl 4 1 +r"!ﬁin2ﬂ':2 =5

L]

rl‘!{cmizﬂ + l'i:-l.llj-ﬂ} + Freosfl=1 = :r2 + Promt =1 Using the

quadratic formula to solve for r gives us

=2 cos B £ /4 T0+ 4
— 3 e 0% = —cos 4 oos2 0 + 1 for v > 0.

wfd ) w4
The darkest shaded region is ¢ of the entire shaded region zl,sn%;i:f iridd = s}f (1=2rcosd)dd =
o o

%l—f [1 —Zcm.ﬁ' —cost 4 eos® 04 1 ]dﬁ‘ f .'l+2u.n.-i f=2cosiyoos? @ 1 )

=J[ [1+2-%l:l-I-L'Lmﬂﬂ]—ﬂc{_mﬂ,.'l:l—Hirizﬁ]+l]dﬂ
o

wfd xf4
=f {2+cm23:]dﬁ‘—2f cos /2 = sin” 0 dff
[ o

143

. wfd : = sin#,
=[25’+%5mﬂﬂ']n -2 A D = u® du [dt:j:uﬂdﬂ]

N 1 u - . =1 U 1/v2 Formula 30,
_(5-4-5)—{U-+ﬂ-]-—2[51,.-"2—u3+mn E]u [a:ﬁ

x 1 1 +3 = = 1 1 x w1
= — 2 — s —_ = e i = — =
7t ( +s) 2t 3 z‘r 36732

2 \E V2 v

B | =

mus,_4=4(ﬂ +—— v"') —+2-2u’§.

3. Interms of x and y, we have & = reost = (1 + esin#)cos ! = cos @ + csin feosd = costl + %r:ﬁi.llﬂﬂand
y=rsinfl = (1 +esinf)sinf = sinf 4 esin® . Now =1 < sinfl <1 = =1<sinf4esin®f<14e<2 50
=1 <y < 2. Furthermore, y = 2whenc=land# = ], while y = =1 forc =0and # = = 3" . Therefore, we need a viewing
rectangle with =1 < y < 2.
To find the z-values, look at the equation = = cosf 4 %esi.nzﬂmduseme fact that sin 26 = 0 for 0 =< @ < £ and

sin 28 < 0 for =% <8 < 0. [Because r = 1 4 csinf is symmetric about the y-axis, we only need to consider

|continued]

473
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=% <8< L] Sofor =5 <8 <0, x has a maximum value when ¢ = 0 and then = = cos 8 has a maximum value
of 1 at @ = 0. Thus, the maximum value of = must occur on [:1_ f] with e = 1. Then x = cos ' 4 %ﬁiu?ﬂ‘ =
5‘5- = —sinf +cos? = =sinf + 1 = 2sind = 5‘? = —I:E.Hinﬂ - 1:]{1'&.“1{;-4‘- l:l =0 m‘]’bﬁnainﬂ:—lﬂr%

[but sin @ # —1for0 <8 < ). If siné = £, then & = £ and

x=cos £ 4 §sin £ = 34/3. Thus, the maximum value of x is /3, and,
by symmetry, the mimimum value Js—— 3. Therefore, the smallest

viewing rectangle that contains every member of the family of polar curves

r=1+ecsinf, where0 < ¢ < 1,is [-3v3, 3v3] x [-1.2].

5 2
Without loss of generality, assume the hyperbola has equation z_é - % = 1. Use implicit differentiation to get

2 2 W T
ﬂ—f—% —D,snyrza The tangent line at the point (c ,d}ﬂntheh}'perbnlah.asequalmny—dzﬁ{;-c}_
b b be 2 _ 2 1
'l'hetangenthneumzrsemﬂmasympmtey_-.rwhen-::-d_—{.r--:-} = abdr =a’d® = Bexr = e =
. 2 . P = b ad4 be bad+be _ ad+b
abdz = blex = a®d® = B = E:ub{ud—b:;l = : a.rHiThEy—‘-'ﬂlLiEIs; : == : =

be = ad ad = be
[ I

Similarly, the tangent line intersects y = —E:z at ( ) The midpoint of these intersection points is
L

G(m:k be —ad _1(ad+bc ““‘“))z(lﬁ__lﬁ — (¢, ), the point of tangeney.
L1 a a

Nowe: 1f y =0, then at (£a, 0), the tangent line 15 x = *a, and the points of intersection are clearly equidistant from the point

of tangency.
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11 [0 INFINITE SEQUENCES AND SERIES

11.1 Sequences

1. (a) A sequence is an ordered list of numbers. It can also be defined as a function whose domain is the set of positive integers.

(b} The terms a. approach 8 as n becomes large. In fact, we can make o, as close to 8 as we like by taking n sufficiently

large.

ic) The terms an become large as n becomes large. In fact, we can make a, as large as we like by taking n sufficiently large.

doa. = = so the sequence is z 27 2* 2’ 2 _ 2 4 8 16 32
T mEr 4 A+ 22)+1'2(3)+ 1" 24+ 172(5)+ 17" 3’57011
5. —Lﬂ.mme LefceE 15 i-_ll-_li _ l lL LL
= a" seq 51 52'-53-' T - 5" " 95°125° 625 31250 [
Tu—;mme Uefce 15 iilil = llii 1
Y (1) 4 217317 47576 2'6 24 120 T20° )

9 a1 =1, an41 = 5an — 3. Eachterm is defined in terms of the preceding term. a2 =5m —3=5(1)=-3=2.
a3 =523 —3=5(2)=3=7. a1=5aa—-3=5(T)—-3=32. a;=>5a:s-3=5(32)-3=15T

The sequence i1s {1, 2, 7,32, 157,...}.

Mo =2 angr = — - - =2 w=
S A = e, P T 14 142 3 BT

as 2/ 2
T+a, 1+42/T 9

13 {3. 3. 4. 5. 15. ---}-  The denominator is two times the number of the term, n, s0 a,, = %

T L

15. {-3.2,-3,5.—3%....}. Thefirst term is —3 and each term is -— times the preceding one, so an = —3(—3

17 {1.=%.3.=%.%....}. Thenumerator of the nth term is n” and its denominator is n 4 1. Including the alternating signs,

2
TL

475
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476 O CHAPTER 11 INFINITE SEQUENCES AND SERIES
iy
19. ~ 3n
e B 1+ 6n 0.5+ . e w4 s oa
1| 0426 T
2 0.4615
3 0.4737
4 04800 u 3 non
? 04839 It appears that lim a. = 0.5,
6 0.4865 e
7 0.4884 . in . (3n)fn 3 3 1
lim = I e—— i — - -
8 0.4R08 = g fin  n—o (146r)fn a=xlfnsb 6 2
9 0.4909
10 0.4918
. #n -
n ] an=1+ (=3 :
i+ o " o % oa e
1 0.5000 )
2 1.2500 .
3 0.8750
1 10625 0 ! m n
5 0.9688
g LOL5E It appears that Hll_l"x;_ a, = 1
‘ 0922 lim (14 (—3)") = lim 14 lim (—3)" =1+ 0=1since
S l-m‘ag i == 30 =30 fi ==l
- Lyn ,
a 0.9980 nlﬂl:.r_{ 1) =0by (9).
10 1.0010
2 2 2 = 2 =
3. rJ,:E‘{LEIH_ :{3+5". ]"Ir”. :a+3fn., —rn+u‘:533n—rx.. Converges
n 4+ n? (n+n®)/n? 14+ 1/n 140
5. a, = n "4";":! = - S0 i, — 00 a5 11 — oo since lim n = oo and
T pd=2n (n®=2n)fn? T 1=2fn?’ " n—m
li 1 2) = 1=0=1.Diverges
Jm (1-77) =1-0=1. Diverge
np=n = 3" _ 3V . 3 .
Moo, =3T"=—=[=] .50 lim a, =0by (¥ withr = -. Converges
T T o : T
29. Because the natural exponential function is continuous at 0, Theorem T enables us to write
lim a, = lim e=¥v" = E““_"‘;ct—l.l'v"ﬁ} =e"=1 Converges
Fi=— 2ol ¥ = 30
'y | 2 2 [ z
144 144 1 4 .
N oan =1/ tan _ [(Lidn)/n” 'Il:: fr)+ — v 4=2asn — oo since lim (1/n*) =0. Converges
fa—e30

1||'I 14n? 1“" (14 n?)/n? - 1“' (1/n%) 41
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SECTION 1141 SEQUENCES 0O 417

'I'l.z le f:\.-' ﬂ-‘i

Tt .
3B oan = = = S0 ap — o0 as 7 — oo since lim 7 = oo and
i == 220

Yt ddn Wnd fdnfynd -..-'_'l+4,r’:r|:”‘
lim +/14 dj'ul‘! = 1. Diverges
R g

i o =t 1 1 1. . S _—

35 “ll_l-lg.c loa| = nIEI:I,.: NG e nlil_l;.c = 2I:l:l:l =0, mﬂl'_L.';',cﬂ"' =0byi6). Converges
2n = 1)! 2n = 1})! 1

3 a, = (2n— 1! _ (2n — 1) = — Dasn — oo, Corverges

{En + l:l! - I[En. + l]{ﬂrl]{ﬂri - l]! - I[En + l:]l[ﬂn:l

39, an = sinn. This sequence diverges since the terms don’t approach any particular real number as n — oo, The terms take on

values between —1and 1. Diverges

2 2
M oa, =ne"" = Z__ Since lim I— = lim i = lim = =0, it follows from Theorem 3 that lim a, =0. Converges
e e oy BF r—oo BF s
.0= cos n = ! [since 0 < cos” n = 1], sosince li ! =0 cos n comverges to 0 by the Squeeze Theorem
S =g =cos = 1], Jim o2 =0,y =5 erg by the Sq :

sin(1 in(1 int i
85. a, = nsin(l/n) = Sn(l/n) - gince tim S2(/Z) _ lim, % [where t = 1/x] = 1, it follows from Theorem 3
-

llrrn. T—soc lfz

that {a, } converges to 1.

24" 2
T.y=|14+= = Iny=xln|{l4+—=],s0
T T

worm y o () (02)

R T A =V =M TeEET T

23" AR
lirm (1+ —) lim &'™¥ = ¢*, 50 by Theorem 3, lim (1+ —) =e*. Converges
H =20 mn

E b o) T3

. . 2n® 4+ 1 24 1/n?
48 a, = |I.I'|:2:I'I:'d +1) —ln{ﬂ‘! +1j=In (%) =In (ﬁ) —In2asn — oo, Converges

51. an = arctan({lnn). Let f{xr) = arctan(lnx). Then lim f{x) = § since Inx — oo as r — oo and arctan is continuous.
el
Thus, “].EI.:I'L n = ,.IE',,',L fin)=%. Comverges

53 {0.1,0,0,1,0,0,0,1,...} diverges since the sequence takes on only two values, 0 and 1, and never stays arbitranily close to

either one {or any other value) for n sufficiently large.

n! 1
Boan=om=73"

(n=1)

=
2 =

b2 | b2
b |

% [forn=1] = Z_“xasn_'m s0 {ax } diverges.

h:|:.1
t-".‘lln—l
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478 O CHAPTER 11 INFINITE SEQUENCES AND SERIES

From the graph, it appears that the sequence {an } = {{ 1) — - 1}
TE

5. 12
&« 4 ® % @& @& & & ¥
* divergent, since it oscillates between 1 and =1 (approximately). To prove this,
suppose that {a. } convergesto L. If b, = %, then {by } convergesto 1,
T
— L
. a.ruiﬂlu_r:u;c :ﬁl - - L. But% :{-l}“,mnlgi:—:dmsnmmlst. This
contradiction shows that {a, } diverges.
59, | v ieeresaras From the graph, it appears that the sequence converges to a number between
- 0.7 and 0.8,
1:,‘:::.:..:..:..:..:..:11 i n'-!fn'-!
= arct —_ | = tan | ——————— tan | ———
iy, = arc H.ll(n2+4) arc {n2+4:]-l.l’n2) arc (l+4fuﬂ)_.
-1 arctanl = % |7= 0.785] as n — oo
T Tl T
8. - From the graph, it appears that the sequence {a. } = {w} i
. . . divergent, since it oscillates between 1 and —1 (approximately). To
B ML S ) 5 prove this, suppose that {a. } converges to L. Ifbn:ﬁ,ﬂlﬁ
' . . .ooa, L gy
. . . {bn]mm'ergestnl,a.rﬂ“lﬂ.u;cm = :L.Butb—“:u.mn,su
- o lim E does not exist. This contradiction shows that {ay, } diverges.
-1 a0
63. 1 - From the graph, it appears that the sequence approaches 0.
1e3:Gerene (2n=1) 1 3 & In=1
{:I —————— T . S— U Wmm— 0 B WA
= (2n)" Zn 2n In In
‘ < g () () (1) = 5o — 0as
— = — —
~ In In e
* Le3:5eeens (2n =1)
L - ) 50 by the Squeeze Theorem R comverges to 0.
I

85. (a) an = 100D{1.06)" = a; = 1060, az = 1123.60, a3 = 1191.02, ay = 1262.48, and a5 = 1338.23.

i(b) lim a, = 1000 lim (1.06)", so the sequence diverges by (9) with r = 1.06 > 1.
i 3l i = Sl

67. (a) We are given that the initial population is 5000, so Fo = 5000, The number of catfish increases by 8% per month and is
decreased by 300 per month, s0 Py = Fh 4 8% = 300 = 108 = 300, P = 1.08/° = 300, and so on. Thus,

Fa = 108F, -1 = 300.

ib) Using the recursive formula with Fy = 5000, we get Py = 5100, F; = 5208, F; = 5325 (rounding any portion of a

catfish), Py = 5451, P, = 5587, and F; = 5734, which is the number of catfish in the pond after six months.
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SECTION 111 SEQUENCES 0O 479

69, If |r| = 1, then {r"} diverges by (9), so {nr™} diverges also, since [nr"| = n [+™| = |#"|. If |#| < 1 then

=
lim =r* = lim — limn = lim =0,50 lim nr" =0, and hence {nr"} comverges

o o =E T [— In 'r:l F=r Fe—mo - |1 T e
whenever |r| < 1.
T1. Since {ax} is a decreasing sequence, an > a1 for all n > 1. Because all of its terms lie between 5 and 8, {an} isa

bounded sequence. By the Monotonic Sequence Theorem, {a,, } is convergent, that is, {a, } hasa limit L. L must be less than

8 since {a,, } s decreasing, s0 5 < L < &,

1 1 1
Hn+1)+3 2n45 < Int3

1
T3 an = —— 15 decreasing since an41 =

niD = ay, foreach n > 1. The sequence is

bounded since 0 < an < 1 foralln > 1. Note that a: = ;.

75, The terms of an = n(=1)" alternate in sign, so the sequence 15 not monotonic. The first five terms are =1, 2, =3, 4, and =5.

Since lim |a.| = lim n = oo, the sequence is not bounded.
i =0

T a, =3 =2ne™"_ Let f(x) =3 = 2ze™ . Then _f'{.r:]- =0 = 2[z{—e™") 4+ &™F] = 2™z — 1), which is positive for
x > 1,50 [ is increasing on (1, oo). It follows that the sequence {a, } = {f{n)} is increasing. The sequence 1s bounded

below by a1 = 3 = 2e~" = 2.26 and above by 3, so the sequence is bounded.

79. For {q’ﬁ V24242243, . } ay = 2V gy, = 2 gy =275 spa, = 2@ =INER = pl=lE)
lim e, = lim 21=02") — gl =3,
R LR e =] = 30
Afternaie solution: Let L = lim a,. (We could show the limit exists by showing that {a.} is bounded and increasing.)
=
Then L must satisfy L = /2. L = L*=2L = L{L=2)=0. L # 0since the sequence increases, so [. = 2.
1
Bl. a1 = 1, ang1 = 3 = == We show by induction that {ax} 5 increasing and bounded above by 3. Let P be the proposition
iy

1 1

that g, s > ag and 0 < a, < 3. Clearly /7y 15 true. Assume that 7, 15 true. Then apqr > an = o —
g1 L
1 1 1 1
—_ }.——_le,'ﬂ“_'_zzﬂ._

d=—=n <  Fhy1. This proves that {a, } is increasin and bounded
LS| iy LN ] gy e e { L} -

above by 3, 50 1 = ay < aq < 3, that is, {a.} is bounded, and hence convergent by the Monotonic Sequence Theorem.

IfL = lim a,,then lim a,,, = Lalso, so L mustsatisfy L=3-1/L = L*=3L+41=0 = L[=23&F

= ol

But L > 1,50 L = 2408
83 (a) Let an be the number of rabbit pairs in the nth month. Clearly &, = 1 = aa. In the sth month, each pair that is

2 or more months old (that is, a,_, pairs) will produce a new pair to add to the a,,_, pairs already present. Thus,

Gn = @n=1 + Gn=2, 50 that {as} = {fa}, the Fibonacci sequence.
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480 O CHAPTER11 INFINITE SEQUENCES AND SERIES
Jfasa fa=1 + fa-2 j 1 1 N .
b = — = =14+ =14 =1+ AL = i .
byan =g fa=1 - fum1 [ fuz - amvee

[since L must be positive].

1 .
then L = lim a,_, and L = lim a,_, 5o Lmustsatisfy L=14— = [*—L—1=0 = L=
T Tl L

2

O
TE
8. (a) . methegraph,ltappearsﬂmmeseqmnce{;}
I'J."lI
converges to 0, that 15, lim —= 0.
F=e20 Tl
I_'IL & " " " ' - 10
1 003
(b) ; \ . .
-
. y=10.1 . ¥ = 0.001
E 1 s |25 g5 e T = = = 155
0 1]

From the first graph, it seems that the smallest possible value of N comesponding to £ = 0.1 is 9, since n® fn! < 0.1
whenever o 2 10, but 9° /9! > 0.1. From the second graph, it seems that for £ = 0,001, the smallest possible value for N

is 11 since n” fn! < 0.001 whenever nn = 12.
87. Theorem 6: Ifﬂli_r:l;; |an| = O then H]ﬂ':;c = |ax| = 0, and since = |ax| < an < |aa|, we have that “li_r:l;_ an = 0 by the
Squeeze Theorem.
89. To Prove: If“].-l_]':l.;t an = 0 and {bs} is bounded, then H]il_':;ﬁl[ﬂ.nbn] =0
Proof: Since {b,} is bounded, there is a positive number M such that |b, | < M and hence, |ay,| |b| < |a,| M for

alln = 1. Let = > O be given. Since lim a, = 0, there is an integer V' such that |a,, — 0] < H if = N. Then

i = S0

|antn = 0] = |anbn| = |aa] [Ba] < |aa| M = |as — 0] M < % » M = e forall & > . Since £ was arbitrary,
lim (a,b,) =0
Tl

9. (a) Furst we show thata > ay > 6 > b

ay — b, = ab ﬂ_l(u-zﬁ_-}-b):%{f—ﬂ)z}{l [since a > b] = a, > b, Also

a=ai=a=-i(a+b) =La=b)>0andb=b =b=vab=vE(VE=a) <0.50a> a1 > bi > b. Inthe same
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SECTION 114 SEQUENCES 0O 481

way we can show that a; > as > be > by and so the given assertion is true for n = 1. Suppose it is true for n = &, that is,

oy = g = bk_|_1 = bk. Then
2
anyz = begz = Flansr + brsr) = apprbugr = § (ﬂk-}-l =2y apgibess + bk+1) = %(-ﬁ.-"ﬂ&-l-l - 1,,-"ba+1:] >0,

gy = Gjpgs = gy — %{ﬂk+1 + )= %{ﬂk+1 = bgyy) =0, and

b = brgs = by — \.-"rﬂk+1bk+1 = \,f’bk+1 (\z"rbk+1 - -q,."ﬂk-{-l) <0 = apgr > Opps > by > by,
so the assertion is true for n = k 4 L. Thus, it is true for all n by mathematical induction.

(b) From part (a) we have o > an > @ag1 > by > by > b, which shows that both sequences, {ay, } and {by}, are
monotonic and bounded. So they are both convergent by the Monotonic Sequence Theorem.
b
(c) Let ].I:I'.Il iy = o and llm by = 3. Then |.uu Ang1 = lim —— G + B = u:#
L B

Za=a+h8 = a=§

b b lim p, bp
83. (a) Suppose {p, } converges to p. Then p, 4, = - = limpy=——— = p= =
a <+ pn s a4 lim pa a4p

Fa— 0

pr4eap=bp = plpta=5b=0 = p=0Oorp=b-a

b (E)"""

[ p“
b = — i ——— SINCE 1 4 === 1.
(b) pota atp 12 ( )Pﬂ-
[r}

b b b\? b b\* by\"
ic) By parti{b), p1 < (;)Pﬂ,P} ..::( o ( ) Po, P < (;)pz-:i (u-) po, etc. In general, pn < (E P,

By b
so lim p < lim (—) -po = 0 since b < a. [B}'['.I"_I, lim r":ﬂlf—l{r-:il_HerErz—El[ﬂ11}_]
Bl A—esh § {1 P—_r a
(d) Let o < b We first show, by induction, that if po < b — a, then pn < b= aand pons1 > pa-
b= =
For n = 0, we have =_b.ua__ —u}ﬂsmm < h=a Sop;, >
n 1= Fo a+ po Fa a+ po Po a. 20 m =~ Po.
MNow we suppose the assertion is true for n = k, that is, pp < b — a and pg4, > pe- Then
b= - - b=
b= =prpr =b=n-— bpi :u{ a) +bpx —aps I"II;IIM:“:[ 2= Pk}:-:]becausem-::b—u S0
a4 P a4 P a 4 P
bp gy Pryr(b—a—piy,)
b=a And g - == = 0 b = a. Therefi
Pleg1 < a. And pryo = prga a+ pras P41 at e = Dsince prgr < i} refore,

Peez > pegr. Thus, the assertion is true for i = & 4 1. It is therefore true for all n by mathematical induction.
A similar proof by induction shows that if po > b = a, then ps > b= a and {p.} is decreasing.

In either case the sequence {pw } i1s bounded and monotonic, so it is convergent by the Monotonic Sequence Theorem.
It then follows from part (a) that lim p, = b—a.
b e ]
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482 O CHAPTER11 INFINITE SEQUENCES AND SERIES

11.2 Series

1. (a) A sequence is an ordered list of numbers whereas a series s the sum of a list of numbers.

(b) A series is convergent if the sequence of partial sums is a convergent sequence. A series is divergent if it is not convergent.

3 E n = IIIII g = |:|.|r1 [2 '1{(]' S:I ]_ IIIII 2=3 llrn I[Cl' B:I _2—3{[!] =2
-
1 1 1 1 1
5 F = R 1 = = eee— === L5 =4 3= - =10.55
m,glnuuz’“'“ mam T MThEyIE 2 Sp=sitbar =gt g =0

53 = 82 4+ aa == 0.5611, 54 = 53 4 a4 == 0.5648, 55 = 54 4 a; = 0.5663, s¢ = 55 4+ as = 05671,

87 = &g 4+ ar == L5675, and ss = 87 4 as == 0.5677. It appears that the series 15 convergent.

=
7. For Z s, d, —sinn. s —a; =sinl = 058415, 55 = 5; 4 ay = 1.T508,

-1
53 = s34 aa = LBO19, s4 = 83 4 aq = L.135], s5 = 54 4 az = 0.1T62, s = 55 4 as = =0.1033,

s7 = &g 4+ ar = 0.5537, and sg = s7 4 as = 1.5431. It appears that the series is divergent.

=2.40000 0 ' — (.} + + . 11
=1.92000

—=2.01600
= 1. 6E0 {5}

—2.00064 ’ v

—1.09987 L y
=2.00003 —3
=1.999459 From the graph and the table, it seems that the series converges to =2. In fact, it is a geometnic

series with e = =24 and r = =2, 50 Its sum is = = = =2,
—2.00000 g E. = L_,]n o (=0 1z

Note that the dot corresponding to e = 1 is part of both {a.} and {s.}.

W o =] | oEm L b3 | R

—
=

TI-86 Note: To graph {a.} and {s.}, set vour calculator to Param mode and DrawDot mode. {DrawDiot is under
GRAPH, MORE, FORMT (F3).) Now under E () = make the assignments: =t1=t, t1=12/(-5)"t, =t2=t,
ytZ=sum seqgiytl,t,1,t,1). (sum and seqare under LIST, OPS (F5), MORE.) Under WIND use

1,10,1,0,10,1,-3,1,1 toobtaina graph similar to the one above. Then use TRACE (F4) to see the values.
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SECTION11.2 SERIES O 483
I
. - - ) ﬁ

1| 0.44721

2] 115432

3 | L9s63T ) -

4 | 2.88080 3 . )

3 | 3.80927 I ) "

i il u".xu

T | 5.71948 _ )

Z izz::f The series E] Wi diverges, since its terms do not approach 0.

10 | 5.64639

13. 5 “

- = Lo . * ®

2 | 1.00000 s o

3 | 1.33333 )

4 | 1.50000 .

5 | 1.60000

G | 1.66GGT . "

7| 1.71429 AN ; R A

8 .Ta000

o From the graph and the table, we see that the terms are getting smaller and may approach 0,
10 | 1.50000 and that the series may approach a number near 2. Using partial fractions, we have
11 | 1.81818 .

2 L 2 2
Eguz—n_,gl(n—l-;)

-(5-3)+(G-3)+G-9)

ey [ 2 2\, (-2
k-2 k-1 k=1

2
—2_=
k
2 & 2
Ask — o0, 2= = — 2 50 - =2,
k i T =11
15 (a) I = li n__2 so the sequence {ax } is convergent by (11.1.1)
nI—I.I»;I.aG"_nI—I-ILHIL-I-l_ﬂ‘ 7 e gemt by (11.L1)

o0
(b) Since lim a, = 3 #0, the series 3 a,, is divergent by the Test for Divergence.
L e i)

-l

1.3 -4+ 5§ — & + .-~ 52 geometric series with ratio r = —3. Since |r| = 3 = 1, the series diverges.

3

19, 10 = 2 4 0.4 = 0.08 4 --- 15 a geometric series with ratio — 5 = =21 Since |r| = £ < 1, the series converges to

a 10 10 50 25
1—-r 1-(-1/5) 6/5 6 3
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484 O CHAPTER11 INFINITE SEQUENCES AND SERIES

el
21. z 12(0.73)""" is a geometric series with first term a = 12 and ratio r = 0.73. Since |r| = 0.73 < 1, the series converges
-1
o4 __12 _ 12 _12000) _
l=r 1=073 027 27 = &
= (=3 1= 3\ 3 g a
B Y ee——a V| == . The latter series is geometric with a = 1 and ratio r = =35 Since |r] = 5 < 1. it
-1 4“ 4 o] 4
1
COnverges to T—(=3m = 2. Thus, the given series comvergesto () (1) = 1.
= pdn i el g
25 Z —_ Z ﬁ“ﬁ_l —EZ ( ) is a peometric series with ratio r = e Since |r] = E[:‘a 1.23] = 1, the series
-] o1 Fimm]
diverges.
i 1+ ! + = ! 4+ ! + ! + i ! li ! This is a constant multiple of the divergent harmonic series, o
3rEtatEYT T Tl P P e 5
it diverges.
=, 24n 24 n 2n4+l 1
M. di by the Test for D l = ki = lim ———l
E T, diverges by the Test for Divergence since lim an = lim —— = lim S0 = s #
. — 3".3 — (3\" 3 3 3
M. Z grbly=n = Z T = SZ (E) . The latter series is geometric witha = I and ratio r = <. Since Il = 3 <1,
sl ol Fuwm]
3/4
it converges o T—3/1 = 3. Thus, the given series converges to 3(3) = 9.

o0
1 1 1 1
By — ryr— diverges by the Test for Divergence since lim TT="135"1 £0.

-]

o
35 Z (sin 100)* is a geometric series with first term a = sin 100 [= =0.506] and ratio r = sin 100. Since |r] < 1, the series
ke
sin 100
| T e =2 =, 336
CONVETZES 10 sy =
= nt 41 .
3. % In| ———— | diverzes by the Test for Divergence since
nel Int 41

i ) n' 41 ) n 4l i
i an =t () = fim g ) =g 0

3. E arctan n diverges by the Test for Divergence since Jim an = lim arctann = 7 #0

Fo-l
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SECTION11.2 SERES O 485

e 1
a. E = 'E ( ) IS & geometric senesmﬂ'iﬁrsttermu:landratmrzl. Since |r|=l~:i 1, the series converges

nm1 E™ rmml € € &

1/e 1fe [
o = P —= E 8, =1Th / Theo
1-1je 1—1Jc & e—l - By Example Eln{ +1} us, by Theorem B(ii)
1 =1 > 1 1 1 e=1 &
E:, en n{n+l]) “gler‘-“gln{n-i'—l}_e—l _E'—1+e—l_e—1'

43. Using partial fractions, the partial sums of the series E

nmz ¥ =1
n 2 n 1 1
;..L—Ez _{5-1]{i+l}_§2 (:‘-1 ':‘+1)

(1=2) (=2 + (1) s (- 2) + (25 0)

1 1 1

Thi tel ands, =14 = = —— -

15 UM 15 a IEIeSCOPIng Seres By + 3 p— ey
= 2 . . 1 1 1 3
s, 5 oy = i o= Jim (145 - 527 -7) =3

= 3 " 3 L | 1 .
43. For the series —_— i = _— - - - using partial fractions]. The latter sum 15
El nn 4 3) o .,.El ii<43) E( ) [using J

raml b T i+3

=D+GE-D+E-D+E-D++(FZ-2)+ () +H(F )+ (i -=)

m afd
=14 f+ 2= =5 =7 — 7 [welescoping series]
3 . . e
s, % b= i = i (14443 - phr =y - k) =14+ = . Comenes

ol
47. For the series 3 (elfr” - e-‘-"{““]‘),

ol

i

Sn= % (Ejﬁ - e‘l”""l}) =(e' = e""r"!:]- + ':Ell.fi - E1f3] PR (E.lf" _ Elf{hl.-l-l}) — o = ptfn1)

il
[telescoping series]
o0
Thus, E (el"m -— e-l"r{n+1}) = lim s, = lim (e - el‘f(“"'”) =g - s_'u =e=1 Converges
il i = 30

49. (a) Many people would guess that = < 1, but note that = consists of an infinite number of 9s.

9 9 9 9 = 9
(b))  =099999 . = o + ﬁ+ 1—+ 10,000 R poy m“,whlch 15 a geometric series with a; = 0.9 and
0.9 0.9
r=0.1 IT:.smnjs—l —o1-05 - 1, thatis, x = 1.

(c) The number 1 has two decimal representations, 1.00000 . . . and 0.909999

(d) Except for 0, all rational numbers that have a terminating decimal representation can be written in more than one way. For

example, 0.5 can be written as 0.49999 . . . as well as 0.50000. . ..
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486 O CHAPTER11 INFINITE SEQUENCES AND SERIES

B B B 1 &/10 B
M. DE——+—+ « Is a geometric series with a = — and r = —. It converges to =t ==,
107 & R T R T/ S Pl Y TR
- alé 516 alGé 516 216 1
3. 2516=12 a—m 4+ ﬁ"“ Nm‘% + ﬁ"“ =+ 15 @ geometric seres with a = % and r = = It converges to
a 516/10°  516/10° 516 516 2514 838
= = =2 Thus,25T6 =2 i i
I=r 1=1/10° _ 999/10° _ 999 =<2 * 909 = 9 "33
55. 1.234567 = 1.234 + ig:i + ?g‘ +---.N{n~'%+%+..- is a geometric series with a = ?g; and
ol e o a  _ S67/10° _ 567/10° 567 _ 21
TE e MRS T T T T1/10° T 999/10° 999,000 . 370000

21 _ 1234 21 _ 45658 21 45679
37,000 — 1000 = 37,000 37000 @ 37,000 37000

1.234567 = 1.234 +

o0 e
§57. 3 (=3)"z" = ¥ (=5x)" is a geometric series with # = =5z, so the series converges < |rj<1 <

sl -
=5 1 % thatis, —= L In that case, the sum of the series is m—tm = ———oo — Z3%_
|52 < |I|":5= TR RIS ! l=r 1 = (=5x) 1 4 5z

oo - e — " -2
. Eu: - |s.:=.|gn.*ﬂmf:trmf.:f:m:swn‘h:—=E .50 the series comverges &= [r| <1 =
B an sl 3 3
r=2 r=2 -
3 <1 = =1 3 <] & =3<r=243 & =1<x<5h Inthat case, the sum of the senes is
a 1 _ 1 _ 3
I=r | _Z=2 3-(2=2) 5=z
3 3
I = Sy 2 2
1. E—:E(—) is a geometric series with r = —_ so the series converges < |r| <1 <= ‘—‘{1 =
nmg ™ nmd T T x

1 _ =z

i —
1=+ I—Zfz_I—Z-

2<|zx] & x> 2orx< =2 Inthat case, the sum of the series is

a0 o
63. 5 " = 5 (e*)" is a peometric series with # = %, so the series comverges < |f| <1 & [ <l =
=0

il
1

-7 l-et

=lce* ]l & 0<e <1 < x<0 Inthat case, the sum of the series is

65, After defining f, We use convert (£,parfrac); in Maple, Apart in Mathematica, or Expand Rational and

In"+3n41 1 1
Simplify in Derive to find that the general term IS ———————— = — e e— S0 the mth partial sum is
TRy ge (n® 4 n)? n*  (n41)?

e () () (o) o (i) =t

b1

The series converges to lim s, = 1. This can be confirmed by directly computing the sum using
a2

sum(f,n=1..infinity); (in Maple), Sum[£f, {n,1, Infinity}] (in Mathematica), or Calculus Sum

(from 1 to oo) and Simpli £y (in Derive).
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SECTION11.2 SERIES 0O 487

6. Forn=1,a; =0since 5y =0 Forn > 1,

n=—1 (n=1)-1 (n=1jn—=(n+1)n—=2) 2
Oy = Sp = Sp=l = - — —
n+4l (n=1)+1 (n+1)n n(n 4 1)
1-1/n
.n‘“SD, Elﬂn |II:LI Sn = “].EI.L m

69. (a) The quantity of the drug in the body after the first tablet is 100 mg. After the second tablet, there is 100 mg plus 20% of
the first 100-mg tablet; that is, 100 4 0.20{100) = 120 mg. After the third tablet, the quantity is 100 4 0.20{120) o,

equivalently, 100 4 100(0.20) + 100{0.20)*. Either expression gives us 124 mg.
(b) From part (a), we see that (Juq1 = 100 + 0.20 Qy.

{c) Q=100+ 100(0.20)" + 100(0.20)* + -- - 4+ 100(0.20)"=*

= i 100(0.20)*="  [geometric with a = 100 and + = 0.20)].

il

100 100

The quantity of the antibiotic that remains in the body in the long run is nh_.l-lgc = T—am = 4_;'"5 =

125 mg.

T1. (a) The quantity of the drug in the body after the first tablet is 150 myg. Afier the second tablet, there is 150 mg plus 5%
of the first 150- mg tablet, that is, [150 4+ 150(0.05)] mg Afier the third tablet, the quantity is

[150 + 150(0.05) + 150(0.05)°] = 157.875 myg. After n tablets, the quantity (in mg) is

i -'!m]
150 + 150(0.05) + - -~ 4 150{0.05)"~". We can use Formula 3 to write this as IEDEI uuc'g& ) = =g {1 —0.05").

(b) The number of milligrams remaining in the body in the long run is lim_ [2280(1 — 0.05")] = 2%(] — 0) = 157.895,
only 0.02 mg more than the amount after 3 tablets.

T3 (a) The first step in the chain occurs when the local government spends [ dollars. The people who receive it spend a
fraction ¢ of those I dollars, that is, De dollars. Those who receive the De dollars spend a fraction e of it, that is,
De* dollars, Continuing in this way, we see that the total spending after n transactions is

Dl ="

S.=D4 Do De* 4ove g ™! = ] }I:ry{]-}.
-

1= D D
(b) lim 5. = lim 20=¢) _ lim (1=¢")=-— |sice0<c<l = limc"=0
e 1=0¢ 1l = ¢ a=oc - =

-z [sincec 45 =1) = kD [since k = 1]3)
&

If e =0.8,then s = 1 — ¢ = 0.2 and the multiplier is k = 1/s = 5.

g
T5. 3 (14 ¢)™" is a geometric series with a = {1 4 ¢)~2 and r = (1 + ¢)~?, so the series converges when

TomE

[(1+e)7 <1 & Jl4e>1 & l4ex>lol4e<=1 < e>0ore< =2 Wecalculate the sum of the
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488 O CHAPTER11 INFINITE SEQUENCES AND SERIES

(14¢)2 1y 1 4

series and set it equal to 2! ———w = —_—] =2=2{—| & 1=2(14c¢)f =2(14¢) =
1=(14¢) 14c¢ l+4c

28 +2=1=0 & czﬁﬁﬂziﬁ%. However, the negative root 15 inadmissible because —2{:‘@{0.

Sﬂcz%.
1

1,1 !
T efn = o HIHEd by — Q200 Ll (1<41) {1 + %] [l + %} ' -{1 + ﬁ} [° =14 x]

= mm———an —_— 1
123 - "F
Thus, e = n 4+ land lim e*" = oo, Since {s,} is increasing, lim s, = oo, implying that the harmonic series is
=30 fi =30
divergent.
79. Let dy be the diameter of C. We draw lines from the centers of the C% to -+

the center of D (or '), and using the Pythagorean Theorem, we can write b

P4(1-3)"=(1+3)" & d

1 I
1=(1+42di)" = (1= 3ds)” =24, [difference of squares|] = i =&

2

o, L
e | / \
T o

1= (14 1da)” = (1 =ds = Lda)” = 2d + 2ds = d} = dud

={2-—d1]|{d| +d2:]' =1

dy = — —d—Ml—{l+id]z—[l—d—d-ld}2 o d
2_2—4'_"1 1= T ] 1 2 = g3 a

_ = (di 4 de)]
T 2—(dy +ds)

, and in general,

1=, d)°
2 _EI.I oy

1 1 1
=33 respectively, so we suspect that in general, o, = m

. 1 1
. If we actually calculate o and dy from the formulas above, we find that they are =53 and

To prove this, we use induction: Assume that for all

1 11 n
kE<n dy = =— = . The =1=
=T kD) Tk k41 n 3, di

1 —

1 1 [telescoping sum]. Substituting this into our
Tl Tl

WP 1
[l-n+l] _I:n+1]2_ 1
2_(L)_ nt2 " (n+1)(n+2)
i+ 1 n+l

formula for deay, we get daga = and the induction is complete.

Now, we observe that the partial sums 3" d; of the diameters of the circles approach 1 as n = oo; that is,

i
-l
= 1

fﬁﬂn=E

— = 1, which 15 what we wanted to prove.
romm 1 -l ﬂ'{ﬂ- + 1]

8. Theseries 1 =14 1=141=1 4 --- diverges (geometric series with r = <1} so we cannot say that
D=1=1+41=141=14%::-.

8. 30 can = Jim i cai = Jim ¥ m=e Jim 3 i =c¥ o an, which exists by hypothesis.

e
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SECTION11.2 SERES 0O 489

85 Suppose on the contrary that 3 (as + b ) converges. Then ¥ (an + ba) and 3~ a,, are comvergent series. So by

Theorem 8(i1), ¥ [(on + bn) — an] would also be convergent. But 3 [(an + bn) — an] = ¥ by, a contradiction, since
% by, is given to be divergent.

87. The partial sums {s,} form an increasing sequence, SINCE S, — $pa1 = an > 0 for all n. Also, the sequence {s,, } is bounded

since s, < 1000 for all n. So by the Monotonic Sequence Theorem, the sequence of partial sums converges, that is, the series

% oy 1S CONVergent,

89. (a) At the first step, only the interval (1, 2) (length 1) is removed. At the second step, we remove the intervals (1, 2) and
(Z.£), which have a total length of 2 - (1)”. At the third step, we remove 2* intervals, each of length (1), In general,
at the nith step we remove 2"~ intervals, each of length (1), for a length of 2° =1 . (1)™ = 1(£)"7". Thus, the total

L=
length of all removed intervals is 3 3(2)"™' = 1—1% = 1 [geometric series with a = 1 and r = £|. Notice that at
el

the nth step, the leftmost interval that is removed is ((£)" ., (%)"). so we never remove 0, and 0 is in the Cantor set. Also,

the rightmost interval removed is (1 — (3)" .1 = (4)"), so 1 is never removed. Some other numbers in the Cantor set

(b) The area removed at the first step is £ at the second step, 8 - ( } : at the third step, (8) - (1 } In general, the area

removed at the nith step is (8)"~" ()" = 1(2)"™", so the total area of all removed squares is

SLEYyT o,
Zale T 1l=8f0" 7

1 1 2 o il 3 23
9. (a) F =— =, s== =—,sm=_—4 =
@ wEl[nH}" 122" et T3 e® st 1234 " 2
3 —23+ 2 _ The denominators are (r < 1)!, 50 a guess would be s, n+1)i-1
MEHTT 2345 1@ " ¢ T T
— I-
(b) Forn=1, 5, =l=u so the formula holds for n = 1. Aﬂmak—w
2 2! (k+ 1)
(k1) =1 k41 (k+1)!=1 k4l (k42 =(k+2)+k+1
=TI (k20 (kI (R+DNE+Z) (k+2)!
_(k+2) =1
(k+2)
Thus, the formula is true for n = k 4 1. So by induction, the guess is correct.
1)l =1 1 —
O s = DT e ' T T =tmin 2 ooy e =t
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490 O CHAPTER11 INFINITE SEQUENCES AND SERIES

11.3 The Integral Test and Estimates of Sums

2
1 1 !
1. The picture shows that a, = 53 *f.j; ey dr,

1 3 ] 1 = ]
— dr. The
oy = i {f xl —n {j: rl3

integral converges by (7.8.2) with p = 1.3 > 1, so the senes converges.

B

L]

0y [y

3. The function f({x) = ™" is continuous, positive, and decreasing on [1, o), so the Integral Test applies.
o t Rl
f r ?dr = lim J[ r~*dr=lim |[Z—| = lim —i,-i- 1 =i_
i t—oc f, t—oo | =2 |, t—ac 2 2

Zal
Since this improper integral 15 convergent, the series Z n~" is also corvergent by the Integral Test.

Fi=]

2
5. The function f(x) = T S continuous, positive, and decreasing on [1, oo, so the Integral Test applies.
bx —

o) o . 2 t . 2 2
/: — IIEI;.I.C | a.I—l _:IEE; [Eln{h—l}]l_:lﬂg [gln{ﬁ-t—l}—ghlai] = oo,

2 7l also divergent by the Integral Test.

Sn —

Since this improper integral is divergent, the series Z

7. The function f(x) = EL-H is continuous, positive, and decreasing on [1, o), so the Integral Test applies.

t 1 to
e [ e i [ 0] = 3 )< ) S o

integral s divergent, the series E 15 also divergent by the Integral Test.

ﬁ.ln 1
= 1
8. % is a p-series with p = /2 > 1, so it converges by (1).
remm 1 ﬂ-ﬁ
1 1 1 1 1
Ml =+ —+ -+ —E—'I'J'nslsap—semsv.nhp_'i}lmnmm-ergesh}{l]
8 2T 64 125 aml T
13. - L + = ! +i+ L+ 1 +- > = The function f{x) = IS COntinuo tive, and decreasing on
3 n T = L in-1 el 1S, POSIlive, &

[1,2c), so the Integral Test applies.

. 1 . 1 ' . 1 1
. h_ldx_llin;cfl h_ldx_t]in;c[sh.{u—l}]l_!h_{.;[gln{niz—l}-;h.:s]_m,muw.senes

o
“¥| qn =1

diverges.
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SECTION 11.3 THE INTEGRAL TEST AND ESTIMATES OF SUMs O 491

= a4 N ) = 1 = 4 = 1

15 = = —_ —_ i5 a comvergent p-series with = 1.
ﬂgl n? rgl( “-2 ﬂgl nf? El n? rEl nf2 e F= E
> 4 1
3 o =4 E T 15 a constant multiple of a convergent p-series with p = 2 = 1, so it converges. The sum of two
- ﬁ-l

convergent series is convergent, so the original series is convergent.

1T. The function f(x) = :“l is continuous, positive, and decreasing on [1, =c), so we can apply the Integral Test.

f -d'I— lim = lim t-Em‘1 Il =2 lim |tan~'[ L} —tan=1[ =
1 4 Pl f + 4 t=so 2], 2it=ex 2 2
_ 1= tan=1 1
2|2 2

= =]
Therefore, the series
b?;:l n® +4

COIVETZES,

19. The function f(zx) = is continwous and positive on [2, oc), and is also decreasing since

444
(z* +4)(32%) = 2*(42%) 1227 — 2% (122
[z* + 4)° Tzt 4)E T [zt 442

=)= < 0forx > +12 = 1.86, so we can use the

Integral Test on [2, oo ).

- t Iﬂ " 1 4 t " 1 4 1
I‘+4 ‘:’Eiﬁ e = lim [;ln{m +4}]2_!1_._n=:= [;lu{! +4) = 21n 20| = oo, so the series

Z T diverses, and it follows that Z
TE

T

n‘ i diverges as well.

14In
ﬁ{ﬂtmz}ﬂ S0 WE Can

L 15 continuous and positive on [2, oc), and also decreasing since f'(x) =
£

. fix) =

|1.||1 [lna{lia J::]-]2 = :II]'.II [In(ln £) = In{ln 2)] = oo, so the series E % diverges.

nrxr nml T

use the Integral Test

23. The function f(z) = ze™ = % is continuous and positive on [1, oo}, and also decreasing since

ef 0] = axet =E:{1—I} _ l==x
@ @r =

e £ . t
f re dr= limf re~ T dr = lim ([—IE-!] +f e-!d.z) [ byfﬂm.lf,dz]
1 t—son fo B 1 1 W= Idv =&
t t 1 1 1
= lim (-!E'-: +e~l 4 I:—F.'-:] ) = lim (——+ - — -)
t=eon 1 R et e et e

lim (—i-‘i- l—ﬂ'-i‘-l) = E:
et e

I=son [ e

fz)= < 0 for =z > 1 [and (1) > f(2)], so we can use the Integral Teston [1, o).

)
50 the seres E ket CONVErges.

=1
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492 O CHAPTER 11 INFINITE SEQUENCES AND SERIES

1 _L l+ 1
24 2 ¥ z41

so the Integral Test applies.

)cxf{z}dz::nj.;[(m—lz-é+ril)¢z !h_{ﬁuc[—i—hl.r-thl{z‘{-l]]

1 41
[-—+|;.+T+1-h.2] =04+0+1=In2

25. The function f(x) = | by partial fractions] is continuous, positive and decreasing on [1, =),

[ 4

1

= lim
gl

The integral converges, so the senes E ;1 CONVErges.
+ 1

Fomml

27. The function fix) = -_1.::.1: is neither positive nor decreasing on [1, oo, so the hypotheses of the Integral Test are not
satisfied for the series §:1 EE“.

29. We have already shown (in Exercise 21) that when p = 1 the series ;;_i ﬁ diverges, so assume that p # 1.
flz)= m is continuous and positive on [2, <), and f'(z) = :52{]-.: II'-;:“ < 0if x> e~F, 5o that [ is eventually

decreasing and we can use the Integral Test.

I[ln:l:}P l=p l=p

This limit exists whenever 1 = p <0 < p > 1, so the series converges for p > 1.

31. Clearly the series cannot converge if p > —1, because then lim n(l 4+ n”)" 3 0. So assume p < —21, Then
a0

f(z) = (1 + =*)* is continuous, positive, and eventually decreasing on [1, oc), and we can use the Integral Test.
= 1 (14 %) 1 2
Py = -. = PEL _ gpdl
j: 2(1 4 =) Pdr = ].|J_m[2 ST 1 2{P+1]:l—'ﬂ.l¢[[1+i] 2.

)
This limit exists and is finite < p4+1<0 & p< =1, s0theseries 5 n{l + n”)* converges whenever p < =1.

-l

33. Since this is a p-series with p = z, {(z) is defined when = > 1. Unless specified otherwise, the domain of a function f is the
set of real numbers = such that the expression for f{x) makes sense and defines a real number. So, in the case of a series, it's

the set of real numbers x such that the series is convergent.
= (3}* = 81 = 1 =Y o
35 (a) (—) = —_ =&l —=81(_)=_
rgl TL T3 nd Famm ] 1t a0 10

b _ 1 1 = 1_]1" 1 1 t a1 and
{}Ea{k 2]‘__+4_“+§+”'_,§4F_E- —-l'- [subtract e, az] =
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SECTION 11.3 THE INTEGRAL TEST AMD ESTIMATES OF SUMS O 493

2
37. (a) f(x) = — is positive and continuous and f'(x) = ——; is negative for « > 0, and so the Integral Test applies.
> 1 1 1 1 1
— =—=+=+z+" 1549768,
“glnj 22 s10 12+22-+-32+ +ll]2 =2

= 1 . [-17" . 1 1 1
R < —_—dr = lim |=— = lim -—+ = 50 the error 15 at most 0.1,
w T2 t—szc 0 W/~ 10

-3 o
'.'h]'sm+f ﬁd-rﬂaﬂsm-i-f —dr = syt SsSsptag =
11

1.549768 4 0.090900 = 1640677 < s < 1.549768 4+ 0.1 = 1.649768, so we get s == 1.64522 (the average of 1.64DGTT

and 1.649768) with error < (L0035 (the maximum of 1.649768 — 164522 and 1.64522 — 1.640677, rounded up).

ic) The estimate in part (b) is & = 164522 with error < 0.005. The exact value given in Exercise 34 is #ﬂ"ﬁ == 1.644934.
The difference is less than 0.0003.

=1 1 1
l{d]'Rn‘_:ﬁ gd.r:— Nﬂm{ﬂﬂﬂljf—{ﬁ = n > 1000

39. f(x) = 1/(2x + 1)° is continuous, positive, and decreasing on [1, oc), so the Integral Test applies. Using (2),

= =1 [ 4 1
=6 .
Ry Eﬁ (2= 4 1) qu [lﬂ{ﬂz e ] =TT To be correct to five decimal places, we want

1 ] " i

4 1 1 1 1 1
g = —— = — &4 — + — <+ — == 0.001 446 == 0.00145.
By = .El @n+ 1)F BT + T ?ﬁ + T ==

nl S 1
L e —gor '8 @ convergent p-series with p = 1.001 > 1. Using (2), we get

ol ﬂ.l

s ={LO01 [
=101 . xr N 1 1 1000
Rﬂ EL T dr = :]_I:i [—ﬂ.ﬂﬂl] i = —].':IH]:]_I:EL [w] = —lm(—w) = ﬁ- We want

L

Aa < 0.000000005 =

1000
=1 0.001
gy < 8x 1070 & wE > e

n > (23 10%)" = 21000 5 191100 o ] 07 5 10™ x 10'10% = 1.07 x 104521,

43. (a) From the figure, a2 + as 4 --- +an < [} f(z)dr, so with 3
1
11 1 1 1 "] L
== 4=t =—t-db=< | —dr=Inn
fi=) z2+'§+4 +n_£r "
1 1 1 1
Thus, s =14+ =4 =4 =4 v =< 1 4 Inmn.
2 3 4 mn day | e | e || A,
(b) By part (a), s 46 < 14 In 10° = 14.82 < 15 and aerz s e et

s = 14 1n 107 = 21.72 < 22,
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494 0O CHAPTER 11 INFINITE SEQUENCES AND SERIES
1
45, B = [s_-“”’]'“" = {ej“”}mh =t —Tas- This is a p-series, which converges for all bsuch that —Inb > 1 &

lnb<=1 & b<e™t & b<lfe [withbd>0)].

11.4 The Comparison Tests

1. (a) We cannot say anything about 3 a,. If a, = b, forall nand % b, is convergent, then 3 a,, could be comvergent or

divergent. (See the note after Example 2.)

i(b) If an < by forall n, then 3 ay is comvergent. [This is part (i) of the Comparison Test.)

1 — 1
3 m — foralln = 1, s0 Z mm-'erges by comparison with Z o which converges because 1t 15 a p-senes
ll.-l -
withp=3> 1
n+4 l n n41l =
5 —= forall n > 1, 50 E diverges by comparison with 3 —=, which diverges because it is a
T \"g T \f': "u"I— meml TI m - mn

pserieswithp =2 < L.
9" 9" 2\" 9"
1. T S Tor (E) forall m = 1. .E ()" is a convergent geometric series (|r] = & < 1), 0 > w

comverges by the Comparison Test.

In k k 1
9. 1 far all k = 3 [since Ink > 1 for & = 3], so E — diverges by comparison with E —, which diverges because it
imn K

o .
is a p-series with p = 1 < 1 (the harmonic series). Thus, % diverges since a finite number of terms doesn’t affect the

hewm 1

comvergence of divergence of a series.

L YE K ¥E 1
. — e —=— = ——forallk = 1,50 —— cOrverges by comparison with
e+ a3 Ve B o E. VR + 1k +3 ges by compar E Fre
which converges because it is a p-series withp = % = 1.
1+c 2 =, 2 = 1+ cos
13 # < forall m > 1. Z — Is a convergent geometric series ([r] = 2 < 1), 50 Z * converges by the

=] o]

Comparison Test.

4“+J g 4" 4 n f 4
15. = =4(§) foralln > 1. E 4( ) =4 E ) is a divergent geometric series (|r] = 3 > 1), 50

in -2 3n remml -l

s gRdl

Y =

] r =1

diverges by the Companson Test.
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SECTION 114 THE COMPARISONTESTS O 495

1
17. Use the Limit Comparison Test with a, = ——and b, = —
~..-" nt <4 1

e T
lim — = lim — =1 = 0. Since the harmonic seres = diverges, so does
mevoe by m—oe yn? 41 = 1+ () +{1,fn El =
= 1
el Y i< + l-
<l 1
18, Use the Limit Comparison Test with as = = —
par = +n b n*
. O (n+ 1)n® i nj+:|1,_ . l4lfn . =1 )
P by T AR T D) ek A1 e T ijmr | O S0 T o isa comvergent prseries
[p =2 = 1], the series 3 also converges.
il T n
VT 1
2. Use the Limit Comparison Test with a, = n and by = —
24n VT
n 1,."1+:I'I!1.,-"E_ . v’n5+n,ﬂ'v ) -..-'1+1Fn_ . = 1 .
“Il_j.l;lc b = nl—-';: Ten - .L]i.;.: Z+n)jn nlﬂu;lc Yntl 1 > 0. Since .§1 - 15 a divergent p-series
o !
[p=3% < 1) the series 3 1+ also diverges.
nm1 241
54 2n 1
23, Use the Limit Comparison Test with = ——F7 thd by = —:
par e (14 n?)? bn n:t
=4 4 4 LR o
lim =% = lin n—‘lﬂ lim — +2n . l‘hf = lim —”-+— =2 > 0. Since ¥ l 15 @ convergent
n—ra By “_,,_.,c {1 + nz}z i {1 +nz}z ]_Il.r{nz]i e { 1 1} e n*
54+2n

=
ries [p = 3 > 1], the series —_—
penes [p=3>1] I Tanp

also converges.
"4+ 1

e 41 - e" 41 e 4]

e +1 = men 4+n nlen+1)

1
= - Iﬂ[ n = 1, so the seres Z diverges by comparizon with the divergent

S
1 1 1
harmonic series E —.  Or: Use the Limit Companson Test with a, = En—-:l and by = —
e T

- L

2 )
27. Use the Limit Comparison Test with a,, = (l + l) e~"and b, =e~": lim 28— lim (1 + l) =1 > 0. Since
mn T

ool 1=
=0 = ] = 1y
¥ e™™ = % — isaconvergent geometric series [|r| = 2 < 1], the series 3 (l B —) e~ " also converges.
Py nml € =l mn
- i =1 l 1 - 1
29, Clearlyn! = n(n = 1){n—=2)-.-(3){2) =2.2.2.....2.2 =2""" sn = < g1 2 E noT IS @ convergent geometric

=1
series [|r] = £ < 1],s0 3 — converges by the Comparison Test.
aml T2
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496 O CHAPTER11 INFINITE SEQUENCES AND SERIES

n.

41.

9
. Since — dhn —— for each n, and since E is a convergent geometric series (|r] = 15 < 1), Oudidada ... =

1 1
Use the Limit Comparison Test with a, = sin (—) and by = —. Then ¥ ay, and 3 by, are series with positive terms and
T mn

1 in & =
lim E = lim sin(l/n) _ = '_'Em'" =120 Since ¥ by is the divergent harmonic series,

o n—--x llllr;n: ] ﬂ il

S
5 sin(1/n) also diverges.  [MNote that we could also use 1"Hospital’s Rule to evaluate the limit:

-]

sin(lfzx) w _ cos(ljx)- (=1/z%) o1 —
:rlll-Ia.cT _:11-:.: Y7 :lll.'.[;c{_l.m; =eosll =1

Yo 1 1 1 1 1 1
= + + + e ——— 2= 019926, Now < —, &0 the ermor is
Z 54n* 5417 542 543 5+ 10° 54n* n®

-1

=] L -11° -1 1 1
Rio<Tw< | —dr=li dr= lim |—| = lim [ — = = 0.000025.
o= jcﬁ T tmsen L,I Py [4;4]10 fmsen (.1.-,4 + 4u,[m) 30,000

10 os? 1 12 <3 4 10 os” 1
—_ g OO8 e [l e _ COsT T
“E:IE cos" n = — =3 + = veo o =5 = 0.07393. Now - = E—N,smheelmr is

= t =zl 5=t 5-1& 1 5
Ruo<To<| —de=1li 5*dr=lim |[———| =lim[-——+>—|=——— <64x10"
"= 1”—,[,., 5= :EEcL, * :ﬂ:[ h.s]m =—-"J=( ms T lnE) Silng ~ %

dn
ne1 107

o = 10r F-2) 1{:"

will always converge by the Comparison Test

. Since % ay converges, lim a, = 0, so there exists N such that |a, — 0] < 1 foralle > N = 0<a, < 1for
=20

aln>N = 0<al<a. Since Y an comverges, so does 3 a2 by the Comparison Test.

(a) Since lim :—" = oo, there 15 an integer N such that ;ﬂ = 1 whenever e > N, (Take A = 1 in Definition 11.1.5.)
fi—20

f i

Then as 3> b, whenever n > N and since ¥ by, is divergent, ¥ ax 15 also divergent by the Comparison Test.

1 1 1
(b} {I]Ifﬂ-..:—a.rﬂbn_ for e > 2, then lim — = lim — = lim — = lim — = lim x = oo,
E

1
Inn [ n—oo 1T PEER T E - P

s0 by part (a), E o Jsdwergem_

i

(1) If a,, = E;3.r|||:1 b, = i then E b,, is the divergent harmonic series and lim b_ lim Inn= lim Inx =no

a1 LR B ) f ==l FewaD

50 i ay diverges by part (a).

-

1
43, lim na, = lim —— 50 we apply the Limit Comparison Test with b, = —. Since qu . > 0 we know that either both
]'1- =2

o = 1,|'r

sernies converge of both series diverge, and we also know that E - dwerges | p-series with p = 1). Therefore, 3 a,, must be

nml T

divergent.
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SECTION 115 ALTERNATING SERIES 0O 497

45 Yes Since ¥ ay 18 a convergent series with positive terms, lim a, = 0by Theorem 1126, and 3 by = 3 sinfaa) isa
fa—e20
. . o e sinfan) _
series with positive terms (for large enough n). We have lim — = lim ——= =1 > 0 by Theorem 3.3.2, Thus, %" b,

=20 Iy A= (g

is also convergent by the Limit Comparison Test.

11.5 Alternating Series

1. (a) An alternating series is a series whose terms are alternately positive and negative.

(b) An alternating series E Gn = E {=1)"""bg, where by, = |aa|, converges if 0 < byy1 < by for all noand qu bs =0,
=

romsl =l

( This is the Alternating Series Test.)
(c) The error involved in using the partial sum =,, as an approximation to the total sum s is the remainder i, = s — s, and the
size of the error is smaller than b, ; that is, || < by, (This is the Alternating Series Estimation Theorem.)

2 4 6 & 10 .
R -k ok _El[ 1) —N{m« hmbu_“lly;n_‘“‘ u'—-sc1+4,f ;ﬁﬂ Since

lim an # 0(in fact the limit does not exist), the series diverges by the Test for Divergence.
LR e =

= =
(=1 =1 1 ;
5% a. _Z e - Z{ 1) by, Now by = =3 >0 {bn} is decreasing, and lim b, = 0, so the series

- - L w1

converges by the Alternating Series Test.

1. Eﬂ'ﬁ E{ " 2 +1_E|: 1) b, Now llmb.L_u]_.E;L;:;::n

- L -1

= —#l{l Since lim a. #£0
il = 30
(in fact the limit does not exist), the senes diverges by the Test for Divergence.
n oo ) 1
L} an=3 (=1)""" = 3 (=1)"ba. Now b = — > 0, {ba } is decreasing, and lim b, = 0, so the series converges
e =

- L o=l

by the Alternating Series Test.

N by = pr >0forn = 1. {b,} is decreasing for n > 2 since
2 Y (a® 4+ 4)(22) - 22(32%) (2 +8-32") (8 -2
(x“H) - (= +4F =T @37 - (@yap <Ofrz>2 Also,
Ifn n41 .
Jim b = lim Tram = 0. Thus, the series Ej[ 1y ] comverges by the Alternating Series Test.

13. lim b, = lim e =" =1, 50

i =30 =2l

lim [—1}“" 4™ does not exist. Thus, the series E{-l]“‘l 4 diverges by the
fi—

sl

Test for Divergence.

sin(n 4 )7 =1)" 1 "
15. an = 1(+ v,:_‘] :1{+ 3#{ Ncm-'h..:m}{!mrnzﬂ,{bu} is decreasing, and lim ba = 0, s0 the series

o g] + 3)x
T 1L E“ El corverges by the Alternating Senes Test.
sl 1+ VI;
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498 O CHAPTER11 INFINITE SEQUENCES AND SERIES

17. E{—l]“sin(%). b.L_aln{ )}Dfﬂln}ﬂmﬂaln(ﬂ)zﬁn(nil ,amﬂli_,_gc_n.-in(g)=m.u=u,mm

series converges by the Alternating Series Test.

T
9. L =00 s = lim = = lim & does not exist. So the series E{-l}“‘— diverges
! 1:2«vevvm n—ac 7l v ! nmi
by the Test for Divergence.
2. 1. ~ The graph gives us an estimate for the sum of the series

I (=08)" ¢ 055,

o=l n
I'Jﬂ
(o) )
i1
by = '{“j} ~ 0,000 004, so
(5.}
e, A
|
_D-S n E u S]H.
=] ! T -n-l !

fr =08 4+ 0.32 = 0.0853 + 0.01706 = 0.002 731 + 0.000 364 = 0.000042 = =0.5507

Adding bs o 57 does not change the fourth decimal place of 57, so the sum of the series, correct to four decimal places,

15 =0_.5507.
= (= }“+1 1 1 1
23. The series »  ——— satisfies (i) of the Alternating Sernes Test because ———— -:: = and (i1} Iun — =0, 50 the
oy 7t -l: -+ l:l i
series is convergent. Now by = 5—1“ = 0.000064 > 0.00005 and by = % 22 0.00002 < 0.00005, so by the Alternating Series

Estimation Theorem, n = 5. (That is, since the Gth term is less than the desired error, we need to add the first 5 terms to et the

sum to the desired accuracy.)

n=1 1 1
D) satisfies (i) of the Alternating Series Test because o and (1) l:m

=
25. The series E GIEEE < am

w1 22"-

nidn = ﬂ,

1
s0 the series is comnvergent. Now by = = 0.00125 = 0.0005 and bs = —— T == L0004 < 0.0005, so by the Alternating

Series Estimation Theorem, nn = 5. (That is, since the Gth term is less than the desired error, we need to add the first 5 terms to

1
5725

get the sum to the desired accuracy. )

1

1
dby= = D5 = 0.000 025, so
= (=1)" (-1" 1 1 1
L S = — = — = —0.459722
El{z o El{ 2n)! 27 24 T !

Adding by to 55 does not change the fourth decimal place of 54, so by the Alternating Series Estimation Theorem, the sum of

the series, correct to four decimal places, is —0.4507.
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SECTION 11.6 ABSOLUTE COMVERGENCE AND THE RATIO AND ROOTTESTS O 489

o
- 1 2 3 4 5 .
29. Y (=1)"ne™™" = s = -+ =S+ 5 = o = —0.105025. Adding be = 6/e™” = 0.000 037 to s5 does not

-

change the fourth decimal place of 55, s0 by the Alternating Series Estimation Theorem, the sum of the series, comect to four
decimal places, is =0.1050.

" i{'ljn-l_l 1+1 l+ +1 1+l 1+ The 50th ial sum of this series is an
=] n - 2 3 4 49 50 51 52 ’ part

1=t 1 1 1 1
underestimate, since E ) = sn0 + (q - —) + (E - 5) + ++-, and the terms in parentheses are all positive.
o

aml Tt o2

The result can be seen geometrically in Figure 1.

Fi
15 decreasing and eventually positrive and Iun by = 0 for any p. Sothe series E =1

1
33, Clearly b, =
n4p na1 N+ p

converges (by
the Alternating Series Test) for amy p for which every by, is defined, that is, n 4 p 7 0 for n 2 1, or p s not a negative integer.
35 3 baw = 5 1/(2n)° clearly converges (by comparison with the p-series for p = 2). So suppose that 3 (=1)""" by

converges. Then by Theorem 11.2.8(i), so does 3 [{-1]“'1bﬂ, + bﬂ] =2l4++414-)=2%

. But this
In=1

mi=1

diverges by comparison with the harmonic series, a contradiction. Therefore, ¥ (=1)""" by must diverge. The Alternating

Series Test does not apply since {by, } is not decreasing.

116 Absolute Convergence and the Ratio and Root Tests

a1
i

1. (a) Since lim = & == 1, part (b) of the Ratio Test tells us that the series ¥ a, is divergent.
Tl = 50

(b) Since lim Ontll —ps < 1, part {a) of the Ratio Test tells us that the series % a,, is absolutely convergent (and

oD | g

therefore convergent).

gy 41
L 2

(c) Since lim = 1, the Ratio Test fails and the series 3 a. might converge or it might diverge.
L e i)

1
ba= B = 0forn = 0, {b.} is decreasing for n = 0,and lim b, =0, 50 %éﬂ_& 7 converges by the Alternating

1
Series Test. To determine absolute convergence, choose ay, = = t{! get

iy, 1/n Sm41 .
lim = = lim ——— i = A0 diverges by the Limit Comparison Test with the
“I_I-I;.c [ bll-m lf{:nn + ]_:l ﬂE‘:lt n =520, “E:l 5n +l TEes ) par
harmonic series. Thus, the series E (= -Ells conditionally convergent.

L
sin 1 = |sinn
L0< < —ﬁ:rrn‘-‘-‘ land E Z—Jsammergentgmmetm series(r =1 < 1), 50 E = converges by
w1 —
sinn

comparison and the series Z 15 absolutely convergent.

-1
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500 O CHAPTER11 INFINITE SEQUENCES AND SERIES

1 5" 1 1 1 141 1 1
7. lim |2t — lim Ij;-— = lim :-1 == li +ln = =(1) = = < 1, so the series E —is
n—oc | dy, n—oc | GR4+l n—eac | 5 i 5 n—oc 1 5 5 a1 20
absolutely convergent by the Ratio Test.
o anea] {=1)"3"+! et 3 n 3 1 3. 3
N e Rl Py e ey T e | k) e v Rl sy il S e R
s
so the series » _(=1)"~" Sy 15 divergent by the Ratio Test
-1
.|k 1 k! . 1 = 1
1. Jz]iI-I::-_ el kIEI»_:: [k T Tl = kll_lvl-:t il =0 < 1,30the senesé =i is absolutely convergent by the Ratio Test.

Since the terms of this series are positive, absolute convergence is the same as convergence.

» 10"+ (4 1) 434!
H_'.I;c {n +2} 42n+—3; " 10

13. lim |—*!

Tl

. 10 n41 5 > 1™
_rE;c(;]_'d-n_H) —g < I;SDMSETJESEIW

Tl

is absolutely convergent by the Ratio Test. Since the terms of this series are positive, absolute corvergence is the same as

COnvergence.
1 fadl _3 W= 1 1 1
15. lim |=2L| — Jim (ot L= . (=3) = lim =I lirn +_fn = E{l} =2 = 1, s0 the
o | fly o {—3]”‘ nan T T 3 3

senﬁz = r;?n diverges by the Ratio Test. Or: Since Iun |t | = oo, the series diverges by the Test for Divergence.

- L
cas[{n 4+ 1)x /3] nl

(n41)! cos(n f3)

cos[(n 4 1) /3] -
(n<+ l]LLn-.I:ni'l',n"':.l-] a1 4 1

I[H

7. lim |t

Tl

= lim
-n—--x

= lim

ol

=0 < 1 (where

[r e

0 < e = 2 for all positive integers n), 0 the series E

s

——— 15 absolutely convergent by the Ratw Test

to. fim |antt] = g [(nct L)' 100mH nl | n+ 1\ i 200 (1 1o
Ca—en| @, | neee {rz 4 1)! e [T u—-'.'n: m + l n T a—mmmd ] n
=0:-1=0<1

i
= -

so the series 3 15 absolutely convergent by the Ratio Test

-1
=1)" 1§ L:3 Gerune n=1 1
2. lim |2 = lim (=1)*(n+1) . (2n ) = lim =T
n=oc | g n=ac |Le3eGeraan (2n=1){2n+1) (=1)*='n! n=oc 211 4 1
141/n
= —— 1,
Rl g il
so the series 1 2—!4- 3 4 deron g (=1t ! 4 v+ is absolutely convergent by
1-3  1.3:5 1-3-5-7 1-3:5-+::(2n=1) : reent b
the Ratio Test.
i |2-4-6eee- (20)(2n +2) nl 42 2An41)
fngl] . - — —
B, fm iy, _"lll‘?’;‘l (n+1)! Fodefion- {2n) = n+l = n4l 2> L
the series E leuj diverges by the Ratio Test.
il T
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SECTION 11.6 ABSOLUTE COMVERGENCE AND THE RATIO AND ROOTTESTS O 501

2 9 i
s m . n 41 . 141wt = fn 41 ) _
25. lim Vlaa| = Jim e Jim m = *:: 1, so the series HE:I (m) is absolutely convergent by the

Root Test.

{Inn}“

27. “ll_J-l;lc 1..-'|a |_ llrn

Test.

1 =1yr=1
= lim — ™ =0 < 1, so the series Ez {{l ) e is absolutely convergent by the Root

2
. 14" 14" e 14"
29, lim %/|an| = lim (l+—) = lim (l+—) =& > 1 [by Equation 3.6.6], sothe series 3 l-I-—)
4 = Tl T L

e ol n

diverges by the Root Test

o =1%" 1 1
Hn 3 (=1) corverges by the Alternating Series Test since lim —— = 0and § —— » 15 decreasing. Now Inn < n, s0
nmz 1 n—ox lnmn Inn

L = i and since E 1 15 the divergent (partial) harmonic series, E L diverges by the Comparison Test Thus,
lnn

Inn nm2 TE T

i ﬂj— 15 conditionally convergent.

Ty ll'.l.il'l!
s () S 1 e (=9)n 9 1 9 0

3. lim |2 = . = lim |——| == lim ——— = —(1)=— < L soth
nmee | ey, nl?-;;‘l::n-i'- DI0+2  (=G)n | neoe |10(m+ 1)| 10 w1+ I/n (1) =15 < Lsothe

=

{—Q:]."‘ I , ,

series ———7T s absolutely convergent by the Ratio Test.
Fo- L

n i
35 lim ¥a,] = lim o/ (hi) = lim —— = lim = 1 lim L= lim x = oo, SﬂtheserJESZ(l )
e

s n— 17 n—x lnn  s—=lnr  s—e 1z s

FommE

diverges by the Root Test

(=1)" arctann EI.I.'LT.EI]’.I ]
ETR T

#‘f , B0 since E I,.fz = % 3 izmm-'ergesf_pzz > 1}, the given series E (= 1}
nml I

-1 wi=]

converges absolutely by the Comparison Test.

o 1 9
39. By the recursive definition, nri'-':c - ‘ = lim |42 i 3| =3 = 1, 50 the senes diverges by the Ratio Test
= by by 1
8. The series 3" DRESNT _ =1)"2, where by > 0forn > 1 and lim by = 7.
o n el e 2
a angl| (=1)"*+1pp*! n o _1.._1 by cosnw
R e i e (=1)"bn _.Ll'-'.‘;b"n+ {1] '“: L. *“““"‘""‘”“E, n_ =
absolutely convergent by the Ratio Test.
. 1fin+ 1]3 n® i 1
43 (@) lim [————| = lim ——— s = lim ——— = 1. Inconclusive
n—nc 1/n? n—oe (4 l:l- n—ze (14 1fn)

(n41) 2
andl ?

ib) 1

= lim n2+l = lim (l+ i) = l Conclusive (convergent)

P n=xi 2 2n
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502 O CHAPTER11 INFINITE SEQUENCES AND SERIES

. (=3 vn . [ 1 , ) )
{c) lim . 3 _3 limm ——— =13 Conclusive (divergent)
B \I"f"- + 1 {—-1}“-1 e ".III o ".III 1 + llrrr!
A+l  14n° 1 1/n® +1
(d) lim ny 5 P lim |14 = — fn + | =1 Inconclusive
n=oe | ] 4 (4 1) N e n 1fn? 4+ (14 1/n)
&5, (a) lim |22 = = n — | =zl lin = |x| -0 =0 < 1, s0 by the Ratio Test the
n—os | Gy s, l|:::I'I! - 1}!

oo i

series v i' comwverges for all =
nmd T2

n

ib) Since the series of part (a) always converges, we must have lim I—' = 0 by Theorem 11.2.6.
fa=—somn TRI

s 1 1 1 1 1 1 661
Tl sn=3 —— = st ogpt s Ly L 50 068554 Now the rat
@as=2t o =s+stuata*w  wo ow the ratios

Gl n2" n
= = = fﬂﬂ'!l‘.l
Ta o {:I'I! n 1}2“_‘_1 2{“. n 1} an II!IEI'E'ﬂSIt’I‘g seqmme, since
4l mn I[n-l-_'l]z—n{n-l-ﬂ'_l 1 N
— = - = = 0. So by Ex b), the eror
T T e S S T A1) AnADmt2) Ani i o by Exercise 46(b), the &
1/(6-2°) 1
< s = = — == 0.00521.
e P e s ¥ R T
Ll B
Opngl 2

(b) The error in using s, as an approximation 1o the sum s f, =

1_% = {n+1}2“+l_mmﬂn < 0.00005F =

1

m < 000005 = (<4 1)2" > 20,000. To find such an n we can use trial and error or a graph. We calculate

1
(11 4 1)2" = 24,576, s0 511 = E — = 0.693109 is within 0. 00005 of the actual sum.

nml I

49. (i) Following the hint, we get that |a,| < " for n > N, and so since the geometric series ¥ +™ comverges [0 < r < 1],

o ]

the series 3> |a,, | converges as well by the Comparison Test, and hence so does 3~ |a,|,s0 3" a, is absolutely

w1

CONVErgent.

(1) If“].i_u'-:;i W lan| = L = 1, then there is an integer N such that ‘{fiu:u| > 1lforalln = N, 50 |aa| = 1 for n > N. Thus,

lim an # 0,50 % no, an diverges by the Test for Divergence,

1 1
{111} Consider E — [diverges] and E 7 [converges). For each sum, ].|rn Vlaa| = 1, so the Root Test is inconclusive.

nml TE

51. (a) Since 3~ ax is absolutely convergent, and since |af| < |aa| and |a7| < |aa| (because af and ay each equal

either an or 0), we conclude by the Comparison Test that both 3~ af and ¥~ aj must be absolutely convergent.
Or: Use Theorem 11.2.8.

ib) We will show by contradiction that both 5~ af and 3~ a; must diverge. For suppose that 5 o} converged. Then so
would 3" (a} — La.) by Theorem 11.2.8. But 3 (a} — 2a.) =T [3 (an + |aa]) = 3a.] = 1 ¥ |aal, which
diverges because 3 a,, is only conditionally convergent. Hence, 3 a} can't corverge, Similarly, neither can 3 aj,.
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SECTION 11.7 STRATEGY FOR TESTING SERIES 0O 503

53. Suppose that 3 a, is conditionally convergent.

a) ¥ na, is divergent: Suppose 3 n*a, converges. Then lim nla, =0 by Theorem 6 in Section 11.2, so there is an
i = 50

: 1
integer ¥ > Osuchthatn > N = n’laa| < 1. Forn > N, we have |aa| < —,50 3 |an| converges by
T =

1
comparison with the comvergent p-series % —_ In other words, ¥ ayn converges absolutely, contradicting the
a=N TE

assumption that 3 a, is conditionally convergent. This contradiction shows that 5~ n* a., diverges.

Remark: The same argument shows that % n"a,, diverges forany p > 1.

i
(b} E { } is conditionally convergent. It converges by the Alternating Series Test, but does not converge absolutely

-

rinr

[b}' the Integral Test, since the function f(z) = ll 15 continuous, positive, and decreasing on [2, oo} and

= dr todx : =1)"
= lim f = lim [Inl:ln.r]] = oo|. Setting an = (=1 for i = 2, we find that
g rlnx t==jf, rinr t—= 2 nlnn

3 ndn = E (=1) comverges by the Alternating Series Test

o am2 D7

o 1 fi=1
It is easy to find conditionally corvergent series 3 aq such that 3 na, diverges. Two examples are 5 L and
T

[
P 7n

p-series with p < 1. In both cases, ¥ na,, diverges by the Test for Divergence.

. both of which converge by the Alternating Series Test and fail to converge absolutely because 3 |an| isa

11.7 Strategy for Testing Series

nt =1 1
1. Use the Limit O Test with = and by, = —:
se the Limit Comparison Test with an = “5— n=—
lim 2 = lim (" =1)n _ lim nem_ fim 1= Ln® _ 1 = 0. Since i 1 is the diverpent hanmonic geries, the
sz Oy, B nd 41 [ nd 41 T e 1 + 1."”'3 - ' el T ge
serics 3 n =1 also diverses
E, nd 41 fBes.

= - =1
3 (= 1}“ 1+1 %, (=1)"bn. Now b, = :?’-l-l S0fornz2, {b.} |sde:reas.|ngﬁ:urnglandnl'lu:xscbn =0,s0

-

= S| = S |
the series 3 (=1)" — converges by the Alternating Series Test. By Exercise 1, 5 - diverges, so the series
sl nd 4 1 } nm1 T4 41
E {-1}“ — |s conditionally convergent.
-
o H e " e e ol
5 lim P Jim == Jim — = oo, 50 lim = Thus, the senes -§1 = diverges by the Test for Divergence.
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504 O CHAPTER11 INFINITE SEQUENCES AND SERIES

T. Let f(x) - m Then f is positive, continwous, and decreasing on [2, oo, so we can apply the Integral Test.

du = dz/x

Slncef L dr | ®=n% =j‘r.l:""'"‘!'r.h.:=21'.|:1"|l2 + ' =2yInxr+ C, we find
rvinx

=l i
L == :'E'iﬂ %:Ei [EV"ID:E] Jim (2vint - 2vin2) = cc. Since the integral diverges, the

0
given seres »
nm2 1Ly Inmn

diverges.

a4l ] ] o0 b
9. lim |—*L T O i T _ (< 1, so the series 5 (=1)" Z— is absolutely
o | gy |-|.—-9r_~ {Z;n: -+ 2}' #2"‘ . {2:1 -+ 2:]{:2:1 + l:l ' {Eﬂ.:]!

comvergent (and therefore convergent) by the Ratio Test.

=31 3n nm1 0P

el 1 1 N |
1. 3 ( + —) =% - ( ) The first seres converges since it is a p-senies with p = 3 > 1 and the second
I‘.‘l-l

Series cOnverges since it is geometric with || = % < 1. The sum of two convergent series is convergent.

Fid1 2 f 2 0 m, . 2
13, lim [Gntif_ gy (3 (A D) ) o, 3D g P g o1, s the series 3o S0
e | gy e {n+1)! Frn n—2 (14 1)n? n—m T nml “nl

comverges by the Ratio Test

gk=igk+l ghg=igkgl g3 ¢5.3\* i
Boay=—g = = E(T) . By the Root Test, lim & (_) = lim = —n < 1, 50 the series
a0 G k o0 k-13k+l = 35 k
3 —) converges. It follows from Theorem 2(i) in Section 11.2 that the given series, 3° ———— = }_ '—(—) s
K1 k Aol k Jz-12 k
also converges.
L3 5euee- 20 —=1)(2n + 1 5eBeeenn I = )
7 tm %22 = (2n—=1)(2n + ].2 5.8 {3n=1) — lim n41
n—a | g n—ac |2 5 eBaens (Fn=1)3n+2) 1-3:5--- (Zn=1) n—2 3t 4 2
2+1/n 2
= lir 1,
n—-l;lc '1+2fr|: {
50 the seres E 1:3:5--:--(2n—1) COMVET, ¢ the Ratio Test.
2258 (3n-1) ges by
19. Let f{ ]—lnI Then f'{z) = lnzﬁl]'n.l.henl =2orx > sc:l is decreasing for n >
a I v-"_ I 2]_'3.!"2 . I E v-"; g L E
By I’'Hospital’s Rule, li nn 1 L/n = hi = 0, so the series E{ " lnn comverges by the
f L, A == T [II[] — 1T = —
n—ac ,_‘,-"; n—soc ].Jl" (2\.-"(_]'3) n—eon -._‘.-"_ -l \-"{_

Alternating Series TesL

21. l|1|| lan] = ].I]'.II I{—l:]-"cm{lfnjjl = lml Icm{lf:ﬁ |—:.1.ml]— 1, so the series E{—l]“cm{lf:‘: ) diverges by the

-

Test for Divergence.
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1 1
2Z3. Using the Limit Comparison Test with as = t.u.n(—) and by, = =, we have
T LIS

lim b— = lim M = lim lan 1 I B jim 2= l‘IIII} (= IHI ) = lim HECH{l.I'rI] =1* =1 0. Since
el

LR e = I il XD E —].I||r|1--z

= =
5 by, is the divergent harmonic series, > a,, is also divergent.

gl gl

1.
{l’l-l‘-].:]l’l e - lim rjjl—“ﬁlﬂﬂz

,_.,_.x et ddndlyl n—oo £ |-|.-1‘-

z
(n4 1) "
elnd+1)®  pl

g1
in

25, Use the Ratio Test. lim

=0

= lim
T =0

CONVErZes.
oy t a0
1. f In—Ich: = !Ium [-Im—:E - i] |using integration by parts) 21 S0 3 ln—:l converges by the Integral Test, and since
f =0 T rf, ne1 T

klnk klnk Ink klnk
x = — the given series E T converges by the Comparison Test.

ey R R PERTTSY
29, Ea... E{ " = E{-l} b Now by, = > 0, {ba} is decreasing, and lim b, =0, s0 the series

Tl 1 ‘-U"’I 17 sl coshn e
converges by the Alternating Series Test.

1 2 2 1
O Write = and — 15 & cofvergent Senmelric sernes, so
cash n e 4 g=n <o en ,,El et gent & E. cosh e

is comvergent by the

o0
Comparnson Test. So 3 (=1)" i absolutely convergent and therefore convergent.

el cosh i
ik =k k ek
4 3
. klf;cﬁk = |1rn 3J¢ T = [divide by 4"] ].I:I'.II {3541;_*}“ = oo s.meklEI;c(Z) = U'a.ru:lkll_-n;c(z) EX-
o 5-‘: "
Thi ———— diverzes by the Test for Divergence.
L=, EI 44 rges o T2

n \""_ li ! = ! 1{1 mﬂ\eserlesz n )
e \ 1+ 1 T [(n+ 1) " Tim (141/n)" o A+ 1

converges by the Root Test.

33 “Il_J-l;lc 1..-'|an.| ='l|

_ 1 _ 1 _ 1 fa _
34 g, = ey sn:-letb"_ andusethe Limit Comparison Test .L]"—':IL ™ —ﬂll_]’.'l;c Y =1>0

o0
[see Exercise 4.4.63], so the series 3 diverges by comparison with the divergent harmonic series.
o]

nl+ifn

" . o fm n
3. lim {/fan] :.EIL{EI“ —1)=1-1=0<1sotheseries 3 (V2 —=1)" converges by the Root Test.

o1

11.8 Power Series

1. A power series is a series of the form $°°% eox™ = e 4+ c1x + eax” + eaz” + -+ where z is a variable and the e,.s are
constants called the coefficients of the series.
More generally, a series of the form 300, ca(x = a)™ = e + c1(z = a) + ca(z — a)* + -+ - is called a power series in

(x — a) or a power series centered at a or a power series about a, where a is a constant.
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506 O CHAPTER 11 INFINITE SEQUENCES AND SERIES

1 Ifae = (=1)"nz", then

(=1)"*(n + 1)a™+!
(=1)" "

Endll — fim

Fi—a 0

= lim
Tl

lim
T30

I:—l:l-H: 1;|:| = ulll-I;.: [(1 + i)hl] = |x|. By the Ratio Test, the

e

o0
senes ¥ (=1)"nz" converges when |z| < 1, so the radius of convergence B = 1. Now we’ll check the endpoints, that is,

a1

Oal
x = %1 Bothseries 3 (=1)"n(x£1)" E (F1)"n diverge by the Test for Divergence since l|m [(F1)"n| = co. Thus,

o] wiwm ]

the interval of comvergence is I = (=1.1).

. r ) Gapl 2 Inal ) In=1 lfn
5 If = m— then li = . = ki l = |x|. By
fin Dyp - 17 rL—I-I'_:: g n=oc | P4 1 " u—I-I-:.n <41 lIl "-“ 2-+- _'I__If'n III IIl ¥
ﬂ e 1
the Ratio Test, the series 'Z T converges when |z] < 1,50 B = 1. When x = 1, the series 5 7 diverges by
el =TE = Tl =
comparison with 'E sifce ! = ! and — E ! diverges since it 15 a constant multiple of the harmonic series.
par 2 T In—1" 2n 07 Ly VRS P

=1
When x = =1, the series E (=1)" corverges by the Alternating Series Test. Thus, the interval of convergence is [—1, 1).

nei 2n—1

T Tl

& 'I'J.!

x Gagl | ml_ . i RS 0=

1. Ifae = I,ﬂlet‘l“lll:x;c . = lim —I[u-l-l:]! e _rl.IlI-I;c I'!+1|_|I|HIE';¢R+1_|II 0 =0 < 1 for alf real =.

So, by the Ratio Test, H = scand [ = (—oc, oa).

Iﬂ
9. Itﬂn = W, then
a4l 4 yn nd 4

NI Pt . T 4 x - n || a =l = o

|} = li ' = lim |[—— . 2| =1 —=1%""—="—_Bythe

el P e |+ 1A n | a1 A] nees (n-l-—l) 1 1"

‘H

Ratio Test, the series E mm‘ergeswhen%l- <1 & |z| <4,.s0 R=4 Whenx = 4, the series E —

nma # nma 1t

COMverges since it i1s a p-series (p =4 > 1). When x = =4, the series E E—J— comverges by the Alternating Series Test.

Y

Thus, the interval of convergence is [=4, 4].

X _1 ndn _l fal 41'-1-] Fuds 1l
11. Itﬂn:LI"‘ﬂwn lim udl = lim { } z . ﬁ = lim L-=I|:|l.:|:4|:r.:|.
\-E n=oe | gy e v+ 1 {—1}"‘4“.1:’"' n—sc \| a4 1
o {—1]”4”
By the Ratio Test, the series 3 — " converges when 4 |z| <1 & |z| < 4 s0 A= 4. When z = 3, the series
ramml n

I T s
(=1 converges by the Alternating Series Test. When = = =1, the series 5 L diverges since it 1S a p-series

IUm ' v a1 VT

{p= % < 1). Thus, the interval of convergence is (=%, §].
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" T
13. 1t in = mz“,meﬂ

. [ (n+ 1}.:"'“ E'Ll[nz-{- 1) ot entn4l ||
lim = lim =lm —4/———— - —
I ™ n—sac | 20412 -+-2n+2:|- nzx" n—ce 1° 4+ 2t 4+ 2n 2

I 14 1fn+1fn® 4 1/m* |z] |z

= lim —— —

P—— 14+2/n42fn? 2 2

By the Ratio Test, the series E - =" cmwergesw]*venﬂ-:i 1 & |z| <280 R=2 Whenzx =2 the series
i Z“I['n +1) 2

oo 1 =11"n
e n diverges by the Limit Comparison Test with b, = —. When x = =2, the series E ( l converges by the
ﬂ-

-l 1 am1 M54 1

Alternating Series Test. Thus, the interval of convergence is [—2, 2).

(x=2)"*" n*41

a4l | _ .
(n+lP4+1l (z=2)n

iy P

o {z=2) .
13- Ifay, = g then lim

2
= |z - 2| lim w41l \r—2 Bythe

S ) e

o - "
Ratio Test, the series £Iz—f}l—mm-'ergeswhen [t=2<1 [A=1] & =l<z=2<1 +« 1l<z<3 When
el T

ol o0 1
x =1, the series 3 (=1)" converges by the Altemnating Series Test; when x = 3, the series 3 ———converges by
P ] e 18-+ 1

1
n? 41

e
1
comparison with the p-series 3 == [p =2 > 1]. Thus, the interval of convergence is I = [1, 3].
el TU

. (x42)" {x+ 2)"* 2" Inn ) Inn le+2] |z<42|
17 It = sm— then lin = ki . =
o i an e  amae | n(n+ 1) (42)0| neeln(ntl) 2 g e
lnn . lnx g 1/x z41

. . 1
Gty = S ey S ey = = i (145 =1 By the Rato Testhe series

L
2
{I +2) converges when M

> £

= I <1l & |x4+2|<2 [R=2] & =2<zx42<2 & =4<x<0
o -

el o | u 1
When x = =4, the series 3 (=1 comverges by the Alternating Series Test. When x = 0, the series E — dwergﬂ by
L3

nmz D7 nmi |
the Limit Comparison Test with b, = L {or by comparison with the harmonic series). Thus, the interval of convergence is
T

[—1,0).

"
19, If a,, = { E} Lthen lim .fl = lim ;EI =0, so the series converges for all = (by the Root Test).

fi =0 Fa—= il mn

R =rocand I = (=oc, oa).

M oan= —{z —a)", where b > 0.

bll.
n Gngl] (n+1) |z =a]"*" b" o |z =al II—El
ﬂh—l-l;lc i _Hh-'x bt “n |z =al® HIE'I:': 1+ b b
B}'ﬂmRﬂUaTest,ﬂiesemscmvergeswhen@ <l & |r—a|<b [soR=b & =bcr—a<h <

a—b<r<atb When|r—a| =58 lim |a,| = lim n = =c, sothe series diverges. Thus, I = (e — b,a 4 b).
il Fi—s 20
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508 O CHAPTER 11 INFINITE SEQUENCES AND SERIES

{n + 1:|-! {ZI -— 1:]-“'"1
n!{Zz - 1]"

R4l
g

2. Ifa, =n! {21: - l:l"', then lim

== a0

= lim

= lim I{n+1]|21—1|—tmas:n:—-m
s Tawol

for all = # L. Since the series diverges forall s # L, R =0and 7 = {1}.

(5z —4)"

B Ifa, = , then

] {5:5—4:]”"” nt . _ i :!_ _ 1 .
nIlI-I::c I[n+1}3 .I[-EI—J:I“ _”EIEI;E|:::5—4| <41 _ﬁlf';clh_dl l+l,-"n

=5z —4|- 1 = |5z — 4|

= (5z —4)" = 4 1
By the Ratio Test, ¥ T corverges when |5z — 4| <1 = |.r— ;| <z &= =
mn : :

-]

e
M
H
I
e
A
e
0

a
2 <x<ls0R=23 Whenz =1, theseries E

neml “-z

is a convergent p-series (p = 3 > 1). When x = % the series

el O | b .
3 ( 3} converges by the Alternating Series Test. Thus, the interval of convergence 5[ = [_:":1]
nml T
2. If i the
=135 @na1) "
i . n41 1-3-5- - -(2n—=1) ! x
lim [=| = lim — . = | =0 < 1. Thus, by
et gy et 1-3-5- -+« (2n=1)(2n + 1) Fa e 2n41 < us, by
n
the Ratio Test, rhesenesz ud converges for aff real = and we have B = oo and J = (—o0, o).
T35 -(2n—=1)

29. (a) We are given that the power series 3 >~ c.x" is convergent for = = 4. So by Theorem 4, it must converge for at least
=4 < r < 4 In particular, it converges when r = =2; that is, ¥ oo, €a(=2)" 8 convergent.

(b) It does not follow that 377 ea(—4)" is necessarily convergent. [See the comments after Theorem 4 about corvergence at

the endpoint of an interval. An example is e, = (=1)"/(nd").]

F {n' . st
N Ifa, ={ 1}!z , then
lim Ind1 = lim _L—[{u ¥ 1]!]k I[kn}l | | = {“ + l}k |I|
n—oc | flg w2 (nl)" [k{n + 1)) ﬂ—-x (ke 4 k) (kn 4+ k = 1) - (kn 4 2){kn + 1)

lim [{n-{-—l} {:n:+l:|- I[]'i'-l‘_'ll:i]|;|:|
(kr 4+ 1) (kn + 2) (kn + k)

lim ntl lim ntll oy ntl ||
= | ke 1| n—oe | kn 42 ﬂ-—-'y_ En 4+ k

k
(%} 2] <1 &  |z| < k* for convergence, and the radius of convergence is R = k*.

Fa— 0

33. No. Ifa power series is centered at a, its interval of convergence is symmetric about a. If a power series has an infinite radius

of convergence, then its interval of convergence must be | —oo, oc), not [0, o).
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S S Vi
B e = o+ iz then

g1

iy

lirm
Tl

Lll.-l-.!

nl(n 4 1) 2"+
(n+ 1)(n + 2)1 22043 ' P
S0 Ji(z) converges for all = and its domain 15 (=20, 0a)

H.—-SE

H

~(2) b e

—_—ee = [} for all x.
e eV CE ) R

(b), (¢} The initial terms of J, (z) upton = 5are ag = —

a I5 ¥a Xy
1 1 ™
P R S P
PTTI6 T 38t T T1RA4327 Y T 1474560 \ }i
and _ I11 - | o \‘.,L fjl
a5 = — T 200" e partial sums seeim -8 W 5
approximate .J1(x) well near the ornigin, but as || increases, \ \'-
we nead to take a large number of terms to get a good 1 ."=
\, .
approximation. = F—
M oson—r =14 20427 + 288 42t 4225 4 o0 2™ g 2!
=11422) + 21+ 22) + 21+ 22) -+ 214 20) = (1 + 22) (1 + ¥ + 2V 4 -+ 4+ 27T
1 ; 142
:{1+21’]1 [by (11.2.3) withr = x*| —hl+ Iasn—t:xu by (11.2.4), when |z] < 1.
-I
142 . . 142
AlsO $20 = Sgna1 + 2" — 1+ — since =™ — 0 for |£] < 1. Therefore, o — + 22 since San and suq.-1 both
—I - I
1 1+2.I
approach Tz asn = oo Thus, the interval of convergence is (=1, 1) and f{x) = —Q"
39. We use the Root Test on the series 5 caz”. We need lim  §/|cnz®| = |z| lim 3/|en] = c|x]| < 1 for convergence, or
i =0 kL
|z] < 1fe,s0 R=1/c

8. For2 < = < 3, cqx"™ diverges and % dnx™ converges. By Exercise 11.2.85, % (cn + dn) " diverges. Since both series
converge for |x| < 2, the radius of convergence of ¥ (cn + da)z™ 152

119 Representations of Functions as Power Series

1L If flz) = 5 ecux™ has radius of convergence 10, then f'(x)
Fumm

E1 neq ™~ also has radius of convergence 10 by
ne=
Theorem 2.
Our goal 1s to write the function in the form - and then use Equation { 1) to represent the function as a sum of a power
series. f(x) = ! ; E (—x)" =
1+z 1—(-z)

f= =
(=1)"z" with|=z| <1 & |z]<lsoR=1andl =
ol

i

~1,1).

2 2 1 2= rx =

5, = = — - — | or, equivalently, 2
@ =37 3(1-:;3) 3.5, 15) o 22
I

The series converges when |£| < 1,
BT 3
=(=3,3).

Edbirreal revarw o decmed thot asy
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510 O CHAPTER11 INFINITE SEQUENCES AND SERIES

=)= r’:m T;(H;,fm) =%(ﬁ) :I_ﬁé [ (E)d o eql”"“”“’"é%'

_(E)d‘{l - |§|-:,l = |x| <250 R=2and I =(-2,2).

The series converges when

z=1_ z+2=3 3 3/2 3 1

9. = = =] = =1= =] = ——
& =sm=—= T+2 /2 + 1 3 T—(-2/2)
fi i
:1-&%(-5)":1_2_1 (_E)“=_l_iﬂ)i_
211-0 2 2 2|n|.-1 2 2 - 2n+l

s T
The geometric series (-%) converges when |—§ <1l < |z]<2,s0R=2and = (-22).
ramml)

Alternatively, you could write f{z) =1 -3 —L_) and use the series for —— found in Example 2.
42 r+2

2r—=4 LI | A B
11. = = = 2r=d=A{x=-3 Blzx—=1). Letx =1 io pet
I{I} 2 =4 43 {z—l]l{r—ﬂ:l- r=1 + r=—23 = o {I }+ {I } * ge

=2==24 & A=landz=3wext2=2F & B=1 Ths,

1-{1:131] =-Z--353) =% %)I

We represented [ as the sum of two geometric series; the first conwverges for = € (=1, 1) and the second converges for

2r=4 1 1 =1 +L
-4z 43 z-=1 =3 1=z =3

x € (=3,3). Thus, the sum converges forx € (=1, 1) = I.

13. (a) fiz) = ﬁ = %( 1:_11) = —i [é{-l}“ :1:"] [from Exercise 3]

= 3 (=1)"*'nz"=! [from Theorem2(i)] = 3 (=1)"(n+ 1)z" with R = L.
rummil

o1

In the last step, note that we decreased the imitial value of the summation variable n by 1, and then increased each

occurrence of n in the term by 1 [also note that (=1)"+* = (=1)"].

o1 __1d[_1)__1 N~
16 = o7 = m[“”}z]— iz | S 0e7] - thompano)
= —% = (=1)"{r + )nz"= % f: (=1)"(rn +2)(n + 1)z" with & = 1.
Tl ol
z a 1

(© f(z) = £ % i[—l}“[u +2)(n+1)z" (from part (b))

{1+::]3 R T

=_ ‘E (=1)"(n + 2)(n + 1)z"**

il

To write the power series with =" rather than =™ **, we will decrease each occurrence of n in the term by 2 and increase

l o0
the initial value of the summation variable by 2. This gives us 2 Fo(=1)"[n)(rn = 1)z" with & = 1.
o -
dx 1 v 1 = "+ = "
15 =nf=-zl== | — == j der = = = - —_—
f(z) =In(5 - x) 5—z 5f 1-;;5 f[,_n ] EE in+1) ,E 5"

Putting = = 0, we get ' = In 5. The series converges for [z/5| <1 &< |z < 5,50 H=5
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SECTION 119 REPRESENTATIONS OF FUNCTIONS AS POWER SERIES O 511

1 1
17. We know that =4 )" Differentiating, we get
T+dz  1-(—iz) ,E,{ " e mes

=3 (=4)"nz"" = 3 (=4)"*}(n+ 1)z, s0

{1 + 4:5:] -] ET ]
flz) = {.'l T 4:] -TI . ﬁ e E{ =4)"+ (n 4 1)=™ “i::a'[—lf]”“”{“"“ 1)+

for |[—4z| <1 & IIl{%,SﬂH:%

= i {n 4+ 1)="™. Thus,

1
19. By Example 5, ————m
} PI {1-:5:]2 b

_ 14z _ 1 x o= - ng1
J@) =g =gt = Lt + L+ 1)

= E (n+1)=" + E nx" [make the starting values equal]

T

Ol =
=14 3 [(n+1l)+njz" =14+ % (Zn+1)z" = E{En+l:]-::"‘ with R = 1.
o -]

rummil

z* . 1 =, . = . .
. flx) = 21 Iz(m) =2 “%l[-:s‘}“' = “E.:ﬂ{—l]” 2*" 2 This series converges when |—z*| <1 &

' <1 = |z] <1,s0 R =1 The parial sumsare s; =z, !

3 = 5] = :5"',5;! =&+ Is,sq = &3 = IH,-EI: =51+ =

Note that =, comresponds o the first term of the infinite sum,
regardless of the value of the summation variable and the value of the
exponent. As i increases, s, (x) approximates f better on the

interval of convergence, which is (=1, 1). - 0
l4rx dix dx dix
23 =In{l = In{l = =
Jlz) = ( n(l +2) (1 —-x) = f l==x fl—{—:}+ l==x
=f[z{ =1)"r" + Ez“]d:::f[{l—.:-{-zz—1:3+1:d'—---]+{1+.:+z2+a:3-I-zd-i----:]-]dz
ra il
) s apiatl
:f{z+z;‘+2:"+ dr = EEI“JI_L+E
o} ] In+l
o 2I2n+1
But}‘{ﬂ}:ln}=l],so{:=l}mdm}mej{:]:r§n ¥ with R = L. If # = +1, then f{x) = +2 E . St 1 +1
1 '
which both diverge by the Limit Comparison Test with b, = —. .
" 3 WA
iy
2 ’ 22"
Thepaﬂ.lalsumsar&sl=TI,52=51+T,53=52+ — s
o

As n Increases, s, (x) approximates [ better on the interval of

comvergence, which is (=1, 1).
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512 O CHAPTER11 INFINITE SEQUENCES AND SERIES

s L _—y 1 =t E (t)" = 'E ghntl o O+ i - The series for COnverges
L—t® 1- il - 1] o amn B 427 1=ig® &

when [t°] <1 < |t] < 1,50 R =1 for that series and also the series for £/(1 = t"). By Theorem 2, the series for

t
fmd!almhasﬁz 1.

w2

27. From Example 6, In{l + z) = E{ 1}“"— for |z] < 1,50 z° In(1 4+ z) = E{ —1)-! En and

-1 - L

o 43
f;_—j In(l 4+ z)dr=C+ ¥ (=1)""'———. R =1 for the series for In(1 + x), so & = 1 for the series representing

z In{1 + =) as well. By Theorem 2, the series ﬁ:urfzzlnl[l-i- x)dx also has B = 1.

z =[ 1 ] 23 (=) = et >

T+ = (=2%)
[rimde= [ Sevreae=o s 3 (-0 E
T+ = It 2

E] 2 & 11 o.n I . & 11
x 2 & P =z (03)° (03)°  (03)° (0.3)
= — T = | —— — — e — e = - - waw
f 14t [2 R T L 2 5 T8 TR

The series is alternating, so if we use the first three terms, the error is at most {0.3)"/11 = 1.6 x 10~7. So

I = (0.3)%2 = (0.3)%5 + (0.3)%/8 = 0.044 522 to six decimal places.

3. We substitute =* for = in Example 6, and find that

f;lu{l+m'*‘}dz= Ii,"”“'l%t“=f.§ﬁ =1t — IH =r:+§l{—ll“"—n;:;]
Thus,
0.1 s, [ & &L 2 “* (02 (02)° (0.2)°* (0.2)2
I:sf zln{l-}-:s}d:-[m—m.}.m—m_}.u-]ﬂ - + T R I

The series is alternating, so if we use two terms, the error is at most (0.2)°/24 = 1.1 » 10=7_ So

0.2)*  (0.2)°
I u - u 7=z 0.000 395 to six decimal places.

4 12
3 5 T a 5 T
33.B}'E!{a.l‘nple'.l',arclml.r:r—%+I?—IT+---,SBML'LEDU.2=U.E—I:u',fl’. +{D':} _I:ﬂ':?] enan,
L 7 : 7

0.2)7
The series is alternating, so if we use three terms, the error s at most 4 == 0,000 002,
i
0.2)" 0.2)°
o, % = 0.197 40.

Thus, to five decimal places, arctan 0.2 == 0.2 — =
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SECTION 11.9 REPRESENTATIONS OF FUNCTIONS AS POWER SERIES O 513

2 1™ Pl Py = Ein e n_ dn4gd
Eng{I}+IJ‘;{IJ+IEJ“{I]=§.{ - ;2,,'{{2'“!]2 : +.§1{ ﬂlz:tl{:!}z + E = gliqru}—:

. ) {:_”ﬂ En-l::zﬂ. - ljmjn e l:_l}u 2:1:.1:2“ - l. l:l-“-l A
- E zin{n!ji +p§1 22"‘{1’1!:}2 + E zin-z[{n 1}!]2

= (=1)"2n(2n = 1)z™" (=1)" 2nz™ (=1)"(=1)"'2*ns™
=X 220 (nl)? z 220 ()2 + X 220 ()2
o [20(2n = 1) 4 2n = 2%0?] .,
= S0 [P0 ]‘
= n [4n* = 2n 4 20 = 4n* n __
=§‘{-1] [ T )2 ]Iﬂ =0

o fserie [ [T e [ -5 o)

PO PR YR S +
S 3258 7230 ﬁ_ 12 320 16,128

Since —— == 0.000062, it follows from The Alternating Series Estimation Theorem that, correct to three decimal places,

lﬁ.l I8

fy Jo(z)dr =1 =1 4 5L = 0.920.

@@= > @=L =Y =T D= @)
el TL2 w1l ol |:::I'!- l} -
(b) By Theorem 9.4.2, the only solution to the differential equation o f(x) fdx = f(z) is flz) = Ke®, but f(0) = 1, 50
K=1and f(z) =

(r: We could solve the equation d f{x)/dx = f(x) as a separable differential equation.

n nd1 s 2
m,lt‘a.L_E then by the Ratio Test, lim |=22L| = lim | s + = | = || lim | == | = 2| < 1 for
n=ae | gy s {n-{- ]_:]--d Irn n—zo | 74 1
ﬂ . l
convergence, so B = 1. When x = +1, E =% - which is a convergent p-series (p = 2 > 1), so the interval of
-l n* nml TE

convergence for [ is [—1, 1]. By Theorem 2, the radii of convergence of [ and f* are both 1, so we need only check the

fi=1 ll.

endpoints. fix) = E - = [flz)= E —_—= E T , and this series diverges for x = 1 {larmonic series)
S nmil T

fia=1

] diverges

s
and converges for + = — 1 (Alternating Series Test), so the interval of comvergence is [-1.1). f"(z) = ¥ 2=

Fim=]

=1 # 0, 5o its interval of convergence is (=1, 1).

at both 1 and —1 (Test for Divergence) since lim e
n—oo 71 4 1
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544 O CHAPTER11 INFINITE SEQUENCES AND SERIES
pinel

In41
- (3)- St e ()

6 = (=" = _(=n"
T V3 (Zn+1)3" E‘FEU (Zn+1)3%

n
4. By Example 7, tan~'z = % (=1)"= for |=| < 1. In particular, for =z =
romll

-

gH*

11.10 Taylor and Maclaurin Series

. (m) (#)
1. Using Theorem 5 with 3~ by(z = 5)", by = f_:[“] 50 by = %
il n: =

3. Since f")(0) = (n 4 1)!, Equation 7 gives the Maclaurin series

0 [} o0 1 o
5 ! ::ﬂ] =% {";11}'::“ = 5 (n+ 1)=". Applying the Ratio Test with a,, = (n 4 1)="™ gives us
rums() - v} i el
2z 2
lim |2t | = % = |z| lim — y . |z] - 1 = |z|. For convergence, we must have || < 1, so the
P 30 [r |-|.—--3_ T Pt 30
radius of convergence & = 1.
-3 Using Equation 6 withn = 0 to 4 and a = 0, we get
1 f{u}{z} f‘":'{{]j .
ro® L Mo =D o, 1 2,02 2 3 a4 4
u e+ e ’ R U EET T LES SRS &
1 r+1 1
—_ 2, 1.3 ;1.4
2 | (z+2)e" 2 =z+z +gr 4+ gr
3 | (z+3)" 3
4 | (z+ 4" 4
n)(8 2 =
1. ! ;E]{I—S}'Lzﬁ{r—ﬂ}a-}-%{z—ﬂjl
# fﬁrt}{l} thn:l{gj nemi T - :
2 10
0 & 2 - B (= B) 4 E2 (p —g5)?
. 3
1 1 q
! 3203 1 =i+ L]—.J{I—S]—ﬁ{z—ﬂjz+ _:D.Tu.{ —-8)°
2 2
2 Ty ~ I=d
.| 10 0
b 271’”‘-"”3 GU1ZE
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: n | /") | F™(=/6)
0 sin o 172
1 CO8 T V32
2| =sinx -1/2
3| =cosx =32
2 [ (x/6) T
P G
1.
n s (z) ™)
0 (1==x)=* 1
1 21 =x)~?
2 6(1 = x)~* i
3| 24(1-2)"" 24
4 | 12001 = =)~" 120
13.
n [ 1@ | 170)
0 COs T
1| =sinx 0
2| —cosx =1
3 sinT 0
4 COS T 1
15.
n| M) | ™)
0 e 1
1| 2%(n2) In2
2 ZJ'I[luEl'IJ (In 2]1
3] 2¥(m2)* | (Im2)*
1 Zl{luﬂjd (In 2]4

o] =

/2
ol

_)" _ Yz

SECTION 1110  TAYLOR AMD MACLAURIN SERIES O
™0 /3/2 ( #)l 1/2 ( rr)2 Vv3f2 ( 11')1
(Iﬁ)+l!'rﬁ T\ "6 a "6
+ V3 w 1y T2 3 T3
E(I ﬁ) 4(I ﬁ) 1 (I ﬁ]
. ) "o "oy . g
(=2 = () + f@r+ Lot L@y L O ey
2 ]| 4!
= 1+2I+%I2+%I:’+%Id+"'
. oo
=142z 43" +4c' + 5" +--- = 5 (n+ )"
el
. wit| o w42t nm42 L
||||'I—I-I:];|'. iy - ||.1I—I.IJ:_| |[n. + _'I_:l.:"' - |I| .}LI-I;; n+4+1 - lrl {1:] - |I| <1
for convergence, so £ = 1.
. i {] ; rid u i li} D‘
conz= f(0) + fOz + L0 52 4 L0 o) SOO) ey
— 1 e 1 A
=1-= Er‘ + ki
e 2
= =1} Equal to (16).
S g (Eamlo6)]
2 Il 2
ligm Ind1) _ lim —_ . ﬂ = lim S — =0<1
n—oc | dg n—oe | (2n 4 2)!  xin n—cc (2n 4 2)(2n + 1)
for all =, 30 K = oo,
2: — = MI!L — i {I'"'Z:]n i
e 1 v S 1 ’
I [ . (ln 2)n&ignt! nl |
lim |—— ] = lim .
T T A= I::]'!.-I- l:l! |::|.I12:]HII.I

lim _{lu 2)lz]
n+4l

i = 50

=0<1

for all x, so A = oo.
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56 O CHAPTER11 INFINITE SEQUENCES AND SERIES

s 0 ifris even s pdndl
17. 0) = 50 sinhr = —_—
n | f™) | f™0) © 1 ifnis odd En (Zn + 1)!
0 sinh = 0 pinEl
Use the Ratio Test to find B. If a,, = ———— then
1 cosh x 1 (2n 4 1)!
2 sinh = 0 Indd 3 1 1
lim il = lim — { nt 1) =z lim ——M—M—m
3 cosh 1 n—soo | iy L I[Zn-l-:ﬂ! pindl n—eoo {2::+'§:|-{2:r:+2}
4| sinhz 0 =0<1 forallzx, soR =oco.
19. f{"}{r} =0 for n = 6, so [ has a finite expansion about & = 2.
! F™x) Fim2)
. s s J ﬁ“*{z}
0 420t br 50 e)==2"4+2s"+z=% [z = ]-
il
1| 5 + 62" 1 105
e N 50 105 . , | 252 .\
2 | 20 412« 184 =g (- 2)* +T x—12) = {r-2] = (=2
3 G0x” 4 12 252 120
- 2)* -2
4 120 240 {I V4 =2y
5 120 120 = 50 4 105(x — 2] + 92(x = 2)* +42{.r - 2)*
] + 10{x = 2)* + (z = 2)°
7 A finite series converges for all =, so i = oc.
(m) o
21. I{I}:IIII_EI 1{ ]{ -
” IIHJ{I} fﬁ“?{g] nml T
In2 1 -1 2 ,
0 Inz In 2 =ID_1|::I_2}D+ 1171 {I—Z}]-I'- Q192 {I-2]J+ 3123 {;—2}"'
1 1/x 142 : '
’ . =6 L 54
2| =1/" -1f2* + H{I—Z} 5'2 (z=2)"+
3 2fx? 2/
nat(n=1}! 11 _
4| =6yt | —6y2° =2+ El'i ) = 2)"
5| 24/ 242" 2
=n24 E{—l]”"'] {:.r —2]“
nml 2“
—1yHE [ gyml on | =1 =il =2
lix = lim (=1) (= ) . - = lim M = lim - |= |
e | g P (r 4 1) 2041 (=1t z = 2" n—so (n+1)2 n—oe | 241 2

= ]IE;ZI- <1 forcomvergence, so |z —2| < 2and R =2
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0
f{'l] 3
23, I{I]‘ — E!: E { } { :.
" IIHJ{I] _rtﬂ]{;:,] nmi) TE
2r [ i P 4 .
ol = e =G @=3"+ T @=3'+ S (x-3)*
1 DetE 2ef - -
: i Be" 15
2 g2 0= 4" + ?{1_3}3 4 20 " (x=3)"+
3| 2% Be® ]
. e EFL L
4 | 2= 16e" =¥ —(z-3)"
=TI L
bl Gy ogymdl | _
lim El = lim |E s {I 3} . . :I'I!. = lim M =0<1 fior all I,_S-U'H = .
Ll I | mo—w ol | {I'I!+ 1:]'! 2“3"'{1’—3]"‘ n—mc 74 1
el t“:‘
235. flz) =sinz = E {ﬂ}{ =)™
- IIHJ{I] _,I"':“:'{rr} il
im : =1 1 =1 1
0 sinx 0 =?{I—:I'l‘]l+?{I—n]3+?[r—n]"’+ﬁ[r—rr]T+
1 L0 T =1 ) - . -
1
2| =sinx 0 = i { n (F )
i) [21‘!-{- :]"
3| —cosrx 1
1 sinr 0 lim |2t lim (- l:]-"“ (z = x)™"*? ] (2n 4 1)!
5 - -1 ™ A {2;1+3:] {_l}u.-l-l {I— n:]:.!n-l-l
G | —sinx (1] f_J:— #:Ij )
=lim ——————————=0<1 forall z 50 R =«
T | =cosx n—o (2 4+ 3)(2n 4+ 2)

21. If f(x) = cos x, then f1"+')(x) = + sin r or £ eosz. In each case, |_f{“+1}|[r]-| < 1, so by Formula 9 with a = 0 and

M =1, |Ru(z) " ** . Thus, |Ra(x)| — 0 as n — oo by Equation 10. So lim R (x) = 0and, by Theorem

1< Gy

£, the series in Exercise 13 represents cos o for all =.

29. If f(x) = sinh =, then for all n, f1"*+)(z) = cosh x or sinh . Since |sinh x| < |eosh x| = cosh z for all z, we have

|ff"+'}{;]| < coshz for all n. If d is any positive number and x| < d, then iﬁ““’{;}| < coshz < coshd, so by

Formula 9 with a = Oand M = coshd, we have | R ()] < "1 1t follows that [Rn(z)| — O as n — o for

cosh d
ey

|z| < d (by Equation 10). But 4 was an arbitrary positive number. So by Theorem 8, the series represents sinh x for all z.
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INFINITE SEQUENCES AND SERIES

= 1 Lj_2yi_z
M. m:[l"'{-‘r}]lhz.‘gﬂ(lf‘){ =14 4{ £) 4 1) { ] z)? + 4( 4.3.'}'{ 4]{_1_}:!4‘_
ol s (=) )BT (5]
_I_EI+F§2 1% - =
1 = 3-7- (dn =5

=1-ge- 5 B

and |—z| <1 = |z|<lLsoR=1

! = ! = l(1 + E}-u 1 i ( ) The binomial coefficient is
2+z)°  [2(1+z/2)] 8 z nad 2
-3 [-'ﬂ[-ﬂ(-ul (=3-n+1) _ (=3N=A)(=5)-----[=(n+2)]

i

(

13 (=

):

_(=D)"-2.3.4.5

n!

. I[n + l}l[n + 2} _ {—l:l-“{n. + ljl[n + 2]

2

2.n!

1) (n+1)n -I-E] 1)"(r 4 1)(r 4+ 2}

z{'

s, ——— =
{2 +-.I:]' 8r:.-l‘.'l

.dll.+

. Ir
> e for|3] <1 & Bl<2soR=2

1

g;zn-l-l

3. arctanz = 3 (=1)" =arctan(z?) = 3 (=1)" -1" ", R=1

arctan x E{ ) +1,sn_f{1-] arctan(z”) = “ ] T Tl En{ 1) 2u+1 .
'.Er:u 0 {21_}2“ =0 22”.1_21‘
3. = T (=1)" = cos2r= Y (=1)" = T (=1)"—— s
o ,E,{ ) @y coslz = 2 (1" "y = ZN TGay
218
flx)=xcos2r = =1 g+l B — o,
(z) E}{ ) {zn}q
0 Iin ) 1 2]"!"' o Id.rl.

39. & = =1 ™ 1 = =1 s L -] HI—
cosz= L (D" Gy = clzr) = E{ K e =& e
I{I}:Ilm[.l.rE] = i{—l]“;.rm'n R=ncc

2 opeer 320 (2n)! ’

41. We must write the binomial in the form (14 expression), so we’ll factor out a 4.
;_;_;_i(uﬁ)"” 25 (= (ﬁ)
VIFZE A+ 2 T+254 2 1 2 =0 4

a 2 : a

a1 ey P DD 2V (CDEDED (Y

2 SR | i 1 3! 4

I I = 1-3-5--:-- (Zrn—=1) 4
= = - =13" n

3+3 2 (-1 Zn . 4n -l
o = Le3eBoaces (2n =1} 4.4 T ||
_E+'§1{—l]” TSt " and =— <1 = 5 <1l = |z <2, soR=2
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SECTION 11.10  TAYLOR AMD MACLALRIN SERIES 0O 519

] {_l}n-ln-lzzn-ll_in

43 sin’z = %{1 —coslr) = % [1 - Eﬂ %} = %[1 -1- .:é %] =2 (2n)! ’
R=o0
. 1.5
£ conx 'S Eﬂ{- L o = ( PR
f(z) = cos(a®) = {'13;,5;2}2" =_§{_£:;M i3 \
=1=32'+ ga’ = e+ f
The series for cos = converges for all =, so the same is true of the series for i

fix), that is, R = oo, Notice that, as i increases, Ty () becomes a better
approximation to f{z).

k]

o — i o L
acPF D= L oy ie )
=i L

n!’

T

= 1
flz)=ze™" = En{_”“ = g+l

=z—z2+%a:a—-;—rd+i'jm"'—ﬁlﬁ:ss-‘k--- r
= ey " -
= .:%1{_1] o 0
The series for e® converges for all x, so the same is true of the series b T a
for f(x); that is, R = oo. From the graphs of [ and the first few Taylor -;’i-\],

polynomials, we see that Ty, () provides a closer fit to f{x) near 0 as n increases.

.- T .o 2n Iﬂ I-l Iﬁ
ﬂa":ﬁ“(lw) 3E;ra:iun’rs:eu’n:l;.ua-;.::_E{-l}“{z }|= -E_;.E_ﬁ_q“..,su
x _ . (=/36)  (x/36) (/36)° L (=/36)° (x/36)* »
cos o = 1= o] + m - &l +---.le.I—TWD.Q’B'EIQ;&MadengTWE.dle

does not affect the fifth decimal place, so cos 57 == 0.99619 by the Alternating Series Estimation Theorem,

a _1)(—2) (=2
1. (a) 1}'@:[1+(—IE]]-|I2=1+{_%3[ I}+{ z” }( I] ( ](31_:” 2}(—12]3+---
=1+“§:11'3'5"2"';1'52n—1} In
i - 13- "{:ER_J-} Fmegl
(6) sin™ I—fmda: E+I+n¥| {2:1-4—1}2“'-:1 "
_I+§11 ::fzn+1}2£2.n_” 2"+ since 0 =sin"'0=C.
o= g (=g () - [vme-en g ()
with R = 1.
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520 O CHAPTER11 INFINITE SEQUENCES AND SERIES

. {E]‘ o o 2”. N '.!ll. COS I = l _ . IH-I
85 cosxr = EI[—I:I ()] = osr=1= EI{ 1) @n)! = — FEI{_ ) {2 ) =
-l =4 3 1]”—11" with R =
f T T +ﬂ.| In. {Zn}!1 -
. & , aind ‘
§1. arctanx = EI[ 1:]- “E.:_D{—l] ] or |z| < 1 and
1 c 0 . Iﬂn-}-ﬁ- . .
fI" arctanzrdr = + .E{—lj m Since b L 1, we have
172 e Arud T 11
3 e 2 _ W2t et )t {1:"2} .
L r a.n.t.u.u.rdz—rgni: 1) {2n+1}{2n+5} 1.5 2.7 + 5.0 .11 - Now

7z 6.3 x 10" does not affect the fourth decimal place,

@ 11
{l‘m.] {lﬁ} {'1";2] == 0.0059 and subtracting _1, =
1-5 3-7 5.9 7

so [,/ 2* arctan x dx = 0.0059 by the Alternating Series Estimation Theorem.

1 1 dmdl
59 T+ =1+ = (2 (=", snf\.-"l+r"d.z_{“‘+ (2)‘ and hence, since 0.4 < 1,
i

in+1
we have
= nﬂ.-: 1+ o dz i(%) {i:}r:l
=(1) iujj' ;_rr{n;}a + %; 3) tu:}" N 5(-%{_;} m_;:m e Hd_ H-3) {“1“"”
=04+ O8O OO S04

U‘.4 9 1 {]_4 o
MNow % =36 % 10" < 5% _'ll]“', so by the Alternating Series Estimation Theorem, f == 0.4 4+ % == 0.40102

{correct to five decimal places).

i I—{I—%Iz+%f1—%1"+%I:‘—"-} i —I—T:I_I + o=
= lim = -
x

6. lim 2= (1 +2) h

Eri] II‘! | I

—Iu:ll{———::-l- 1.2 _ L _;“".{;...j]:E

SINCE POAWET SEMes are continuous functions.

ﬂlhnamz—z-}-lzﬂ: - {I——I'-i- Lt~ !IT+---]—.:+%I;’
x=—ailh .z:' F—eil I"'
_ .mw_.m, 1 28 28  y\_1_ 1
=l =5 5! 7! ol 5! 120
SINCE POAWET SEMcs are continuous functions.
6. lim I“-az+3uu.‘1:= _mf’-az+3{:--f’+l 2 = La" g
Fri] Iﬁ' Fri] 1'5'
. I;!—EI-I‘-EI—IR-i-%Ia—%I?-i-"' . %I"'—%.IT+---
= lim - = lim
i) el - ] el

) = 2 since power series are continuous functions.

I

LE
L
B

I
—apes
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SECTION 11.10  TAYLOR AND MACLALURIN SERIES O 521

2 4 L} 2 4
67. From Equation 11, we have ™ 2:1—%+%-;—!+ -andmkrm»‘ﬂmhm::l—%+z—!—--- from

Equation 16. Therefore, e=*" cosz = (1=a 4 2" =-2) (1= 32" 4 gp' = -+ ). Writing only the terms with

P 4

degree < 4, we gete” cmz—l—g.r -+-—.r -z +3.I +—I+ l—%: +ﬁz"'+---

T {15) T

sinz I—é.r"+ﬁ.r"-'—---'
14+ 227 4 g oo

1.3 1 o
T =i + e —

—r = =t

120

EI'R—- EI deeen
ENC.
o+

From the long division above, mzl_ =14 g 4 gpx + -+

M.y =(arctanz)’ = (2= 2% 4 32" = 22" 4+ ... ) (= 32® + 32" — L™ + ... ). Writing only the terms with

degree < 6, we get (arctanz)” = = -t 4 %.IE—%I" +%.z'3+ %Iﬁ.}....:_rj - %:5"'-1-— %-Is-i'-

,” 3 &
75. E{ 1}“'1 = E{ 1}”'1{ ‘:" = (1+ ) [from Table 1] =1n =
Tomml &
s I::—].:]n n2n+1 a0 {_l}u[zl'-!bl-l-l
7. = Kl = sin £ = - F(13).
“% P(2n + 1)1 .En T+ 1)1 S by (15)
g 27 81 3 3 3P a3 E L L
79. 3 == = a L= a1 =6 11
tatytuatosotatatate Eln! Enn' € = Lby(11).

(&)
B1. If p is an nth-degree polynomial, then p*}(x) = 0 for i > n, so its Taylor series at a is p(z) = E P {ﬂ]{ —al.
l

", p(a)
i

Putr—a=1lsothatz—a+ 1l Thenpla+1) =3
tmmi}

- 10
This is true for any a, so replace e by x2 plx + 1) = E
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52 [ CHAPTER11 INFINITE SEQUENCES AND SERIES
83. Assume that | ()| < M.so f"(z) < Mfora <z <a4d Now [ f"(t)dt < [T Mdt =
@) =f"(a) < M(z=a) = ["(z)<["(a)+M(z=a) Ths, [J ["(t)dt < [[[["(a) + M(t—a)ldt =
f'(z) = f'(a) < f"(a)(x —a) + §M(z —a)® = f'(z) < f(a)+["(a)(z—a)+ i M(z—a)’ =
S @dt < [ [Fa) + (@)t —a) + §M(t —a)]dt =
(@) = f(a) < f'(@)(= = a) + 1f"(a)(x — &)’ + }M(z - a)". So
f(z) = fla) = f'{a)(x = a) = £f"(a)(x = a)* < ;M(zx =a)*. But
Ra(x) = f(z) = Ta(z) = f(z) = fla) = ['(a)(z = a) = 1" (a)(x —a)*, 50 Ra(x) < FM(z —a)*.
A similar argument using f"'(x) = —M shows that Ry (x) > =2M(z = a)*. So [Rz(z2)| < 1M |z —af*.

Although we have assumed that = > a, a similar calculation shows that this inequality is also true if = < a.

T - n

_ s E " =k " Feplace nwith m + 1
_.Eﬂ(n+l){“+l}z +,§n(n)“‘r [ in the first series ]

85. (a) g(z) = i::a(i)‘—'“ - JE)= o (k)u“_,,m

_ Eﬂ{" 4 k= D= 2}[:1-1-“;]-'- nd Yk=n) ., . [{ ke = Dk -21::.!. oo (k=n+ 1}]Iﬁ
DR e CR PR
kﬁE_:n k(k = 1)(k — Eiu (k=n41) , _ k,i.(i)‘—'“ ~ kg(a)
Thus, g'(x) = ?T[Ii

(b) h(z) = (1 +2) "  g(z) =
h'l[.r:l- = —k{l + I]-k'lg[z} -+ {1 + .r:l--k g'l[.r:l- [P'mdu:t Rule]
= k(1 4 2)=*=g(z) + (1 + =)=* ’1“?%3 [from part (a)]

= —k(1 4+ 2) ™" g(z) + k(1 + 2) ™~ g(x) =

{c) From part (b) we see that i{x) must be constant for = € (=1, 1), so h{x) = A(0) = 1 for = € (=1, 1).

Thus, h{z) =1=(1+ :r.::]-Jz glz) < g(z)=(1+ z]k for = € (=1, 1).

EWEIEC:HL_:‘.AII#I::—v:d.M:;u-tk.:qzd.:-d.-hh—ﬂ.nuhtnml-tn:hrhﬂ—r#—HWM:—;&WE—&:M-&I—-ML
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11.11  Applications of Taylor Polynomials

SECTION 11.11

APPLICATIONS OF TAYLOR POLYNOMIALS O 523

1. (a) } 3 .
n | ™) | ™(0) Ta(x) I
0 sin x 1] 0o T.=T.
1 COs T 1 T I"..' 1.
- —3 ~ i ¥
2| =sinx 0 x =T , ) =T
3| —cosx =1 z— sz I' f
4 sin x 1] = ﬁ.r:’ II'- . )
L A { 5 '|I =T,
5 COs T T = 5x + 5% . - A
0 k)
Note: Ty(z) = ¥ J7(0)
pmn K
(b)
r ¥ Tolx) Ti(z) = T2(x) Ta(x) = Talx) Taix)
z 0.7071 0 0.7854 0.7047 0.7071
< 1 0 1.5708 0.9248 1.0045
x 0 0 31416 =2.0261 0.5240
ic) As n increases, T, (x) 15 a good approximation to f{x) on a larger and larger interval.
1. 12
” _,IH:"J[:I} thh]{l:] "-
0 e’ e
1 et e
2 et e
3 et e
3 pindy !
=3 LW @y NS
-} L Ty o
_ E 1y € o 1yt & 1y 5 1y
_E{I 1%+ I (r=1) +2! [z =1) + 3l [z =1)
=e4e(r=1) + ze(xr = 1)° + ze(z =1)*
i .\
n | ) | f"(=/2)
0 CO8 T 1]
1 =sinxr =1
2| =cosx 0 ar N
»
3 =i T
a thli],[ﬁrfg} . A ;.
nx) = - L0 (oo 2y -
=il . '
3
-(z=%)+z(=z=%)
Copyright B Compape Lcsmirg, AR Rihts Riescrveed. Mary ot e oopiod, acanmed, or duplicated, in whole ox in part. Diue i0-clectnens sights, ssesc thied party contens mary be ssppremed from the clsook srdter eChaptcrtal.
L
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524 O CHAPTER11 INFINITE SEQUENCES AND SERIES

T. P
T ft"'}'{I] ft"}{l]
1] Inzr 0
1| 1z 1 - 3
2 —ll.r’.r"! =1 .
3| 2/ 2
3 ) . J
Ta(z)= 3% "r{ ‘{l}{ 1" —4
- L
1 =1 2 .
=0+ ﬁ{r— 1)+ T{I - ll'lJ + ?{I - l}"
= (=1 - 1a-1+i@-1)
9. 3
T _,I"':"']{I:I _,I"':"'}{ﬂ:] i
0 et 0
1 {1 - ZI}E-E" 1 —I 1.5
2 4z = 1}2-2: -4
3| 43 =32x)e=* 12
- ] = ’
Ta(z) = E ! "FD} " D 1+ J: + -"'J:J + & J.'" =x— 2 4 2r

11. You may be able to simply find the Taylor polynomials for

f(z) = cot x using your CAS. We will list the values of 1" (x/4)

forn =0ton=>5

n o 1 |2]| 3 4 5
Folxfa) [ 1| =2 | 4| =16 | 80 | =512

=3 L2/, _ gy
=1—2{.r—§}+2 I——r—- : —— +T“{I—£}4—E{I—£}5

15

For n = 2 ton = 5, T,,(x) is the polynomial consisting of all the terms up to and including the (x — X)" term.

13. (a) flz) =1/z = Tu(x)
1t f{“}{I} .lr{“}f.” 1 1 2
0| 1z 1 =g le=1" =5l =1"+ Sz -1)*
1| —1/2* -1 =l=(zr=1)+(x=1)"
2 2/t 2
3| =6/
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SECTION 11.11

M " -
(b) |Re()] € 55 |= = 1*, where | f"(z)] < M. Now 0.7 <z <13 =

Since | £ (x)| is decreasing on [0.7, 1.3], we can take M = | f"(0.7)]| =

6/(0.7)?
|Rz(x)] = %{u.ﬁm =0.112 4531,

APPLICATIONS OF TAYLOR POLYNOMIALS O 525
le=11<03 = |J==1 <0027

6/(0.7)%, so

1
(c) o From the graph of | Ra(z)| = ‘- = Ta(x)|, it seems that the error is less than
I
0.038 571 on [0.7, 1.3].
1.3
249 Bf2T
15. (@ flz) ==** = Ta(z) =1+ 3(z=1) - ‘J 1}%#{;—1}“
#n f{u){,_.} Jr{nJU] - \
j— ]
. s ] —1+3{I—l}—%{.1:—1:|' +i(z=1)
3 171 2 M
1 x 3 (b) [Ra(2)| < 5 I = 1I°, where |_r“']'|[;}| < M. NowDB<z<12 =
) 3 =df3 _% -
N N e=1<02 = |z=1|*<0.0016. Since |f9) (x)| is decreasing
T a7
g | —gggmrors on [0.8, 1.2], we can take M = |_|I'{"}|[U-.E-]| = %{D.S}-m‘m, S0
ﬁ{u_a}- 103
| ta()] < 2 (0.0016) = 0.000096 97.
‘C] (G
From the graph of |Ra(z)| = |*/* = T;g{::}|, it seems that the
.II.
error is less than 0.000053 3 on [0.8, 1.2].
0.8
i [
17. (2) flz) = seex = To(x) =1+ i2°
n f{”]{:s] Jr{n}{.n],
0 SO0 T
1 sec T Lanr 0
2 secx (2sec’ x = 1)
3 | secx tanx (Boec? x = 1)
(b) |Ra(z)] < |;| where |ﬁ'~‘}{;}| <M. Now—-02<r<02 = |2]<02 = [zf* < (0.2)%.

s0 | f”‘}{z]| < f1(0.2) = 1.085 158 892, Thus, |Ra(z)| <

F®){x) is an odd function and it is increasing on [0, 0.2] since see = and tan x are increasing on [0, 0.2],

*p.a2
< % (0.2)* ~ 0.001 447.
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18.

fc)

L0004

y=|&.lx

l

=2 0nz2
i}
n ) z) r™0)
o] 1
!'ﬂ

1| e*(2£) 0

2 | e (24 427 2

3 | e (122 + 52%) 0

4 | e (12 + 482* + 162%)

(el pomos

v=| kx|

L]

ol

TE

ﬁ”}{zj

()]

= =

[=L I N ]

TsinT

Sinx 4 roosc
Qe — rsine
=35inr =rcos T
=deos T 4 rRinT

Sesinx 4 roosT

=2 K= 3

fc)

(%

v=[Ryin|

INFINITE SEQUENCES AND SERIES

From the graph of | Rz(x)| = |secz = Ta(x])|, it seems that the

error is less than 0.000 339 on [-0.2,0.2].

(a) fl[.r:l- = e!ﬂ QTK{I] =14 EII =14z

a1
(b) [Ra(x)] < % J|*, where |ff"1‘|[;}| <M. NowD<z<01 =

z* = (0.1)%, and letting = = 0.1 gives

"1 (12 4 0.48 4+ 0.0016)
24

| Ra(x)] < (0.1)* = 0.00006.

From the graph of |Ra(x)| = |.=:’1 - T;,l[.z}|, it appears that the

error is less than 0.000051 on [0, 0.1].

4

(a) flx) = csinx = Ty(x) = %{I- 0)* 4 —=(z=0)* =2* = %I"

4!

M

(b) |Ra(z)] € = |z|*, where |er|[;}| <M Now=l<z<l =

5!

|z| < 1,and a graph of f¢*(x) shows that | f{-"}{z]| <Sfor=1<z<l

B 1 -
Thus, we can take A = 5 and get |Ra(z)| < ,il 17 = 24 = 0.0416.
okl

From the graph of | R,(x)| = |xsinz — Ty(x)|, it seems that the

error is less than 0.0082 on [=1, 1].
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SECTION 1141 APPLICATIONS OF TAYLOR POLYNOMIALS O 527
4
23. From Exercise 5, cosx = — [.r— —_} + 1 glz— EI + fa(x), where |Ra(x)| < 4' II - %l with
|ﬁ*’1[11| = Jeasz] € M = L. Now z = 80° = (90° = 10°) = (£ — &) = “= radians, 5o the error is
|Ha($F)| = 51?{1'1]4 == 0.000 039, which means our estimate would mor be accurate to five decimal places. However,
T = T, s0 we can use |Hq[%}| < ﬁ{%}a == (.000001. Therefore, to five decimal places,
cosB0° = — (- %) + 2(—=)° =0.17365.

1H

2‘
25, All derivatives of ™ are %, 50 |Ra(z)]| < mI ™, where 0 < = < 0.1. Letting x = 0.1,

)
L0
Fa(0.1) = m{:}_unu < 000001, and by trial and error we find that n = 3 sansfies this inequality since

Fa(0.1) < 0.0000046. Thus, by adding the four terms of the Maclaurin series for ¢* comesponding tonn =0, 1, 2, and 3,

we can estimate ™ to within 0.00001. (In fact, this sum is 1.10515 and «®* == 1.10517.)

1 1
21. si.n:::-?.r" +3.1::‘ — . By the Alternating Series ”-ﬁ .
Estimation Theorem, the error in the approximation y=sinx+ 001

1 1
sin =:-?.r" iz less than ‘Er"’ <00l =

|=*| < 120(0.01) & [« < (1.2)*/" = 1.037. The curves

y ==z — 1z* and y = sinx — 0.01 intersect at = = 1.043, so y=smx—{

o

the graph confirms our estimate. Since both the sine function &

and the given approximation are odd functions, we need to check the estimate only for x > 0. Thus, the desired range of
values for = is =1.037 < = < 1.03T.

I.’} T

2. an:t.u.nr:r—T-l- = -IT-L---. By the Alternating Series - 7

Estimation Theorem, the error is less than |=227| < 0.05 < ¥ = arctan v + ﬂ.ﬂﬁ-«xh‘j{::;f--""'

|&7| < 0.35 < [z| < (0.35)"/7 = 0.8607. The curves 7

y=ax= %z?‘+ %I""andy = arctan r + 0.05 intersect at

x == 0.9245, so the graph confirms our estimate. Since both the e I ¥ = arctun v — 1L.0O5

arctangent function and the given approximation are odd functions, = "'.,llll o
we need to check the estimate only for = = 0. Thus, the desired v=x—Latp Ly
range of values for = is =086 < x < 0.86.
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528 O CHAPTER11 INFINITE SEQUENCES AND SERIES
3. Let =(t) be the position function of the car, and for convenience set s(0) = 0. The velocity of the car is v(t) = s'(t) and the
" : a0} 2 2
acceleration is a(f) = s"(t), so the second degree Tavlor polynomial is T4 (t) = =(0) 4+ «{0)t 4 = 1* =20t + . We

estimate the distance traveled during the next second to be 5(1) == T%(1) = 20 4 1 = 21 m. The function T:(t) would not be

accurate over a full minute, since the car could not possibly maintain an acceleration of 2 m/s® for that long (if it did, its firal

speed would be 140 m /s = 313 mi/h!).

4 __ a9 _a__ a9 _4a|;,_(,.2Y
BE=1m (D+d)? ™ D* D2{1+de]2_D2l1 (1+D) ]

We use the Binomial Series to expand (1 4 /D)™

a k]
_q 2.3-4§d -4 _
e=g- (1-2(5)+ F(5) -5(5) +)| - &[(5) -+(5) +(5) -]
=L o L) Zgpa. L
T D* E(D)_M D?
when [ is much larger than o that is, when P is far away from the dipole.

35, (a) If the water is deep, then 2xd/ L 1s large, and we know that tanh @ — 1 as © — co. S0 we can approximate
tanh(2xd/L) = 1, and so v* = gL/{27) & wv== ./ glf(2%).

(b) From the table, the first term in the Maclaurin series of

. n 1)) /()
tanh x 15 x, so if the water 15 shallow, we can approximate
0 tanh r 0
2ad  2wd gl 27d 3
—_— T — o T — | 1 sech™ r 1
tanh T T ,and so 5T v R aSgd .
2 —2sech” rtanhx 0
3 | 2sech® r(3tanh® r = 1) -2

{c) Since tanh  is an odd function, its Maclaurin series is altemating, so the error in the approximation

2rd _ 2nd "(0)] f2xd\* _ 1 [2xd\"
h%ﬁ %lslessman the first neglected term, which is ”w;f ) (%) =§(%) .
1/ 2nd\* 1 1\ A
If L = 10d, then E(%) {E(En-ﬁ) = ;5 s0 the error miheappmmmatlmr, = gd 15 less
a
gl w
— = = [.0132g L.
2= 375 4

37. (a) L is the length of the arc subtended by the angle 8, so0 L = B =
#=L/A Nowsecld = (R+ C)/R = HRsecl=R4+0C =

'= Rsecl — R = Rsec{L/R) - R.
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CHAPTER11 REVIEW 0O 529

(b} First we'll find a Taylor polvnomial Ty(x) for fz) = seczatx =0

1) @)

saC T

secrianx
sec (2 tan’r + 1)
see xtan x{6 tan’r 4 5]
sec r(24 tans 4 28 tan“x 4 5)

e W B o= =] 3
0O = 3O e

Thus, fz) =secr = Tu(z) =1 4 H(x = 0"+ F(z=0)* = 1 4 2" + Fz*. By part (a),

1/LY 5 /LYy 1. r? Lt L* st
r::=3[1+§(—) +1(—)]-H R+=R =4 =R e =R = = 4 —

cn

R M\ R 2 R 24 i 2R 24R

ic) Taking L. = 100 km and R = 6370 km, the formula in part (a) says that
O = R=ec(L/R) = B = 6370 sec( 100/6370) = 6370 = 0.785009 965 44 km.

L* 5Lt 1007 5. 100"
The formul b) says that C == - 0.785 009 957 36 km.
mula in part (b) says ~ IR T IR - 7.6370 T 316308 09 !

The difference between these two results is only 0.000 000008 08 km, or 0.000 008 08 m!

39, Using f(x) = Tu(z) + Ra(z) withn = 1 and & = r, we have f(r) = T(r) 4+ H,(r), where T; is the first-degree Taylor
polynomial of fat a. Because a = xa, fi(r) = flza) + f(za)(r = za) + Ra(r). Butr isaroot of f,s0 f(r) =0

and we have 0 = fza) + [(za)(r — za) 4+ Hi(r). Taking the first two terms to the left side gives us

Fizalza =) = flza) = Fa(r). Dividing by ['(z.), we get 4 — 1 — ;EII';; = ?Ei:]] . By the fiormula for Mewton's
method, the left side of the preceding equation 1S a4 =7, 50 |[Tagr = 17| = )fE—E:; . Taylor's Inequality gives us

|Ryir)| < JL(.L].'. |r =z, |*. Combining this inequality with the facts | f*(z)] < M and |f'(z)] = K gives us

"U’
IK

|Tns1 = 7] € 5= Jam = 1"

11 Review
TRIE-FALSE QUIZ
1. False.  See MNote 2 after Theorem 11.2.6.
3. True. |fn|'il_|;1cﬂ.n=L,thE'ﬂaSn—tm,2n+l—im,Snﬂjn+|—iL.
5. False.  For example, take e = (=1)"f(nG").
a 1
1. False, since lim_ “ﬂJ = lim mr | = Jim {H"TI} ii: = lim m
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530 O CHAPTER 11 INFINITE SEQUENCES AND SERIES
9. False.  See the note after Example 11.4.2.

11. True. See (9) in Section 11.1.

FO_2 5 o=z

13. True. By Theorem 11.10.5 the coefficient of =® is —— 3

s Use Theorem 11.9.2 to differentiate j‘tlu"ee times.
15, False.  For example, let a,, = b, = (=1)". Then {a,} and {b, } are divergent, but a, b, =1, s0 {a,b, } is convergent.

17. True by Theorem 11.6.3. |3 (=1)" an is absolutely convergent and hence convergent. |

g > 0.9 .
19. True.  0.99999... = 0.9+ 0.9(0.1)" + 0.9(0.1)° + 0.9(0.1)* 4 ... = 3 (0.9)(0.1)""' = T g = | by the formula
ol =W
for the sum of a geometric series [5 = a1 /{1 — r)] with ratio r satisfying |r] < 1.
2. True. A finite number of terms doesn 't affect convergence or divergence of a series.
EXERCISES
1 24 n’ converges since li 2+ 0 = lim 2/n" + 1 !
T+ 8 ame T+ 208 amm B +2 2
4 TE
i “llfl;cﬂ-n = “ll_r:g: T+ n? = “IEIJL m = oo, 50 the sequence diverges.
5 |ag| = 2:':? = n2n+1 < — ! L 50 |, | — 0 asn — oo, Thus, nlﬂx;ca.u_{l The sequence {a,, } is convergent.
1 A 3 4x
1. {(1+ ;) } is convergent. Let y = (1 + —) . Then
n &£
L (-2
In(l +3/=) u ., 143\ =) 12
!].ll-'.liglc].lly— llm dxin(l 4 3/x) = 1 it (ix) = lim YTy _zlﬂil+3fr_12‘m

3 EET
lim y= lim (l+ —) ="
E Tl 30 n
9. We use induction, hypothesizing that au—1 < an < 2. Notefirstthat 1 < az = £ (1 + 4) = 3 < 2, so0 the hypothesis holds

for n = 2. Now assume that ax—1 < ae < 2. Thenar = &lae— +4) < Flap +4) < 3(244) = 2. Soae < arsr < 2,

and the induction is complete. To find the limit of the sequence, we note that L = lim a,, = lim a,., =
a0 i == 0

L=3L+4) = L=2

n n 1 =
11. — = —, 50 converges by the Comparison Test with the convergent p-series — =2=1
Al Elnul ges by par gent p- E 7 [p=2>1)
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3 i ] -
a Uyl T |::'I'J. + l] a5 o 1 1 _ 1
13 lim e | = Jim [ reaniied Jim |14 m ==:c< 1, s0 .El converges by the Ratio Test.
15 Let f(z) = v"_ Then f is continuous, positive, and decreasing on [2, o), so the Integral Test applies.
xr

o T I & . Int
f flx)de = lim f ! dx [u=ln.r,du= ld‘.r] = lim f w= % du = lim [2 ".r':] .
9 t—so fo rafIne x t—vo f10 0 E—sn In2
=!|irn (Evln —2v|n2)=m
—00

==
1
s0 the series diverges.
Ezuv'lnn B
cos3n 1 1 5 =
17. = < =[—-].,50 comverges by comparison with the convergent metric
|ez..] T 02| S TF o ~aar (5) Ellu"l ges by compar ergent geo

series i (2)" [r=% < 1]. It follows that sf: iy converges (by Theorem 11.6.3).

-1 -1
. a4 . 135 2 =1)(2n 4+ 1) 5" n! i In41 2
19. 1 =1 : lim —— 1, so the
nvoe| an | neae 5"+ (n + 1)! 135 (@2n-1) nombn+l) 5 - -onesns

converges by the Ratio Test.

M by = "'Ill._ = 0, {bn} is decreasing, and Iun by = 0, 50 the seres E (=1)"=! — v converges by the Alternating
n+ 1 -l n+1
Series Test.

o0
23. Consider the series of absolute values: 3~ n~"/* isa p-series with p = 2 < 1 and is therefore divergent. But if we apply the
Fomml
Alternating Series Test, we see that b, = %’_ > 0, {by, } is decreasing, and ],m b, = 0, s0 the series E {_1}u-1 =173
-1
o0
converges. Thus, 5 (=1)"' n~"/* 5 conditionally convergent.
s
ﬂ —l}“+l{n+ 2}3n+l 22u-|-1 n+2 3 1+ {2];“} 3 ]
75, fid1 — { . — L & 4 1 . the Rati
. D I[—l::l”{n-{-_'l}ﬂﬁ n+l 1 1+{1,|"11:I- 444'{ as n — oo, 50 by o
(=1)"{m 4+ 1)3" _
Test, -§1 — s absolutely convergent.

{ 3}“-1 { -ﬂn—l B {_ ]n-l 1 = {_3}11-] _1 0 ] Tl B 1 1
2. 5 =z )" == =3 Ea”—-l_ﬁ.?;l(_g) —E(m)

2:!“.

womm ] -] o L Fo-l
1 & _ 1
TET T
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532 O CHAPTER 11 INFINITE SEQUENCES AND SERIES

o0
2. E [t-an-ll:n + 1] —tan™! nl = lim s#q

P Fa—= il

= lim [I:t.u.n-lﬂ - tan™! l] + I[T.Em-1 3 — tan™! 2:] + g I:la.n-'f_n + l:l - tan™! n:l]

Fa—= il

= lim [tan™! 1)=tan~'l|= 2 =X = X
“E'.L[ {"‘+ } 1 I T a4 )

2 3 4 o fi P
€ & e e - T
3 PR S S 1'L = LL: . = — forall =
“to-wta- E'[ Y=L o T sieee” = 3 oy forallz
1 - 1= 2" = (=z)"
33. coshx = = (e* Tl — —_—
B E{E +e™) 2(,% ! +“¥¢ n! )
1 z* 2 2 x? £ 2
:E[(1+I+E+E+?+"')+(1—I+E-ﬁ+ﬂ-"')]
1 z* ! " 1,
=242 kP | =1 =1 3 for all
2( + 2!+ 4!-4'- ) + +.§2{2 ) = + = or all =
= ) 1 1 1 1 1 1 1
35. —r ] —— = - -
E. no 32 + 243 1024 + 3125 777G * 16,807 32,768 +
1 o &
Since by = — = ——— < 0.000031, = 0.9721.
T8 T 32768 P .El
= 1 2 1 1

1
WY —=y — 7o == 0.183976224. To estimate the error, note that < :,snme remainder term 1s
o

nml 24 5% =l

24 am

o /5"

Ry = “Ei % =T s 6.4 % 1077 [geometric series witha = = and r = 2]
atl 1 1
39, Use the Limit Comparison Test. lim @ = lim e lim (1 + -) =1>0.
mn

T gy LR ] =

)
(15

e + 2"+ nd" | n |e4+2]|  |x4+2|
(n+1)dn+1 |z 4 2| n— |14 1 -

. by the Limat Companson Test.

Since ¥ |aa| s convergent, sois S ‘ (n +

gy
iy

41. lim

Fa—el

= lim

Fi—

<1l & |[r+2|<4s0R=4

= (z+2)"
[t4+2 <4 & =4<r42<4 & =6<x<? Ifx= =6 then the series | S———

becomes
ool Tt 4 n
= (=4 _ = (=" .
= . the alternating harmonic series, which converges by the Alternating Series Test. When = = 2, the
) ndn ) € g
- -

=1
series becomes the harmonic series % —, which diverges. Thus, I = [—6, 2).

nml T

Copyeight 3046 Conpoge Lemmiog. AB ights Reverves. Moy st b copind, scomm o dmphicate, o whole o . o b et ightn, s shind oty contnt sy b e s the ek e o mptts
Esbirrea rovars b decmacd that as wepy By affect the ovorall bermirg cupencece. Uagage Lcameng rescrves the nght 0 remens sckdtamal oot 2t 2z hine o vebusguent gt s icton regues i




CHAPTER11 REVIEW 0O 533

adly . _ qyndl
43, lim ﬁl: lim 2 I:I 3} . n.+3“ =E|I—3| limn F1+3=2|I_3|_‘_:‘1 f=1 |I—-3I"::1
m—soo | dy | To— v"’n-{--‘] 2"‘{1—3} I n—--xll.u 4 4
2[‘1;_3"
soR=3 |r=3|<i & =leor=3<ci & Lsr<l Forxz=2L%, theseries becomes
3 | | <z 3 E T T I» EI vn+3
= 1

= 1)
which diver =31<1], butforz = 3, we =) which is a convergent
ngn vn+3 nEﬁ. 1""2‘ Lt [P 2= ]‘ e getﬂ% nd+ 3 ge

alternating series, so I = [2, I).

45.
S) | F(E)
0 sinT %
1 COS T g
2| =sinx —%
3| —cosx —T""ﬁ
4 sinT %

svo=1(3) + (7)o 7) + -+ o2 e

=3[ -36-3) 436 -]+ 2D -5 -7 ]

1 a4 En Vﬁ e 1 7Tyl
ﬂ_ P —_—— —.1. L — -
En'[ V' (=-3) +3 Z YV (=-35)
-1 E{-I]* }:{-1} o] <1 = = = 3 (=1)" 2" with R= 1
‘T+z 1—(-x) = 14z .25 '
1
l-!l.f de = —In{4 — z) + C and
4 =x
1 1 1 1 [ = z 1= e
di== | ——dr== Z\ dr=a dr = = —_— L5
fd—a: * 4/1-:;4 ‘ 4[5 1) fu.n 15, O
1 = Ir:u-l-l o Il‘-‘l+ i) -1'-“
nfd-z)==-=Y ———4+C==-Y —/————+C=- . Putting x =0, C=In4
nf x) 4“%4“{n+1}+ p:%.ﬂ‘i"“{ﬂ'i-l} FEI m-l”'+ ng x we get n

This, f(2) =ln(4—2) =lnd = 3> 2

- . The series converges for |z/4] <1 & |z <4dsoR=4
aml T

Another solution:
Inl:-i - I} = |1|[4I[l - Ifal}] =Ind 4+ Inl::l - I,-"ai} =Ind 4 In[_'l + I[—Ifﬂij]]

=Ind+ f{-l]"“{'i{‘ﬂ [from Table 1] =Ind+ 3" (=) —jna— 3

et
s ol 4™ vl nd

{ 1}“ Pl ) . e {_l}n {IA}er+1 — {_1:.1' Im-l.-l--l
1. = —_— ; = = for all the rad f
sinx = “% Znt 1)1 = sin(z") .E Zn+ 1)1 Lt or all x, so the radius o

CONVENZence is oo,
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53 O CHAPTER 11 INFINITE SEQUENCES AND SERIES

1 1 .
83. f(x) = T {I.-"Ilﬁl:l-rflﬁj - "_1ﬂ[£l—i;}l_.|’4

=3[+ (<3) () + B (-)" LR ED 2y

3! 16
_1 = 1:5-0..u.n An=3) ., 1 -l T P {4u—3:]-
=3+t Qe -3t Ll Tt g
fnr|—%|{l & |z < 16,50 B = 16.
. o I‘H E! 1 = IH o In-l L Fm= 1 1 In-l
5. = T - == - = =z _— = and
© ﬁEI:'U n!’ = €L T ﬁ% 1l il n! + ﬂ%l ! =g * bgl !
EI ‘“
deI_L + In |z| + g: —
2 s 38 y
57. (a) VisTir)=1+2L= f Lz-1)- f:{ 1)% + 3/8 (x—-1)*
n | ™) | ) El
0 L1 1 =14+ %{I o %{:I - 1] IhI::ll: ]
1 %.I""rz 1} (b)
=3,
7 _l ! _%
= 3
3 FI 'rf..! ;
P EEEETEY
. - >
[ -
M

(©) | Bs ()] < Jrle - 1|*, where |f{"} I}| < Mwith f®(z) = =2~ Now09<z<11 =

=01<r=1<01 = (xr=1)"<(0.1)"and letting r = 0.9 gives M = 15

— S0
16(0.0)77
15 »
|Ra(z)] < IFS{T;"’W (0.1)* = 0.000 005 648 = 0.000006 = 6 x 10~°.

A 107"
From the graph of [Ra(x)| = |/ = Ta(z]], it appears that
| the error is less than 5 % 10~ on [0.9, 1.1].
¥ =|Ryxl

L= o 2 2 £ £ i 2 & &
s-hllll—“%{-l:] m_1-7+ﬁ-?+ ‘mmnI_I_-T+ﬁ__!+ «« and

Sinr = 1 x? i 1 = ) a? £t

= ——qitE gt Ths, lim 3 _!EE(_G+E 5040 )___
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B1. f(x) = “i enz" = fl-z)= icn{—z]" = éﬂ[—l:}"cﬂ ="

T

(a) If f is an odd function, then f{—z) = = f({z) = f: (=1)"e,x™ = f —e,x™. The coefficients of any power series
rummil)

rumm(l

are uniquely determined (by Theorem 11.10.5), s0 (=1)" &0 = —ca.

If reis even, then (=1)" = L soen = —cn = Z2eq =0 = cq = 0. Thus, all even coefficients are 0, that is,

tg=Cs =3 =---=0
(b) If f is even, then f(—z) = f(z) = ﬁn{-u" ez = icn 2 = (=1)"en = en

If rnisodd, then (=1)" = =1L, 80 —cn =en = 2en =0 = eq = 0. Thus, all odd coefficients are 0,

thatis, 1 = ca =5 = v =1
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[1 PROBLEMS PLUS

1. It would be far too much work to compute 15 derivatives of f. The key idea is to remember that f™}(0) occurs in the

= 2t

coefficient of ™ in the Maclaurin series of f. We start with the Maclaurin series for sin: sinr = = — I + o

z 1k ) 1
Then sin(z?) = * — T+ I,—I = .+~ and so the coefficient of ='* is % = = Therefore,
1 skl ui ake

F5 ) = ,—“—ﬂ 7.8-0.10-11-12-13- 14- 15 = 10,807,286,400.
G

2 tan 1 —tan®#
3. (a) From Formula 14a in Appendix D, withr =y =@, wegettan 2 = —— speot 280 = ———
() Ppe =y g . 1=tan®@ o 2 tan &
2cot20 = L2188 _ 19 _ tand. Replacing 8 by 1 2cot z = cot Lz — tan L
col _W_u:t —tan¥#. Replacing b}g:r,u.'eget col o = col o — tan 5, OF
tan %I = eot %I - 2eot x.
(k) From ;:Lartl[:i}wth2 in place of x, l.m2 —c{:tz—n-zx_ul = I,mr_he nth partial surt‘n:nl’rgl2 t.anz—ls

_ lml{zfﬂ} N T.an{:rfai} + lmn{zfﬁ} PR t.aIl{IfE"]

"= 1 8 2"
_ [eot{z/2) _ cot(z/4) _ cot{z/2) col(x/B)  cot{z/4)
- [ 2 cotr] + |71 YT s ram
- fi fi=1 i
+ [L{JLI[I,J'E ) _ -:.utl[.i:,-"-ﬂl ]] = —catx -+ cot{z/2") fteleacoping sm]
2”. 2”. 2“
ccot{xz/2")  cos(xz/2")  cos(z/2") /2" 1 1 .
Now Zn T Imgin(xfIn) * sin(z/2%) =z 1= z T T oo sinoe =/2 0

for = 3£ 0. Therefore, if = 7 0and = # kx where k is any integer, then

=1 1 1
3 — tan — = IIIII g = lim (—cut.a:+—{_ull) = =uvolx 4 —
x

o am an p—— oy an an

If & = 0, then all terms in the series are 0, so the sum is 0.

5. (a) At each stage, each side is replaced by four shorter sides, each of length

s =13 =1
% of the side length at the preceding stage. Writing so and £, for the

s =34 £6H=1/3
number of sides and the length of the side of the initial triangle, we s2=3.47 | = 1/3°
generate the table at right. In general, we have s, = 3. 4" and 83 =3.4% | 4y =1/3*
£, = (1)", so the length of the perimeter at the nth stage of construction :

iS pu = sula =347 (3)" =3- (4)".

i

fim1
3“—_|=-'1(5) .SIME%}I,pl—tcuasn—h-x.

(b) pu =
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53 O CHAPTER11 PROBLEMSPLUS

{c) The area of each of the small triangles added at a given stage is one-ninth of the area of the triangle added at the preceding
stage. Let a be the area of the original triangle. Then the area a,, of each of the small triangles added at stage n is

1
a.ﬁ:u-m:%. Since a small triangle is added to each side at every stage, it follows that the total area A, added to the
a fi=1
figure at the nth stage is Ay = 8-y » a0 = 3,471 o =% TmoT Then the total area enclosed by the snowflake
1 1 4 4
cun'EJs;i=a.+;11+_»1.z+z1:;+---=n+-a.-§+u-¥+u-ﬁ+-a.-?+---.Aflerr}wﬁmtelm,ﬂ*nsusa
ggmnmjcsermsm'rm:mnmnmua%,snﬂ:a.+ E‘H = +%-g§_%. But the area of the original equilateral
-3 :
1 T 3 B /3 243
triangle with side 1 isa = 2 -1 -sini =VTr. So the area enclosed by the snowflake r:un-ensg-vTr = %

T. (a) Let & = arctan = and b = arctany. Then, from Formula 14b in Appendix D,

tana — tank tan(arctan r) — tan{arctan y) =y
1+ tana tand 1+ tan(arctanz) tan(arctany) 1+ xy

tan(a — &) =

MNow arctan x — arctany = a — b = arctan(tan{a — b)) = arctan lz— since =} <a—b<

(b) From part (a) we have

120 _ 1 20
ar{.t.anﬁ—a.n:t.unﬁ:un:mn Tj ml :mtﬂllﬁ% :an:lu.nl:f
1+ 35 == A, 441
. x4y
{c) Replacing y by =y in the formula of part {a), we get arctan r 4 arctany = arctan T . S0
=y
1,1
431’{.‘1.31.1% :2{arclun%+an:la.n%] = 2 arctan l:— T ?l = 2arctan 3 = —ﬂ-l't.lilll +ﬂ-1'<-lEI-T-I 18
5
5 5
-4 .
:BEMHIELTL =arct.an%
1 1%

n

. L . 11— . 1 . 1 _ =
Thus, from part (b), we have 4 arctan = — arclan 7 = arctan {35 —arclan ;5= = 7.

] T I,'.'I 11
{d}meExamplell.'?.?we}m'e”ct.anxzz-—+E——I—+——I—+---,su
375 778 "1
anlol_ 1 1 LI LN
s =57 3.5 5.5° 7.5° 9.5 11.50

This is an alternating series and the size of the terms decreases to 0, so by the Alternating Series Estimation Theorem,
the sum lies between 55 and sg, that 15, 0. 197395560 < arctan % < 0.197395562.

1 1 1

1 _ 1 — +--. The third term is less than
230 " 230 3.230° | 5.230° ¢ Burd term i fess

{e) From the series in part (d) we get arctan

26 x lﬂ":‘, so by the Alternating Series Estimation Theorem, we have, to nine decimal places,

arctan = = gx 2 0004184076, Thus, 0.004184075 < arctan m= < 0004184077,
=0 T
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() From part (c) we have # = lGarctan 3 — 4arctan 5. so from parts (d) and () we have
16(0.197395560) — 4(0.004184077) < = < 16(0.197305562) — 4(0.004184075) =

3141592652 < 7 < 3.141592692. So, to T decimal places, = == 3.1415927.

2 -
9. We 'l.'-‘a.ﬁtarct.an{—z) to equal arctan 1:: Y Notethat 14+ zy =n® & ay=ni-1= (r+ 1){n = 1}, soif we
T

Ty

letxr=n4+landy =n— 1 thenxz —y = 2and xy # —1. Thus, from Problem T{a),

2 -
arctan (T) = arctan 1:5+ Y = arctanz — arctan y = arctan(n 4 1) — arctan({n — 1). Therefore,
m Ty

'élarct.an(niz) = éj[an:lml{n 4+ 1) = arctan(n = 1)]

k
= % [arctan{n 4 1) = arctann 4 arctann = arctan{n = 1]]

v

= E*: [arctan({n + 1) = arctann] + i [arctan n — arctan(n = 1))

- wi-]l

= [arctan{k 4+ 1) — arctan 1] + [arctan k — arctan 0] [since both sums are telescoping)

:u.n:t.u.lll{k-l- 1] —f 4+ arctank =0

Now E arctan 2 = lim E arctan 2 = lim an:lu.n{k + 1] - + arclank] =r_z +
ke n?  —— 1 2 =

Rz
il i el

ETET
|

Note: Foralln = 1,0 < arctan(n — 1) < arctan(n + 1) < I, s0 =F < arctan(n 4 1} = arctan(n = 1) < T, and the

identity in Problem 7(a) holds.

> 1
11. We start with the geometric series 3 =" = 11— |£] < 1, and differentiate:
il -

il =i 1=z el il

for |z| < 1. Differentiate again:

= e d oz (l—x)—z-l-z)(=1) x4l X 4 oa_ T 4T

P 1—z) =l-zf = 2" Tz
fn’:“‘lzi 2 +x :{1-:}’{2:+1}-{;%:}3{1-;]9{—11=;2+4.r+1

nel dx (1 —z)* (1—x)* (1—=z)

=, et 4x

otz = . |z] < 1. The radius of convergence is 1 because that is the radius of convergence for the

Tu-ll [1 - Il
geometric series we started with. If = = 21, the series is 5 n*(£1)", which diverges by the Test For Divergence, so the

interval of convergence is (=1, 1).
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540 O CHAPTER11 PROBLEMSPLUS

13, 1..(1 - ﬁ) = 1.1("'2“: 1) —m 2t li';” = e+ 1)(n = 1)] - Inn?

:1nf_n -I-l] + Inl[n - 1] —2lnn= Inl:n - l:l —lnn—Ilnn -I-In{:n:+ 1:]-

T - =1 mn

=In —[Inr:—lll{n-{'-l]]_l:nT—lnr+1

T T

Letsi=3 n(1==) =3 (2L o0 =) fork > 2. Then
= n nz = n T nn+l a8

1 2 2 3 E-=1 k 1 k
= In==In= In= =In— In— =In—— | =In—-—=1
g (l2 n3)+(n3 114)-1- +(| % I.k-l-—l) rJ.2 nk+1,50

= 1 1 & 1
3 In (1——2) = ].II'.I:I s, = lim (Ini—ln—)—Ini—lnl—llll—lnﬂ—lnl =—|I|2{Orln 1
i

nm? ks o ke o k+1

15. If L is the length of a side of the equilateral triangle, then the area is A = 1L . ¥3L = ¥3 1 andso L* = =4

Let r be the radius of one of the circles. When there are n rows of circles, the figure shows that

L=f§r+r+{r¢—2]{2r]+r+vﬁr=r(En—E+2v"§],mr=

_
2{!1-}-1,.-"5—1}'

1 .
The number of circlesis 1 + 2 4 -4+ n= %,mgnmemtalmeam the circles is
A, = n(n 4+ 1) o nfn 4+ 1) - ) .
2 2 4n+3-1)
_ n(n 4+ 1) - 4.«1}"\.@ _ nn 4 1) TA
2 4n+v3I-1) (n+V3-1)243
ﬁ _ nfn 4 1) 7
A n+v3I-1)"2V3
1+1/n T " . .
- ; — dEm N — 00 B r 2r r v Jir
[+(B-)m 23 23 _ T
17. (a) ! The x-intercepts of the curve oceur where siner =0 < = =nm,
n an integer. So using the formula for disks (and either a CAS or
0 40 sin® x = 3(1 — cos2x) and Formula 99 to evaluate the integral),

the volume of the mth bead is

-1 Va= ﬁ‘j}“_u, -#m sinz)?dz = “f{::u- e~ sin xdx

— isﬂw {L-{n-l}wfa - -u.ir..n’.‘.\.:]

(b) The total volume 15

e
ﬂ_ﬂ-lﬂ El-zfﬁ- l'i:-l.l'.l.j rdr = E l;i — :.!I.':;:Ilr E [ =({n=1}r 5 - E—-ﬂ'l'_llrﬁ-] — 1r_'||’ [[flﬂfmlﬂg SI.I.IHI.

el o]

[continued)
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CHAPTER 11 PROBLEMSPLUS O 54
)
Another method: If the volume in part (a) has been written as 15, = 38Ze=""/%(x™/% _ 1) then we recognize 3~ Va

-1

as a geometric series witha = 222(1 —e~"/*) and r = =/".

= a4l
19. By Table 11,101, tan~ x = 5 (=1)" = for || < 1. In particular, for © = L e

et 2n41 'u"{i‘
Il -
, I_ =1 i — .- - hl{lfﬁl — i 1
hve £ =~ (J5) = S0 SHn— = 2607 (5) e
= (=" = (=" ( = (=1 ) = (=" x
= — — = 043 — 51 — = = 1.
JE (@n + 1)3n "F,:";.,[zn+1}3n V3 rrLmTor) T Lo IA
2 Iﬂ I‘
. Lm}‘{;}denmaﬂueleﬁhanjs:denﬂheequman1+EI+ 1 +E+ﬁ+...:u_|f;gu,menj[r}glmmmerem
| f the Note that =1 2 a2t _at = cos z. The sol feosz =0 fi
no solutions o equation. Note fl=2%) = -E+I-ﬁ+§-“._ﬂjhz- solutions of cos = = 0 for

2
x < Dare givenby x = % = wk, where k is a positive integer. Thus, the solutions of f(z) =0are r = = {:% - ﬂ.—} . where

k 15 a posiive integer.

23. Call the series 5. 'We group the terms according to the number of digits in their denominators:

S:ﬁ+§+---+§+;]ﬂ + {ﬁ+---+$]ﬂ +h{ﬁ+---+ﬁ]' oo

e el

on oz m
Now in the group ga, since we have 9 choices for each of the r digits in the denominator, there are 9 terms.

Furthermore, each term in g,, is less than mﬁ' |except for the first term in g, . So g, < 9" - mﬁ' = g[%]ﬁ-l-

ol
Now 5= 9(=)""" is a geometric series witha = 9 and r = = < L. Therefore, by the Comparison Test,

Fomml

S:Egﬁﬂzﬂ[lu}u-1 _ﬂ_ﬁ_m

wiw Fu-]

Iﬁ Iﬂ‘ :EdI IT IH:I I2 Is IH

TR b R N R )

z?
Bou=1l+3r+ 9 IR T T] 21

3 He

Use the Ratio Test to show that the series for u, v, and w have positive radii of convergence (oo in each case), so

Theorem 11.9.2 applies, and hence, we may differentiate each of these series:

du  3z* 625 02 I

X
Eowm e twt Sttty o=y
Slmula.rlvd—”—l+—£+z—ﬁ+£+---—uandﬂ z+£+x—r+£+---—n
T dr T k]| 6! g - dir A4 T 10! -

Sou’ = w, v’ =u, and w' = v. Now differentiate the left-hand side of the desired equation:
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542 O CHAPTER11 PROBLEMSPLUS
%[u“ + v 4 v = Juvw) = 3ulu’ 4 3 + Judu’ = (v vw + w'w 4 wow')
= 3u'w + Jvlu + Jule - 3{1?:;'2 +ulw+ uug] =0 =
u? + v? + w? = Juvw = C. To find the value of the constant C, we put = = 0 in the last equation and get

P40 40" =3(1-0.00=C = C=Lsou’+v*+uv’ =3urw=1

Coprright W6 Cengage Learsimg. A0 gy Rienerved. Wy ot be coped, scanned, or deplacaied, m whok or in pert. Du o chociners sights, sorme thind party comte moy be spprened from the diock andier o hepierial.
Esbtrrea rovarn S decmcd that s wepproncd content doc By affect the ovorall bermirg cupencece. Uagage Lcameng rescrves the nght 0 remens sckdtamal oot 2t 2z hine o vebusguent gt s icton regues i




[1 APPENDIXES

A Numbers, Inequalities, and Absolute Values

1 |5-23|=|-18] =18

3 |=7| = 7 because = = 0.

5 |vE =5 == (v5=5) =5 = 5 because v5 — 5 < 0.
Lir<2r-2<0solz—2==(z-2)=2—2

41 ifxr4+1>0 41 ifx > =1
|I-|-]_I= —
—r=1 ifr<=1

—(x+4+1) ifz4+1<0
M |«* +1| =="+1 [since z* + 1 >0 forall z].

13204 7>3 & 2Zo>=4 & r>=2s50x¢€(=2x)

1 1=-x€2 & —x<]l & r>-=lsozcE[=1a). _

L J

M 2r41<be—8 & 9<3r & 3I<rsoxre (3 ) <

19 -1<2r=5<T7 & 4<2r<12 & 2<z<bs0xe (26). ; *

Ho<l-z<]l & —-1<-z<0 = lzz>0soxe (0]l

BAr<?2r+1<3zr+42Sodr<2r+1 © 2r<l & zr<iand

|
al—

2r41<3x42 & =1<z Ths x€[-13)

25. (z = 1)z =2) >0.
Case [: (both factors are positive, so their product is positive) =1 >0 & = > 1,
andr=2>0 < r>2Lsore(2 o)
Case 2: (both factors are negative, so their product is positive) x =1 <0 < <1,
andx—2<0 < zr<2,s0r€(—ocl)

Thus, the solution set is (==, 1)U (2, o). S

W2l 42<]1 & 2942=1<0 & (2z=1)(z+1)<0.
Casel: 2r—12>0 & z>tandzr+1<0 & z<-l,
which is an impossible combination.

Case2: 22—=1<0 & z<iandr+120 & zr>-lsoxe[-1.5]

T =

Thus, the solution set is [=1, 3.

Coprright W6 Cengage Learsimg. A0 gy Rienerved. Wy ot be coped, scanned, or deplacaied, m whok or in pert. Du o chociners sights, sorme thind party comte moy be spprened from the diock andier o hepierial.
Esbtrrea rovarn S decmcd that s wepproncd content doc By affect the ovorall bermirg cupencece. Uagage Lcameng rescrves the nght 0 remens sckdtamal oot 2t 2z hine o vebusguent gt s icton regues i




544 O APPENDIXA MNUMBERS, INEQUALITIES, AND ABSOLUTE VALUES

B2 4+241>0 & FHr+3+3>0 & (243) +7 >0 Butsinee

(=+ i]ﬁ = 0 for every real =, the original inequality will be true for all real x as well.

Thus, the solution set 1s {—=c, sa).
Naf<d & 2 -3<0 & (z-v3)(z+V3) <0
Case |: x> /3 and = < —/3, which 1s impossible.

Case2: z < /Iand x> =3

Thus, the solution set 15 {-v"i._ v"i} o + s
Another method: ° <3 & |r]<+/3 & =V3<z< 3

B2 —2' <0 & 2zr-=1) <0 Since z* > 0 for all £, the inequality is satisfied whenx =1 <0 & z<1

Thus, the solution set is {=oc, 1]. 0 1

B/atmwr & Forx0 = I[Iz—l]}u = z{r—l}{z+—l]}ﬂ.fﬂrﬁﬂmac}m

Interval z|lz=1]x4+1 I{:r.: - 1]{; + l:l-

x <=1 - - - -
=l<zr<D| = - + +
D1 + - + -
r>1 +| + + +
Since +* > x when the last column is positive, the solution set is {—=1,0) U (1, oc). = *

37, 1/x < 4. This is clearly true for < 0. Sosuppose = 2= 0. then 1/z <4 <

1<4r & <z Thus, the solution setis (—oc,0) U (3, o<). 0

1 C=5F=-32) = F=2C4+32550<F<9 = 50<2C+32<905 = 1B<IC<63 =
10 £ ' £ 35. So the interval is [10, 35].
#1. (a) Let T represent the temperature in degrees Celsius and & the beight in km. T = 20 when £ = 0 and T decreases by 10°C
for every km (1% C for each 100-m rise). Thus, T = 20 — 104 when 0 < h < 12,
(b) Frompart (a), T =20=10"h = 10A=20=T = h=2=T/10.S0<h<5 = 0<2=-T/I0<5 =
—2<€<=T/I0<3 = =-2W0<-T<30 = 20>T>=30 = =30<T < 20. Thus, the range of

temperatures {in *C) to be expected is [—30, 20].

1-3.|2:5|:3 < either2e =3or2z=-3 & I:%HI:—

T

45 |x43|=224+1] & etherz4+3=2r4lorz+3==(2r <+ 1). Inthe first case, r = 2, and in the second case,

t43==2r=1 & 3x=-4 & x==3 Sothesolutionsare =3 and 2.

47. By Property 5 of absolute values, |z] <3 & =3 <z <3, s0x € (=3.3).
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APPENDIXE COORDIMATE GEOMETRY ANDLIMES O 545
8 |r—4<l & -l<z—4<1 & 3<z<b5soze(35)
. |z+5]|>22 & r45720rx4+5<=2 & rz-3orzr<=T,501¢c (=0, =T|U[=3, ).
53 |20 —3| <04 & -04<2:-3<04 & 26<2r<34 & 13<xr<1Tsoxe[L3 LT
55 1< |r| <4 Soeither 1 €r<dorl<—r<4 & =12z>—4 Thus xe [=4,=1]U[L4].

SLafbr—c) Zbe © br—c>X o be>Xyo-Xta IE&;;E
fid a i

Bart+b<e & ar<ce=b = E}ﬂ[ﬂmfﬂﬂﬂ]
a

Bl [(z4+w)=5l=[(z=2)+ (v =3)| < | =2| + |y = 3| < 0.01 + 0.4 =0.05

Bl fa < bthena4a<a+banda4b<b+b So2a <a+b<2b Dividing by 2, wegeta < £ (a+b) < b

65. |ab] = \/Tab)? = V™l = Va? VI = |a] |t

BT. If0 <a < bthena-a < a-banda-b < b-b [using Rule 3 of Inequalities]. So a® < ab < b and hence a* < b°.

69. Observe that the sum, difference and product of two integers is always an integer. Let the rational numbers be represented

by r = mfnand s = pfq (where m, n, pand g are integers withn £ 0, g £ 0). Nowr + s = % +E= M,

q nq
g 4 pri .
but rrig 4 pr and ng are both integers, s0 ——— = r 4 = is a rational number by definition. Similarly,
T
r=s=— 2= T = i rational number. Finally, r -5 = L mp and ng are both integers, so
n q g n g g

ZF — r. s is a rational number by definition.
Ty

B Coordinate Geometry and Lines

1. Use the distance formula with P (x,,9,) = (1. 1) and Ps(xs.y:) = (4, 5) to get

1AR|=/A-12+E-1P2 =T+ P =yT5=5

3. The distance from (6, =2) to (=1.3) is /=1 =6)2+ B =(=2)2 = /(=T + 52 = /TL

5. The distance from (2, 5) to (4, =7) is /T4 = 2)2 + (=T =5)2 = /22 + (-12)? = T8 = 2/3T.

T. The slope m of the line through P(1, 5) and (4, 11) ism = 141 _lﬂ = % =2,

=f =13 9

9. The slope m of the line through P{=3,3) and (=1, =6) ism = g 1 ==z

1. Using A(0,2), B(=3,=1), and C'(=4,3), we have |AC] = /=1 =01 + (3 = 2)° = /(=1 + IZ = /T and

|BC| = /=4 = (=3)]* + 3 = (=1)]* = /(=1)* + 4% = /17, so the triangle has two sides of equal length, and is

1s0sceles,
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546 O APPENDIXB COORDINATE GEOMETRY AND LINES

13. Using A(=2,9), B(4,6), C(1,0), and D(=5, 3), we have
|AB] = A= (=2)F + (6 - 9)7 = /& + (=3) = V45 = V05 = 345,

|B'|'.ﬁ| = \..-'r{]. —-'1:]-2-{- {':]'—E:l-2 = V-"{—S:]j +{—ﬁ-}2 = »..."'4_= v"ﬁﬁ:ﬂﬁ,

lCDl = (=5=12+ (3=-0)2 = ,/[-6)? +32 = /45 = /05 = 3+/5, and

|DA| = /=2 = (=5)] % (9= 3)% = v3 + 6 = v45 = +/0/5 = 3+/5. So all sides are of equal length and we have a

=19 1 0=6 i=0 1
rhombus. M = = -— - = = = ——_ and
0 OIEOVET, T AR 1—(=2) g TEC = T4 2, men 5o E,E.ITI
9=3 .
mpA = 2_{'] = 2, so the sides are perpendicular. Thus, A, B, ', and [ are vertices of a square.
R
. 4-1 1 .
15. For the vertices A(1. 1), B(T, 4), (5. 10}, and I =1, T), the slope of the line segment AR is — .= E,The slope of €0
7 -
5 g ; the slope of BC 15 10 _j = =3, and the slope of DA is % = =3. 50 AR is paralle] to [ and
-1=5 7 —-=
BC is parallel to DA. Hence ABCD is a parallelogram.
17. The graph of the equation = = 3 is a vertical line with 8. ry=0 <= x=0o0ry =0 Thegraph consists
a-intercept 3. The line does not have a slope. of the coordinate axes.

v

21. By the point-slope form of the equation of a line, an equation of the line through (2, =3) with slope 6 is

y=1[=3) =6(x =2)ory = Gx = 15.

=
=

23 y—?:%{z—l]wy:§1+?

fi=1 .
25, The slope of the line through (2. 1) and (1,6) 15m = T -5, s0 an equation of the line is
y=1==5{z=2)ory = =5z + 1L
27. By the slope-intercept form of the equation of a line, an equation of the line isy = 3z = 2.

=3 =0
29. Since the line passes through (1, 0) and (0, —3), its slope 15 m = _—

= 3, 50 an equation 15 y = 3z — 3.

Another method: From Exercise 61, T+_3_l = =Jr4y==3 = y=3xr-=3

3. The line is parallel to the x-axis, so it is horizontal and must have the form y = k. Since it goes through the point

(z.y) = (4. 5), the equation is y = 5.
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APPENDIXE COORDIMATE GEOMETRY ANDLINES 0O 547

33 Putting the line = 4 2y = 6 into its slope-intercept form gives us y = -%z 4 3, 0 we see that this line has slope -%. Thus,

we want the line of slope —3 that passes through the point (1, —6): y — (=6) = —3(z = 1) & y=—-1z- 1.

3. 2:4+5y+8=0 & y=—3zx— 3. Since thisline has slope —2, a line perpendicular to it would have slope 3, so the

required lineisy — (=2) = 3z — (-1)] & wy=3c+3.

M z4+3y=0 & y==>%r sotheslopeis =1 and the 39. y = =2 is a horizontal line with slope D and
y-iriercept 1s 0. y-intercept =2,
v ¥
1] X
il r
p—
M. 3r=4y=12 & y=2%zx=3 sotheslopeis £ and 3. {(z,y) | x < 0}

the y-intercept is =3,

U/ ' ’ )

85. {(z.y) | 2y <0} = {(z.y) | = < Dand y > 0} @ {@v)|lel <2} = (=) | 252 < 2)
U{(z.y) |z >0andy < 0} .
¥y
-z o ¥
0 X
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548 O APPENDIXB COORDINATE GEOMETRY AND LINES

8. {(ry) |0y €4, 2 <2} M {(zy)|l+z<y=<1-2x)

v

y=4

53. Let P(0,y) be a point on the y-axis. The distance from P 1o (5. =5) is /(5 = 0) 4+ (=5 = y)* = /5% + [y + 5)°. The

distance from Pto (1,1) is /(1 = 0)2 + (1 —y)? = /12 + (y — 1)%. We want these distances to be

equal: B+ (y+5) =V E+(w—1)p = 5+(w+5)f=1"+@w-17° =
B+ + 10y +25) =14+ =2w+1) & 12y=-48 & y=—4 Sothe desired point is (0, —4).

55. (a) Using the midpoint formula from Exercise 54 with (1, 3) and (T, 15), we get (2=, 418) = (4.9).

{b) Using the midpoint formula from Exercise 54 with (=1, 5) and (8, =12), we get ('—'j‘—"‘ w‘!‘il) =

R

.=3).

5. r=y=4 & y=2x=4 = m =2andBc=2y=10 & 2y=6r=10 & y=3xr=5 = me=23
Since 1 # ma, the two lines are not parallel. To find the point of intersection: 2r =4 =3x =5 < zz=1 =

y = =2. Thus, the point of intersection is (1, =2).

59. With A(1, 4) and B(T, —2), the slope of segment AR is =252 = —1, so its perpendicular bisector has slope 1. The midpoint

T

of AB is ('—j‘—T i&‘—‘l) = (4, 1), s0 an equation of the perpendicular bisector isy — 1 = 1(z = 4) ory = = = 3.

61. (a) Since the z-intercept is a, the point (a, 0) is on the line, and similarly since the y-intercept is b, (0, &) is on the line. Hence,

=0 b b b
the slope of the line is m = D = == Substifuting into y = mr+ bpnesy = ==xr4+b & —=r4y=b =
=il L e 41

r wu
—4+==1
a b

{h]LMnguzﬁmbz—agwesE+i3=1 & —8r+6y=—45 [multiplyby —48] & 6y=8r—48 <

Jy=4s-24 & y:%z—ﬂ.

C Graphs of Second-Degree Equations

1. An equation of the circle with center (3, —1) and radius 5 is (z = 3)* + (y + 1)* =5 = 25.

3. The equation has the form 22 + y? = r?. Since (4, 7) lies on the circle, we have 42 + 7° =+? = r? =65 Sothe
required equation is * 4+ y* = 65.
S5 04y mdr+ 0y +13=0 = ' =dr+y’+1lly=-=13 =

(£ =4+ )+ (1P + 10y +25) = =13+ 4+ 25=16 < (r—2)%+ (y+ 5)% =4° Thus, we have a circle with

center (2, —5) and radius 4.
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L+  +x2=0 & {I2+I+%]+y2=% = {I+%}2+—y”={%]2.Thus.,we}m'eaclrclewrm;‘enter{—% o)
and radius 7.

.20 + ' —x4y=1 & 2 -lr+E) 42+ du4F)=1424E &
2z—1) +2( +%]j=% & (x=1) +(y+ 1) = I Thus, we have a circle with center

3-—3) and
radius E"% = Tm.

x
1. y = —2. Parabola =

2
24 og? = ¥o_
B+ =16 = lﬁ+ 1 1. Ellipse
v

{i

™
_4\\1—_,/4 x

z* ;,r2 . z? .
r — o ! = = i i - : 4= — * =
15 16" =25y =400 = >~ 1 1. Hyperbola 174z +y 1 « 71 +u 1. Ellipse

l\hr:,,/‘

19. x = y* = 1. Parabola with vertex at (=1, 0}

Hoyi=ri=0 o 3= % = 1. Hyperbola
.I'-

L —

U
_I}.U\\‘. r"';[;*f..

H

23. xy = 4 Hyperbola B.0x=1+4y=-2"=36 <
R 12 - a2
(= 413' L 921 — 1. Ellipse centered at (1,2)

¥
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550 O APPENDIXC GRAPHS OF SECOND-DEGREE EQUATIONS

N y=x"=64+13= {f —bBx 4 Q] +4=(x —3:]-2-{- 4. W r=4-y' ==+ 4 Parabola with vertex at (4,0)
Parabola with vertex at (3, 4) ¥

¥

™
>

134 __._.-—'-""'-.:.:l'-

'+ —6r+5=0 &
(z =6z +9)+ ' ==-5+9=4 &

- 3 2 ; .
% +y* = 1. Ellipse centered at (3,0) ‘

. y = 3rand y = =" intersect where 3z = * <

0 =z* = 3z = x(x — 3), that is, at (0,0) and (3,9).

Ny
. [ER]]

! I‘\\i_—//'ﬁ '

o

35, The parabola must have an equation of the form y = a{z — 1)* = 1. Substituting = = 3 and y = 3 into the equation gives

3=a(3=1)=1,s0a =1, and the equation is y = {x = 1}* = 1 = x* = Zx. Note that using the other point { =1, 3) would
have given the same value for a, and hence the same equation.

W (zy) |2 +y* €1} 0 {(z.y) |y = 2" =1}

A
3

=1

D Trigonometry

1. 210° = 210° (=) = == rad L9 =9 (=) =& rad

5. 900° = 900° (-2 = 5 rad T. 47 rad = 4n(12° ) = 720°

5. ¥rad= (1) =75° f. -3 rad = -3 (22) = —67.5°

13. Using Formula 3, a = v =36 - J5 = 37 cm.
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2 ne 20
15. Using Formula 3,8 = afr = 15—§md=§(1“ ):{' ¥ == 38.2%

17. ¥ 19. v 2. !

D : AW
AN ’ '

H
=
=

|5

21 From the diagram we see that a point on the terminal side is P{—=1, 1).
Therefore, taking £ = =1,y = 1, r = +/2 in the definitions of the
trigonometric ratios, we have sin 2% = T};, cos 3T = :f;,
t.an% = —I,CHE% = \-"'i SEL H'Tr = —\-"i and :.ut:%' = =1
-
25, ¥ From the diagram we see that a point on the terminal side is P[0, 1).
e ]: Therefore taking =0, y = 1, r = 1 in the definitions of the
f:m X3 trigonometric ratios, we have sin 3f = 1L, cos f =0, tan 3F =y/x is
&J ! undefined since x = 0, ese 5 = 1, sec 5F = r/x is undefined since
=10, and cot %5 =
. ¥ Using Figure 8 we see that a point on the terminal side is P(—ﬁ._l].
Pi=J5. 1) Therefore taking = = —+/3, y = L.+ = 2 in the definitions of the
1 2 i= trigonometric ratios, we have sin 22 = 1 cos 22 = =3
\I'_; - t.an%:—ﬁ,cm%:i,&&%:—ﬁ,ﬂrﬂc{ﬂT:—\.-'"'i

29, ﬁhlﬂ:y,ﬂ'r:% = y:ﬂ,r:i,a.l‘ﬂ:s:m:d{smﬁﬂq‘.ﬂ{%]. Thereforetaking s =4, y =3, r=51n
the definitions of the trigonometric ratios, we have cosf = %, tanfl = %, csc Bl = %, sec fl = %,aﬂdcut.ﬂ = %.

H F<d<x = isinthe second quadrant, where = is negative and y is positive. Therefore
ﬁecgtr:rf:s:-l.&:-% = r=3,::=—2,a.m:|y=v'":_-ﬁ—_.1:'£=x-"'§_Takmg1:=—E,yzv"'g,andr:ﬂmthe
definitions of the trigonometric ratios, we have sin & = -"‘;—E,cutidt = -2 tangp= ——";—s,cﬁca = %,and cot = =S

31 7 < 8 < 27 means that 3 is in the third or fourth quadrant where y is negative. Also since cot 3 = =y = 3 which is
positive, = must also be negative. Thereforecot 3 =x/y=2 = z=-3,y=-lLandr= VE + 37 = +/10. Taking

x = =3,y = =1and r = +/10 in the definitions of the trigonometric ratios, we have sin 3 = —?'1—,:_1.&.',3 = -:_f‘l_,

tan 5§ = %,EHL‘S = =/10, and sec 3 :—33@_
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552 O APPENDIXD TRIGOMOMETRY

3. 5in35° = — = 2= 10sin35° = 5.73576 cm

10

FotanfF == = r=8tand ~206214Tcm
B From the d thatsin® = £ = 2 and sin(—8) = —= = =% = —sin#
. Piba) ia) From iagram we see that sinfl = = = —, sin{—8) = — ==, =—sinf.
: b
o {b) Again from the diagram we see that cos 8§ = I="= cos| =8,
g b r o
i) X
[
&
(b, —a)

41. (a) Using {12a) and ( 13a), we have
[sinfx +y) 4+ sin(r =y)] = Z[sinz cosy + cosx siny 4 sinz cosy — cosr siny] = $(2sinr cosy) = sinr cosy.
(b) This time, using {12b) and (13b]), we have
Fleos(x +y) 4 cos(x —y)] = eos x cosy —sinx siny 4 cosx cosy + sinz sing] = J{2eosx cosy) = cosx cosy.
{c) Again using { 12b) and ( 13b), we have
gleos(z = y) = cos(z + )] =

= 3(2sinz siny) =sinr siny

é[EUHI cosy 4 sinr siny = cosr cosy <+ sin T siny)

sine=1-cosx 40 -5y =cosc

43. Using { 12a), '\'\-‘E']"Ia".'E'mn[ -+-.r} = sin = 2 COS T 4 c08 = 2

45, Using (6), we have sin# cot § = sin# % = cos il
sin
1 = cos” ¥ sin? y ny

1
47, secy —cosy = p —cosy [by(6)] = [I:f\-'{]"}] " siny = tany siny [by (8)]

cos® § cos? @ + sin? @

cos 0

49, cot? B 4 sec

Eﬂ.:

1
7g t oo YO =

[l = gin? A)(1 = sin® @) 4 sin®

sin® # cos? #

_ cos B 4 sint o 1

[h}' (M =

sin? @ cos?

1—sin®f +sind
sin® # cosE

iy 2
sl 'E =c&c2ﬂ+tﬂllz'ﬁ lh"}"{'ﬁl]

sin® foos? 6 by (7] = sin® @ + cos? @
tan# 4 tan# 2 tand
51. Using { 14a), we have tan 28 = tan(f 4 #) = T —tanf tand — 1—tan?f"

3. Using ( 15a) and ( 16a),
sinz sin 2z + cosx cos 2r = sinx (2sinccos ) + cose (2o’ = 1) = 2sin” r cosr + 2cos’ £ —cosx
=2(1 —cmz.r} cos T + 2cos” T — cosx [by (TY]

3 a
=2Zosr—=2c08 r4 20 r—COST = COST

Or: sinxsin2r 4 cosr cos2r = cos(2x — x) [by 13(b)] = cosx
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APPENDIXD TRIGONMOMETRY O 553

singg  sindg l+cuti:fr_5in:fr{l+cm¢} amcr{l+u.ma] [by (7)]
l=—cosdr 1=cosg 14+ cosc 1 = cos? g sin” o
R R cosgh )
T sind _ﬁind+ﬁin¢=_tﬂﬂ+LUI¢ [by (6)]

37, Using (12a),
sin 30 4 sin @ = sin(26 + #) + sin@ = sin 26 cos# + cos 20 sin 6 + sin @
=sin20 cosf + (2cos’ @ = 1) sin@ + sin@  [by (16a)]
=5in20 cosf + 2cos” 6 sind = sind + sinf = sin 20 cos O + sin20 cosd  [by (15a)]
= Zsin M cos

3. Since sinx = % we can label the opposite side as having length 1,

the hyvpotenuse as having length 3, and wse the Pyvthaporean Theorem 5 j 3
- 1
to get that the adjacent side has length +/B. Then, from the diagram, =
b
W
COST = J',;—F Similarly we have that siny = % Now use (12a): ¥
4

:ai.lll{a:-{-y]=sin:cutiy+cuﬁz5iny=%-%+-’l‘?-%=%+£"ﬂ;—i="—'ﬁ£.

61. Using {13b) and the values for cos & and sin y obtained in Exercise 59, we have

cm{x—y}:u.m:cmy-{nsiursiny:%-%+i-%:£%’—a

63. Using {15a) and the values for siny and eos y obtained in Exercise 39, we have sin 2y = Z2siny cosy =2 % 4=

sl

B5 2eosr—1=0 & ewsr=31 = z=3% Fforze (0 2n]

BT. 2sinz =1 & l'i:-I.IIjI:% = ﬁi.ll.r:ﬂ:?lf = .r:%

3= 3= I=
T4 4T 47

69. Using (13a), we have sin2x = cosz & 2sinzomr—cosc =0 & cosz(Zsinz=1)=0 < cwmz=00r
Zsinr=1=0 = =3 %Forsinr=21 = r=IoriX Therefore, the solutionsare r = £, I, 2 x

G*2Z* G I

. . . sinx
M. sinr=tanr < sinr—tanr=0 & sinr-—

=0 & HillI(l-— ):ﬂ < sinz=0o0r

COs T Cos T

1
=0 = z=0,m2rorl=
Ols IT TS T

1=

= cosx=1 = zx =027 Therefore the solutions
are r =0, m, 2.
73. We know that sinx = 3 whenx = I or 27, and from Figure 13(a), we seethatsinr < } = 0<z<Zor

E<r<Izforze[0,27]

H.T..ma:—-lwhenx—T’T’am:lla.nr—lu.hen::—i "'T’.meFlgureM{a}msaeﬂ*m—l-c:tanx-::l =

D<r< I, Eara® and X <o <2
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554 O APPENDIXD TRIGOMOMETRY

1. y:cm{x— %} We start with the graph of y = cosx . y= %L&n(z— —} We start with the graph of
and shift it §- units to the right. y = tan, shifi it 3 units to the right and compress it to

£ of its original vertical size.

83. From the figure in the text, we see that + = beos#, y = bsin @, and from the distance formula we have that the

distance ¢ from (z, ) to (0. 0) ise = /(x =a)? + (¥ =0)* =
¢ = (beos# = a)* + (bsin#)? = b cos @ = 2abeos# + a® + b* sin” #
=a® 4 b*(cos? @ + sin® #) — 2abeos @ = a® 4 b* — Zabeos®  [by (7))
85, Using the Law of Cosines, we have ¢” = 1% 4 1% = 2(1)(1) cos (rx = 8) = 2|1 = cos{a — 3)]. Now, using the distance
formula, ¢ = |AB|* = (cosa — cos 3)° + (sina — sin #)°. Equating these two expressions for ¢*, we get
1 = cosfax = 3)] = cos” o +sin® o 4 cos” 4+ sin® F = 2eosn cos § = 2sina sind =
l=osja=fF)=l=cosa cosF=sina sind = cosfo=5) = ocsa cos 3 4 sina sin 3.
87. In Exercise 86 we used the subtraction formula for cosine to prove the addition formula for cosine. Using that formula with
z=2%—a,y=4 wegetcos[(Z —a) + 8] =cos(£ —a)cosf—sin(X —a)sing =
cos[Z = (a = 8)] = cos(L —a)cos 8 —sin( £ = a)sin 3. Now we use the identities given in the problem,

L‘UH( —ﬂ} —h].llﬂ'ﬂrlj.ﬁll‘l{— —ﬂ'} _Lﬂhﬂ mg&tmn{u—ﬁ'} =sina cu&..ﬂ'—c{_mn |I:II'.I..:‘}I

89. Using the formula from Exercise 88, the area of the tnangle is $(10)(3) sin 107° = 14.34457 em”,

E Sigma Notation

1] L

L Vi=vI+vZI+ V34345 333 =343 430

-1 F T
C | 1 3 5 7T L

1 X T‘ 10 = ll'l:l Elﬂ 3“] . 1}

E,mn tz+z+s+g E: +20 4304
FT | 10

9. (=1 =1=141=14. s (=1)""" M 14243 444--410="4
Jml) T34
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TTRE P S S S 15.2 4446484 4+2n=32

2737175 M- i+l =
o n

1. 14+24+4+84+164+32=3 2 Bar+r 44" =3 2
dmmil =3

N. 3°(3i - 2) = [3(4) = 2] + [3(5) = 2] + [3(6) = 2] + [3(7) = 2] + [3(8) = 2] = 104+ 13 + 16 + 19 4 22 = 80

A

5
Y ¥ =32 130 3 3% 4+ 3% 437 = 94 27 4 81 + 243 + 729 + 2187 = 3276

Jm=l

(For a more general method, see Exercise 47.)

]
25 3 (=1"==1l4l=ldl=ldl=ldlaldlaldlaldl=lqdl=141l=141=0

gl

. iﬂ{z'+=‘”]={1+u}+|[2+1}+{4+4}+(&+u}+{1ﬁ+1ﬁ}=51

kLl i
1
29, EZJE:ZE:':Z-M [by Theorem 3{c)] = n{n+ 1)
iml =1 2
T
M2 4+3i+4) = E‘ +1‘E’+ E 4= i(n 4+ 1)(2n 4 1) +3ﬂ.[n+ 1}+4n
d=] =l p=] ﬁ 2
= %[[2:13 +3n® 4+ n) + I[Quz + 9n) + 24n] = %[2:13 + 12n* 4 34n) = %n[uz + fn + 17)
- L LI n n 12 1 k. 1
BEGHNE+) = (4342 =S 433 e 3o 20 DERED Il t Y,
-] -] -] -l -l
1 1
=%[{2 +1)49)42n M{ +5)+2n

F [ +1)(n+5)+6] = 2 (0 +6n +11)

B (P —im2 = P =Y i3 2=

-] - -l -

= %n[‘n + 1:]-[11.{11. + l] —2] -n = %:n:{:n: + l:l-{n + ﬂ:l-[:n: -— l:l- - In

[n{n; 1}] - nln; N _,.

= %n[{n +1){n=1)n+2) -8 = %n[{nz —1j{n+2) -8 = %n{nﬂ + 2n? = n =10}

37. By Theorem 2{a) and Example 3, Z“: e=¢ i 1=cn.

=] -]

T
3 3[4+ 1) =i = (2 =19 + (3 =29 + (40 =3 o+ [(n+ ) =]
d=]
=n+1)' =1 =n+4n* + 60’ + 4n
On the other hand,

41 == 3 (4 46 44 1) =4 P 443 i1

-] -] -] - -] -]
fl
=4S+n{n+ 1}{2:‘:-{-— l]+2n[n+ 1]-+-n. [whereS:Ei“]
i1
=454+ 2 LAt n 4+ P L Indn =45+ In* 4+ 50’ 4 4n
[continued)
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Thus, n* 4 4n® + 6n° + 4n = 45 + 20 + 50° 4 4n, from which it follows that

4S=n"+" +n" =n'(n" +En+l]_n{l1+1] a.nd'i’:[ 2

Ho@) L[ (-1 =1 =0) + (2 =19 + (3* = 2) 4+ 4 [0 = (n=1)*] =n* =0 =n"

(1]
“}:I ]'E{Et_sl-—llz (51_50}+{52_51}+{.52_52] +_“+(51I‘.'II'.'I_5‘J"J] =51m_5n=51m_1

Ll i | 1 1 1 1 1 1 1
f“._’%(:';u):(i'z)+(1'§)+(E'5)+"'+

(d) i(“t-ﬂ--l} = (ay = ag) + (a2 =ay ) + (02 = aa) + - - + (g, = apoy) = a, = ag

43. lim E”;l(i)zz lim %if*: lim %wz lim %(1+%) (2+£) =3(1)(2) =%

n—o 114 57 T T i -

s .-uniz[(ﬁ)na@)]:hn.z Boe B [B5e DS

1 _ 1y 1_ 1 _97
99~ 100/ ~ 3~ 100 300

-l -]

= lim I—E n(n+ ljj + Enl{n ¥ 1]] = lim [4{]1 + ljj + lEI'ul:nl i 1]]
n—oe | 71 4 Tt 2 o n? n<
. 1y 1
= lim (4{14—) 4+ 10§14 — =4-1410-1=14
T Oal i mn

L
. letS5=Y ar'"!' =a+ar+ar’ + -+ + ar™. Multiplying both sides by r gives us

rS=ar+4ar’ 4 -+ ar™! 4 ar™, Subtracting the first equation from the second, we find

{r—l].‘;':u.r“—ﬁ.zal[rl :I a0 5 = {r—l} [smr:er?&l]

49 2{234'21]'_2354- EE . gi=1 :211-{11-{'-1} +2I::2”—1:|.

-l -1 2 2=1

=2l L n? =2

For the first sum we have used Theorems 2{a) and 3(c), and for the second, Exercise 47 witha =r = 2.

G The Logarithm Defined as an Integral

1. (a) v We interpret ln 1.5 as the area under the curve y = 1/x fromz = 1 to
\;A . }._—l @ = 1.5. The area of the rectangle BCDE is ; - 7 = . The area of the
trapezoid ABCDis 1+ 1(1+ 2) = & Thus, by comparing areas, we
0 JEr| |__f x uhseneﬂms; <Inl5 {i_!
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(b) lnz = [(1/t)dt,s0ln 1.5 = [ "(1/t)dt. With f{t) = 1/t,n = 10, and At = L2=1 — 0,05, we have

In15= [*(1/t)dt = (0.05)[ f(1.025) + f(L.OT5) 4 --- + f(1475)] = (0.05) [ + T + -+~ + 4]

= 0.4054
3 ¥ The area of H: 15 ! a.nuisnl+l+ +1-:: r:Ilq:l.',—lm-z,
i+1 23 n o, t
il 1 2 %3 4 - m—1ln x
) 1 1 1 |
¥ Theareaof 5 is —andso 1 4 — 4 a0 4 - Zdt =Inn.
v i 2 n—1 1 B
af 12 3 4 a—1m ¥
1 1 1 1 1
Thus, =+ = +-+—<lnn<l+=+--+ :
373 noo 2 n—1

5 If fz) = ln(z"), then '{z) = (1/=") (ra"=") = r/z. But if g{z) = r lnx, then g'(x) = r/z. So f and g must differ by a

comstant: In(z") = rlnz 4+ C.Putz=1In(l1")=rlnl 4 = C=0s50lnfz")=rlnzx

T. Using the third law of logarithms and Equation 10, we have lne™ = ro = rlne® = In(e®)". Since In is a one-to-one

function, it follows that e™ = (e™)".

9. Using Definition 13, the first law of logarithms, and the first law of exponents for *, we have

{E’b]z = pf lafab} _ E:{Inn-}-lu by — ot lnadrind _ E:lnnezlnb = a®h=.

H Complex Numbers

L(5—6)+(34+28) =(54+3)+(-64+2)i=8B4(—4)i=8-4i

3 (24 5i)(4 = i) = 2(4) + 2(—i) + (5i)(4) + (5i)(—i) = 8 — 2i + 20i — 5i* = 8 4 18i — 5(-1)

=84 18i+5=13+ 18
L124Ti=12-Ti

1440 _144i 3-2i 3-2i+12i-8(-1) _11410i _11 10

"3+ 3+ % 33— 37 4 22 13 13 13"
1 1 1—i_  1=i _1-=i 1 1.
T+i 1+i 1-i 1I-(-1) 2z 23

Nt =ii=(-1)i=-

13 =25 =+201=H
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15. T2 — 5 = 12 4 15i and 12 = 15i] = /127 + (—5)° = vIH + 25 = V169 = 13

7. 5i=0—-di=0+4i=4diand |—4i] = /DT + (12 = VTG =14
19.42°4+9=0 & 4&'==9 & " == & z==/=3=%,/3i==3i

—24 /22 —41)(5) —2x=T6 —2x4i

21. By the quadratic formula, = + 2z +5=0 & =z = 30 = 2 =—F—=-1%2
=1+ 12 =41}(2) =1++=7 i
23. By the quadratic formula, = + = 4+2=0 & == 0 {sz l:tz ?=-%i%i.

B Forz==3+4+3i,r=/ (=3 +3 =3vZand tand = _ia ==1 = #= ?T’l[smce:hesmmesemndquad.rmn].

Therefore, =3 + 3i = 3+/2 (cos 3 4+ isin 3F).

N Forz=3+4i,r=/F+F=5andtanf=1 = o= l:.an-l{%] {since = lies in the first quadrant). Therefore,

3+4i:5[tm[ '1"] +m||1{t..m 1% ]

2 Forz=y3+ir=/(V3) + 1P =2andtanf=J; = #=F = :=2(cos}+isin)
Forw=1+43i,r =2andtanf=+3 = #=% = w=2(cos} +isin)
Therefore, zw = 2 - 2[cos(E + £) + isin(F + )] = 4(cos § + isin F),
zfw=2[eos(E = £) +isin(E = £)] = cos(=Z) +isin(=Z),and 1 = 1 4 0i = 1(cos 0 4 isin0) =
1/z = [eos(D = Z) +isin(D = £)] = 1 [cos(=Z) + isin(=Z)]. For 1/=, we could also use the formula that precedes

Example 5 to obtain 1/z = §(cos £ —isin E).

MForz=2v3=2r=/(2v3) +(-2)° =4andtanf= % =-L = 0=-% =
[cuei{—ﬁ:l+iﬁi||{—%:|].Fﬂrm:—l+i,r:v"§,t&nﬂ:_—1l:—l = ﬁ‘:?{T' =

w = /2 (cos 2= 4 isin ). Therefore, zw = 4v/2 [cos(=% + 2=) 4 isin(—Z + 2£)] = 44/2 (cos IZ + isin IF),
sfw= Jyleos(=F = ) + isin(—F = 5F)] = Jy[eos(=5F) + isin(=5F)] = 272 (cos 55 + isin 5, and
1z = 3eos(—§) —isin(=§)] = §(cos § + isin F).

B.Forz=1+ir=vIandtanf=1=1 = 0=5 = z=Z(cos$ +isinZ) Soby DeMoivre’s Theorem,

(1+ :':Im = [\-"ﬁ{{.m % + isin.%]]m = {Zl‘rz}m[ "m‘:' [ &l m"'] = Elﬂ{cuﬁ 57 4 isin 5x)

=2"0[=1 4 i(0)] = =2'° = —1024

35,F0r:=ﬂu'ﬁ+25,r= {2\.-"’-} + 22 =41 4al'.|dt.anﬁ_?:ﬁ = Ei":% = ::4(&:5%-}-:'5&1%}.
S0 by De Moivre's Theorem,

(2434 2i) = [4eos £ 4 isin £)]" = 4*(cos 2= 4 isin 35) = 1024[-— + —:] = —512+/3 + 512i.
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I 1=14+0i =1{cos0+ isin0). Using Equation 3 with r = 1, n = 8, and # = 0, we have

= 1 o (LEET) | (L2

k k
=MT"+smnT",w}mek=u,1,2,_._,?.

1
wo = 1{eos0 4+ isind) = L, un = Leos 5 4+ isin§) = ?1? + ?13:', “:
wz_l{tcm -I-:s:l.uf]_a I.L'-q_—l.[t‘l.m + isin %]:—ﬁ-ﬁﬁ:} * *
wy = l{cm#-i- isin .'ﬂ':l' = =1, iz = l|:1:u-.5 = 4 isin %] = —ﬁ- - ::Ei‘ * ] : Re
ws_ltcmT+1sU|T]:—: I.L'?—l{l.ﬂh—-{‘-lhl Tr]:?lﬁ-:al?i * *
Hi:ﬂ+:’:l[mﬁ% +i.sin§}. Using Equation 3 withr =1, n = 3, and # = £, we have

= 2k = 2k I'm

wy = llf:l[cua(%) + iﬁin(#)] ,where k =0,1.2.
- .
urn:{cuzi%-l-isiu%]:l;j-i'-%i
0 Re

1 ={cu:i%+:'sin‘%} =—-"2£ + %i

iy = {cus 2% 4 isin —} =

tar 2

#1. Using Euler’s formula (6) with y = £, we have e =ecos T Hisin =04+ li=i

1
43. Using Euler’s formula (6) with y = %,w& have &' ™ = cos % + fﬁin% =3 + T:’.

45 Using Equation 7 with = = 2 and y = =, we have ¢**'™ = ¢%¢'™ = ¢*(cos 7 4 ising) =¥ (=140) = =

47. Take r = 1 and n = 3 in De Moivre's Theorem to get
[1(cos @ + isin8)]* = 1%(cos 38 + isin38)
{cost + isin#)* = cos 36 + isin 30
cos® # 4 3(cos” 0)(isin @) + 3(cos #)(isind)® + (isinf)* = cos 30 + isin 36
cos® B 4+ (3cos” 6 sin #)i = 3cos@ sin® @ = (sin® #)i = cos 30 + isin 36
(cos® 6 — 3sin® @ cosB) + (3sin cos” § — sin® 0)i = cos 30 + isin 30
Equating real and imaginary parts gives cos 38 = cos™ 8 = 3sin” 6 cos#) and  sin 30 = 3sin# cos® # = sin® 6.
49, F(z) = e = elatbils = gorbbel _ a2 (og by 4 isinbr) = e cosbr + i(e** sinbr) =
F'(x) = (e** cosbx)' + i(e™® sinbx)’
= (ae™* cos br — be™* sin br) + i{ae® sinbx 4 be®* cos bx)
= afe**(cos br + isinbx)] + ble®*(—sin bz + i cos br)]
= ae™ 4 b[e* (i sin br 4+ i cos br)]

= ae"™ 4 bi[e"(cosbr + isinbr)] = ae™ 4 bie™ = (a 4 bi)e™ =re"™*
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